1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
#' @import data.table
#' @import grDevices
#' @import Rcpp
#' @import sp
#' @import stats
#' @import methods
#' @import MASS
#' @import nnet
#' @import e1071
#' @import grid
#' @import robustbase
#' @import colorspace
#' @importFrom car bcPower
#' @importFrom car powerTransform
#' @importFrom vcd mosaic
#' @importFrom vcd labeling_border
#' @importFrom laeken weightedMedian
#' @importFrom laeken weightedMean
#' @importFrom graphics Axis abline axTicks axis barplot box hist boxplot layout lcm lines locator par plot.new plot.window points
#' @importFrom graphics polygon rect strheight strwidth text title
#' @importFrom utils capture.output flush.console head
#' @importFrom ranger ranger importance
#' @useDynLib VIM
NULL
#' Animals_na
#'
#' @description Average log brain and log body weights for 28 Species
#' @details The original data can be found in package MASS.
#' 10 values on brain weight are set to be missing.
#'
#' @name Animals_na
#' @docType data
#' @source P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.
#' @references Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition. Springer.
#'
#' Templ, M. (2022) Visualization and Imputation of Missing Values. Springer Publishing. Upcoming book.
#' @keywords datasets
#' @format A data frame with 28 observations on the following 2 variables.
#' \describe{
#' \item{lbody}{log body weight}
#' \item{lbrain}{log brain weight}
#' }
#' @examples
#'
#' data(Animals_na)
#' aggr(Animals_na)
#'
NULL
#' Breast cancer Wisconsin data set
#'
#' Dataset containing the original Wisconsin breast cancer data.
#'
#'
#' @name bcancer
#' @docType data
#' @references The data downloaded and conditioned for R from the UCI machine learning repository,
#' see https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
#' This breast cancer databases was obtained from the University of Wisconsin Hospitals,
#' Madison from Dr. William H. Wolberg. If you publish results when using this database,
#' then please include this information in your acknowledgements.
#' Also, please cite one or more of:
#' O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear programming",
#' SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.
#' William H. Wolberg and O.L. Mangasarian:
#' "Multisurface method of pattern separation for medical diagnosis applied to breast cytology",
#' Proceedings of the National Academy of Sciences, U.S.A., Volume 87, December 1990, pp 9193-9196.
#' O. L. Mangasarian, R. Setiono, and W.H. Wolberg:
#' "Pattern recognition via linear programming: Theory and application to medical diagnosis",
#' in: "Large-scale numerical optimization", Thomas F. Coleman and Yuying Li, editors,
#' SIAM Publications, Philadelphia 1990, pp 22-30.
#' K. P. Bennett & O. L. Mangasarian:
#' "Robust linear programming discrimination of two linearly inseparable sets",
#' Optimization Methods and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).
#' @keywords datasets
#' @format A data frame with 699 observations on the following 11 variables.
#' \describe{
#' \item{ID}{Sample ID}
#' \item{clump_thickness}{as integer from 1 - 10}
#' \item{uniformity_cellsize}{as integer from 1 - 10}
#' \item{uniformity_cellshape}{as integer from 1 - 10}
#' \item{adhesion}{as integer from 1 - 10}
#' \item{epithelial_cellsize}{as integer from 1 - 10}
#' \item{bare_nuclei}{as integer from 1 - 10, includes 16 missings}
#' \item{chromatin}{as integer from 1 - 10}
#' \item{normal_nucleoli}{as integer from 1 - 10}
#' \item{mitoses}{as integer from 1 - 10}
#' \item{class}{benign or malignant}
#' }
#' @examples
#'
#' data(bcancer)
#' aggr(bcancer)
#'
NULL
#' Brittleness index data set
#'
#' @description A plastic product is produced in three parallel reactors (TK104, TK105, or TK107).
#' For each row in the dataset, we have the same batch of raw material that was split, and fed to the 3 reactors.
#' These values are the brittleness index for the product produced in the reactor. A simulated data set.
#'
#' @name brittleness
#' @docType data
#' @source <https://openmv.net/info/brittleness-index>
#' @keywords datasets
#' @format A data frame with 23 observations on the following 3 variables.
#' \describe{
#' \item{TK104}{Brittleness for batches of raw material in reactor 104}
#' \item{TK105}{Brittleness for batches of raw material in reactor 105}
#' \item{TK107}{Brittleness for batches of raw material in reactor 107}
#' }
#' @examples
#'
#' data(brittleness)
#' aggr(brittleness)
#'
NULL
#' Colic horse data set
#'
#' @description This is a modified version of the original training data set
#' taken from the UCI repository, see reference.
#' The modifications are only related to having appropriate levels for factor variables.
#' This data set is about horse diseases where the task is to determine,
#' if the lesion of the horse was surgical or not.
#'
#' @name colic
#' @docType data
#' @source <https://archive.ics.uci.edu/ml/datasets/Horse+Colic>
#' Creators: Mary McLeish & Matt Cecile, Department of Computer Science, University of Guelph,
#' Guelph, Ontario, Canada N1G 2W1
#' Donor: Will Taylor
#' @keywords datasets
#' @format A training data frame with 300 observations on the following 31 variables.
#' \describe{
#' \item{surgery}{yes or no}
#' \item{age}{1 equals an adult horse, 2 is a horse younger than 6 months}
#' \item{hospitalID}{ID}
#' \item{temp_rectal}{rectal temperature}
#' \item{pulse}{heart rate in beats per minute}
#' \item{respiratory_rate}{a normal rate is between 8 and 10}
#' \item{temp_extreme}{temperature of extremities}
#' \item{pulse_peripheral}{factor with four categories}
#' \item{capillayr_refill_time}{a clinical judgement. The longer the refill, the poorer the circulation. Possible values are
#' 1 = < 3 seconds and 2 = >= 3 seconds}
#' \item{pain}{a subjective judgement of the horse's pain level }
#' \item{peristalsis}{an indication of the activity in the horse's gut.
#' As the gut becomes more distended or the horse becomes more toxic, the activity decreases }
#' \item{abdominal_distension}{An animal with abdominal distension is likely to be painful and have reduced gut motility.
#' A horse with severe abdominal distension is likely to require surgery just tio relieve the pressure }
#' \item{nasogastric_tube}{This refers to any gas coming out of the tube.
#' A large gas cap in the stomach is likely to give the horse discomfort }
#' \item{nasogastric_reflux}{posible values are 1 = none, 2 = > 1 liter, 3 = < 1 liter.
#' The greater amount of reflux, the more likelihood that there is some
#' serious obstruction to the fluid passage from the rest of the intestine }
#' \item{nasogastric_reflux_PH}{scale is from 0 to 14 with 7 being neutral.
#' Normal values are in the 3 to 4 range }
#' \item{rectal_examination}{Rectal examination. Absent feces probably indicates an obstruction }
#' \item{abdomen }{abdomen. possible values 1 = normal, 2 = other, 3 = firm feces in the large intestine,
#' 4 = distended small intestine, 5 = distended large intestine }
#' \item{cell_volume }{packed cell volume. normal range is 30 to 50.
#' The level rises as the circulation becomes compromised or as the animal becomes dehydrated. }
#' \item{protein}{total protein. Normal values lie in the 6-7.5 (gms/dL) range. The higher the value the greater the dehydration }
#' \item{abdominocentesis_appearance}{Abdominocentesis appearance.
#' A needle is put in the horse's abdomen and fluid is obtained from the abdominal cavity }
#' \item{abdomcentesis_protein}{abdomcentesis total protein.
#' The higher the level of protein the more likely it is to have a compromised gut. Values are in gms/dL }
#' \item{outcome}{What eventually happened to the horse? }
#' \item{surgical_lesion}{retrospectively, was the problem (lesion) surgical?}
#' \item{lesion_type1}{type of lesion }
#' \item{lesion_type2}{type of lesion }
#' \item{lesion_type3}{type of lesion }
#' \item{cp_data}{}
#' \item{temp_extreme_ordered}{temperature of extremities (ordered)}
#' \item{mucous_membranes_col}{mucous membranes. A subjective measurement of colour }
#' \item{mucous_membranes_group}{different recodings of mucous membrances}
#' }
#' @examples
#'
#' data(colic)
#' aggr(colic)
#'
NULL
#' C-horizon of the Kola data with missing values
#'
#' This data set is the same as
#' in package `mvoutlier`, except that values below the detection limit
#' are coded as `NA`.
#'
#'
#' @name chorizonDL
#' @docType data
#' @format A data frame with 606 observations on the following 110 variables.
#' \describe{ \item{*ID}{a numeric vector} \item{XCOO}{a
#' numeric vector} \item{YCOO}{a numeric vector} \item{Ag}{a
#' numeric vector} \item{Ag_INAA}{a numeric vector} \item{Al}{a
#' numeric vector} \item{Al2O3}{a numeric vector} \item{As}{a
#' numeric vector} \item{As_INAA}{a numeric vector}
#' \item{Au_INAA}{a numeric vector} \item{B}{a numeric vector}
#' \item{Ba}{a numeric vector} \item{Ba_INAA}{a numeric vector}
#' \item{Be}{a numeric vector} \item{Bi}{a numeric vector}
#' \item{Br_IC}{a numeric vector} \item{Br_INAA}{a numeric
#' vector} \item{Ca}{a numeric vector} \item{Ca_INAA}{a numeric
#' vector} \item{CaO}{a numeric vector} \item{Cd}{a numeric
#' vector} \item{Ce_INAA}{a numeric vector} \item{Cl_IC}{a
#' numeric vector} \item{Co}{a numeric vector} \item{Co_INAA}{a
#' numeric vector} \item{EC}{a numeric vector} \item{Cr}{a
#' numeric vector} \item{Cr_INAA}{a numeric vector}
#' \item{Cs_INAA}{a numeric vector} \item{Cu}{a numeric vector}
#' \item{Eu_INAA}{a numeric vector} \item{F_IC}{a numeric
#' vector} \item{Fe}{a numeric vector} \item{Fe_INAA}{a numeric
#' vector} \item{Fe2O3}{a numeric vector} \item{Hf_INAA}{a
#' numeric vector} \item{Hg}{a numeric vector} \item{Hg_INAA}{a
#' numeric vector} \item{Ir_INAA}{a numeric vector} \item{K}{a
#' numeric vector} \item{K2O}{a numeric vector} \item{La}{a
#' numeric vector} \item{La_INAA}{a numeric vector} \item{Li}{a
#' numeric vector} \item{LOI}{a numeric vector}
#' \item{Lu_INAA}{a numeric vector} \item{wt_INAA}{a numeric
#' vector} \item{Mg}{a numeric vector} \item{MgO}{a numeric
#' vector} \item{Mn}{a numeric vector} \item{MnO}{a numeric
#' vector} \item{Mo}{a numeric vector} \item{Mo_INAA}{a numeric
#' vector} \item{Na}{a numeric vector} \item{Na_INAA}{a numeric
#' vector} \item{Na2O}{a numeric vector} \item{Nd_INAA}{a
#' numeric vector} \item{Ni}{a numeric vector} \item{Ni_INAA}{a
#' numeric vector} \item{NO3_IC}{a numeric vector} \item{P}{a
#' numeric vector} \item{P2O5}{a numeric vector} \item{Pb}{a
#' numeric vector} \item{pH}{a numeric vector} \item{PO4_IC}{a
#' numeric vector} \item{Rb}{a numeric vector} \item{S}{a
#' numeric vector} \item{Sb}{a numeric vector} \item{Sb_INAA}{a
#' numeric vector} \item{Sc}{a numeric vector} \item{Sc_INAA}{a
#' numeric vector} \item{Se}{a numeric vector} \item{Se_INAA}{a
#' numeric vector} \item{Si}{a numeric vector} \item{SiO2}{a
#' numeric vector} \item{Sm_INAA}{a numeric vector}
#' \item{Sn_INAA}{a numeric vector} \item{SO4_IC}{a numeric
#' vector} \item{Sr}{a numeric vector} \item{Sr_INAA}{a numeric
#' vector} \item{SUM_XRF}{a numeric vector} \item{Ta_INAA}{a
#' numeric vector} \item{Tb_INAA}{a numeric vector} \item{Te}{a
#' numeric vector} \item{Th}{a numeric vector} \item{Th_INAA}{a
#' numeric vector} \item{Ti}{a numeric vector} \item{TiO2}{a
#' numeric vector} \item{U_INAA}{a numeric vector} \item{V}{a
#' numeric vector} \item{W_INAA}{a numeric vector} \item{Y}{a
#' numeric vector} \item{Yb_INAA}{a numeric vector} \item{Zn}{a
#' numeric vector} \item{Zn_INAA}{a numeric vector}
#' \item{ELEV}{a numeric vector} \item{*COUN}{a numeric vector}
#' \item{*ASP}{a numeric vector} \item{TOPC}{a numeric vector}
#' \item{LITO}{a numeric vector} \item{Al_XRF}{a numeric
#' vector} \item{Ca_XRF}{a numeric vector} \item{Fe_XRF}{a
#' numeric vector} \item{K_XRF}{a numeric vector}
#' \item{Mg_XRF}{a numeric vector} \item{Mn_XRF}{a numeric
#' vector} \item{Na_XRF}{a numeric vector} \item{P_XRF}{a
#' numeric vector} \item{Si_XRF}{a numeric vector}
#' \item{Ti_XRF}{a numeric vector} }
#' @note For a more detailed description of this data set, see the help file
#' `chorizon` in package `mvoutlier`.
#' @references Reimann, C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008)
#' *Statistical Data Analysis Explained: Applied Environmental Statistics
#' with R*. Wiley.
#' @source Kola Project (1993-1998)
#' @keywords datasets
#' @examples
#'
#' data(chorizonDL, package = "VIM")
#' summary(chorizonDL)
#'
NULL
#' Subset of the collision data
#'
#' Subset of the collision data from December 20. to December 31. 2018 from NYCD.
#'
#' Each record represents a collision in NYC by city, borough, precinct and cross street.
#'
#'
#' @name collisions
#' @docType data
#' @source <https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95>
#' @keywords datasets
#' @examples
#'
#' data(collisions)
#' aggr(collisions)
#'
NULL
#' Indian Prime Diabetes Data
#'
#' The datasets consists of several medical predictor variables and
#' one target variable, Outcome. Predictor variables includes the number of pregnancies
#' the patient has had, their BMI, insulin level, age, and so on.
#'
#' This dataset is originally from the National Institute of Diabetes and
#' Digestive and Kidney Diseases. The objective of the dataset is to
#' diagnostically predict whether or not a patient has diabetes, based
#' on certain diagnostic measurements included in the dataset.
#' Several constraints were placed on the selection of these instances
#' from a larger database. In particular, all patients here are females
#' at least 21 years old of Pima Indian heritage.
#'
#'
#' @name diabetes
#' @docType data
#' @source <https://www.kaggle.com/uciml/pima-indians-diabetes-database/data>
#' @references Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988).
#' Using the ADAP learning algorithm to forecast the onset of diabetes mellitus.
#' In Proceedings of the Symposium on Computer Applications and Medical Care (pp. 261--265). IEEE Computer Society Press.
#' @keywords datasets
#' @format A data frame with 768 observations on the following 9 variables.
#' \describe{
#' \item{Pregnancies}{Number of times pregnant}
#' \item{Glucose}{Plasma glucose concentration a 2 hours in an oral glucose tolerance test}
#' \item{BloodPressure}{Diastolic blood pressure (mm Hg)}
#' \item{SkinThickness}{Triceps skin fold thickness (mm)}
#' \item{Insulin}{2-Hour serum insulin (mu U/ml)}
#' \item{BMI}{Body mass index (weight in kg/(height in m)^2)}
#' \item{DiabetesPedigreeFunction}{Diabetes pedigree function}
#' \item{Age}{Age in years}
#' \item{Outcome}{Diabetes (yes or no)}
#' }
#' @examples
#'
#' data(diabetes)
#' aggr(diabetes)
#'
NULL
#' Food consumption
#'
#' The relative consumption of certain food items in European and Scandinavian countries.
#'
#' The numbers represent the percentage of the population consuming that food type.
#'
#' @name food
#' @docType data
#' @source <https://openmv.net/info/food-consumption>
#' @keywords datasets
#' @format A data frame with 16 observations on the following 21 variables.
#' @examples
#'
#' data(food)
#' str(food)
#' aggr(food)
#'
NULL
#' Background map for the Kola project data
#'
#' Coordinates of the Kola background map.
#'
#'
#' @name kola.background
#' @docType data
#' @references Reimann, C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008)
#' *Statistical Data Analysis Explained: Applied Environmental Statistics
#' with R*. Wiley, 2008.
#' @source Kola Project (1993-1998)
#' @keywords datasets
#' @examples
#'
#' data(kola.background, package = "VIM")
#' bgmap(kola.background)
#'
NULL
#' Pulp lignin content
#'
#' Pulp quality by lignin content remaining
#'
#' Pulp quality is measured by the lignin content remaining in the pulp:
#' the Kappa number. This data set is used to understand which variables
#' in the process influence the Kappa number, and if it can be predicted
#' accurately enough for an inferential sensor application.
#' Variables with a number at the end have been lagged by that
#' number of hours to line up the data.
#'
#' @name pulplignin
#' @docType data
#' @source <https://openmv.net/info/kamyr-digester>
#' @references K. Walkush and R.R. Gustafson. Application of feedforward neural networks and partial least
#' squares regression for modelling Kappa number in a continuous Kamyr digester",
#' Pulp and Paper Canada, 95, 1994, p T7-T13.
#' @keywords datasets
#' @format A data frame with 301 observations on the following 23 variables.
#' @examples
#'
#' data(pulplignin)
#' str(pulplignin)
#' aggr(pulplignin)
#'
NULL
#' Synthetic subset of the Austrian structural business statistics data
#'
#' Synthetic subset of the Austrian structural business statistics (SBS) data,
#' namely NACE code 52.42 (retail sale of clothing).
#'
#' The Austrian SBS data set consists of more than 320.000 enterprises.
#' Available raw (unedited) data set: 21669 observations in 90 variables,
#' structured according NACE revision 1.1 with 3891 missing values.
#'
#' We investigate 9 variables of NACE 52.42 (retail sale of clothing).
#'
#' From these confidential raw data set a non-confidential, close-to-reality,
#' synthetic data set was generated.
#'
#' @name SBS5242
#' @docType data
#' @source <http://www.statistik.at>
#' @keywords datasets
#' @examples
#'
#' data(SBS5242)
#' aggr(SBS5242)
#'
NULL
#' Mammal sleep data
#'
#' Sleep data with missing values.
#'
#'
#' @name sleep
#' @docType data
#' @format A data frame with 62 observations on the following 10 variables.
#' \describe{ \item{BodyWgt}{a numeric vector}
#' \item{BrainWgt}{a numeric vector} \item{NonD}{a numeric
#' vector} \item{Dream}{a numeric vector} \item{Sleep}{a
#' numeric vector} \item{Span}{a numeric vector} \item{Gest}{a
#' numeric vector} \item{Pred}{a numeric vector} \item{Exp}{a
#' numeric vector} \item{Danger}{a numeric vector} }
#' @source Allison, T. and Chichetti, D. (1976) Sleep in mammals: ecological
#' and constitutional correlates. *Science* **194 (4266)**, 732--734.
#'
#' The data set was imported from `GGobi`.
#' @keywords datasets
#' @examples
#'
#' data(sleep, package = "VIM")
#' summary(sleep)
#' aggr(sleep)
#'
NULL
#' Tropical Atmosphere Ocean (TAO) project data
#'
#' A small subsample of the Tropical Atmosphere Ocean (TAO) project data,
#' derived from the `GGOBI` project.
#'
#' All cases recorded for five locations and two time periods.
#'
#' @name tao
#' @docType data
#' @format A data frame with 736 observations on the following 8 variables.
#' \describe{ \item{Year}{a numeric vector} \item{Latitude}{a
#' numeric vector} \item{Longitude}{a numeric vector}
#' \item{Sea.Surface.Temp}{a numeric vector} \item{Air.Temp}{a
#' numeric vector} \item{Humidity}{a numeric vector}
#' \item{UWind}{zonal wind, i.e. latitude-parallel wind} \item{VWind}{meridional wind, i.e. longitude-parallel wind} }
#' @source <http://www.pmel.noaa.gov/tao/>
#' @keywords datasets
#' @examples
#'
#' data(tao, package = "VIM")
#' summary(tao)
#' aggr(tao)
#'
NULL
#' Simulated toy data set for examples
#'
#' A 2-dimensional data set with additional information.
#'
#'
#' @name toydataMiss
#' @docType data
#' @format data frame with 100 observations and 12 variables. The first two
#' variables represent the fully observed data.
#' @keywords datasets
#' @examples
#'
#' data(toydataMiss)
#'
NULL
#' Simulated data set for testing purpose
#'
#' 2 numeric, 2 binary, 2 nominal and 2 mixed (semi-continous) variables
#'
#'
#' @name testdata
#' @docType data
#' @format The format is: List of 4
#' * `$wna` : a `data.frame` with 500 obs. of 8 variables:
#' * `x1`: numeric 10.87 9.53 7.83 8.53 8.67 ...
#' * `x2`: numeric 10.9 9.32 7.68 8.2 8.41 ... ..
#' * `c1`: Factor w/ 4 levels "a","b","c","d": 3 2 2 1 2 2 1 3 3 2 ...
#' * `c2`: Factor w/ 4 levels "a","b","c","d": 2 3 2 2 2 2 2 4 2 2 ...
#' * `b1`: Factor w/ 2 levels "0","1": 2 2 1 2 1 2 1 2 1 1 ...
#' * `b2`: Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 2 2 2 ...
#' * `m1`: numeric 0 8.29 9.08 0 0 ...
#' * `m2`: numeric 10.66 9.39 7.8 8.11 7.33 ...
#' * `$wona` : a `data.frame`` with 500 obs. of 8 variables:
#' * `x1`: numeric 10.87 9.53 7.83 8.53 8.67 ...
#' * `x2`: numeric 10.9 9.32 7.68 8.2 8.41 ...
#' * `c1`: Factor w/ 4 levels "a","b","c","d": 3 2 2 1 2 2 1 3 3 2 ...
#' * `c2`: Factor w/ 4 levels "a","b","c","d": 2 3 2 2 2 2 2 4 2 2 ...
#' * `b1`: Factor w/ 2 levels "0","1": 2 2 1 2 1 2 1 2 1 1 ...
#' * `b2`: Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 2 2 2 ...
#' * `m1`: numeric 0 8.29 9.08 0 0 ...
#' * `m2`: numeric 10.66 9.39 7.8 8.11 7.33 ...
#' * `$mixed`: `c("m1", "m2")`
#' * `$outlierInd`: `NULL``
#' @keywords datasets
#' @examples
#'
#' data(testdata)
#'
NULL
#' Wine tasting and price
#'
#' Wine reviews from France, Switzerland, Austria and Germany.
#'
#' The data was scraped from WineEnthusiast during the week of Nov 22th, 2017.
#' The code for the scraper can be found at https://github.com/zackthoutt/wine-deep-learning
#' This data set is slightly modified, i.e. only four countries are selected and
#' broader categories on the variety have been added.
#'
#' @name wine
#' @docType data
#' @format A data frame with 9627 observations on the following 9 variables.
#' \describe{
#' \item{country}{country of origin}
#' \item{points}{the number of points WineEnthusiast rated the wine on a scale of 1-100
#' (though they say they only post reviews for wines that score >=80)}
#' \item{price}{the cost for a bottle of the wine}
#' \item{province}{the province or state that the wine is from}
#' \item{taster_name}{name of the person who tasted and reviewed the wine}
#' \item{taster_twitter_handle}{Twitter handle for the person who tasted ane reviewed the wine}
#' \item{variety}{the type of grapes used to make the wine (ie pinot noir)}
#' \item{winery}{the winery that made the wine}
#' \item{variety_main}{broader category as variety}
#' }
#' @source <https://www.kaggle.com/zynicide/wine-reviews>
#' @keywords datasets
#' @examples
#'
#' data(wine)
#' str(wine)
#' aggr(wine)
#'
NULL
#' Visualization and Imputation of Missing Values
#'
#' This package introduces new tools for the visualization of missing or
#' imputed values in , which can be used for exploring the data and the
#' structure of the missing or imputed values. Depending on this structure,
#' they may help to identify the mechanism generating the missing values or
#' errors, which may have happened in the imputation process. This knowledge is
#' necessary for selecting an appropriate imputation method in order to
#' reliably estimate the missing values. Thus the visualization tools should be
#' applied before imputation and the diagnostic tools afterwards.
#'
#' Detecting missing values mechanisms is usually done by statistical tests or
#' models. Visualization of missing and imputed values can support the test
#' decision, but also reveals more details about the data structure. Most
#' notably, statistical requirements for a test can be checked graphically, and
#' problems like outliers or skewed data distributions can be discovered.
#' Furthermore, the included plot methods may also be able to detect missing
#' values mechanisms in the first place.
#'
#' A graphical user interface available in the package VIMGUI allows an easy
#' handling of the plot methods. In addition, `VIM` can be used for data
#' from essentially any field.
#'
#' \tabular{ll}{ Package: \tab VIM\cr Version: \tab 3.0.3\cr Date: \tab
#' 2013-01-09\cr Depends: \tab R (>= 2.10),e1071,car, colorspace, nnet,
#' robustbase, tcltk, tkrplot, sp, vcd, Rcpp\cr Imports: \tab car, colorspace,
#' grDevices, robustbase, stats, tcltk, sp, utils, vcd\cr License: \tab GPL (>=
#' 2)\cr URL: \tab http://cran.r-project.org/package=VIM\cr }
#'
#' @name VIM-package
#' @aliases VIM-package VIM
#' @docType package
#' @author Matthias Templ, Andreas Alfons, Alexander Kowarik, Bernd Prantner
#'
#' Maintainer: Matthias Templ <templ@@tuwien.ac.at>
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#'
#' M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression
#' imputation using standard and robust methods. *Journal of
#' Computational Statistics and Data Analysis*, Vol. 55, pp. 2793-2806.
#' @keywords package
NULL
setGeneric("plot")
setGeneric("print")
|