File: VIM-package.R

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (624 lines) | stat: -rw-r--r-- 24,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
#' @import data.table
#' @import grDevices
#' @import Rcpp
#' @import sp
#' @import stats
#' @import methods
#' @import MASS
#' @import nnet
#' @import e1071
#' @import grid
#' @import robustbase
#' @import colorspace
#' @importFrom car bcPower
#' @importFrom car powerTransform
#' @importFrom vcd mosaic
#' @importFrom vcd labeling_border
#' @importFrom laeken weightedMedian
#' @importFrom laeken weightedMean
#' @importFrom graphics Axis abline axTicks axis barplot box hist boxplot layout lcm lines locator par plot.new plot.window points
#' @importFrom graphics polygon rect strheight strwidth text title
#' @importFrom utils capture.output flush.console head
#' @importFrom ranger ranger importance
#' @useDynLib VIM
NULL

#' Animals_na
#'
#' @description Average log brain and log body weights for 28 Species
#' @details The original data can be found in package MASS. 
#' 10 values on brain weight are set to be missing.
#'
#' @name Animals_na
#' @docType data
#' @source P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.
#' @references Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition. Springer.
#' 
#' Templ, M. (2022) Visualization and Imputation of Missing Values. Springer Publishing. Upcoming book.
#' @keywords datasets
#' @format A data frame with 28 observations on the following 2 variables.
#' \describe{
#' \item{lbody}{log body weight}
#' \item{lbrain}{log brain weight}
#' }
#' @examples
#'
#' data(Animals_na)
#' aggr(Animals_na)
#'
NULL

#' Breast cancer Wisconsin data set
#'
#' Dataset containing the original Wisconsin breast cancer data.
#'
#'
#' @name bcancer
#' @docType data
#' @references  The data downloaded and conditioned for R from the UCI machine learning repository,
#' see https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
#' This breast cancer databases was obtained from the University of Wisconsin Hospitals,
#' Madison from Dr. William H. Wolberg. If you publish results when using this database,
#' then please include this information in your acknowledgements.
#' Also, please cite one or more of:
#' O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear programming",
#' SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.
#' William H. Wolberg and O.L. Mangasarian:
#' "Multisurface method of pattern separation for medical diagnosis applied to breast cytology",
#' Proceedings of the National Academy of Sciences, U.S.A., Volume 87, December 1990, pp 9193-9196.
#' O. L. Mangasarian, R. Setiono, and W.H. Wolberg:
#' "Pattern recognition via linear programming: Theory and application to medical diagnosis",
#' in: "Large-scale numerical optimization", Thomas F. Coleman and Yuying Li, editors,
#' SIAM Publications, Philadelphia 1990, pp 22-30.
#' K. P. Bennett & O. L. Mangasarian:
#' "Robust linear programming discrimination of two linearly inseparable sets",
#' Optimization Methods and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).
#' @keywords datasets
#' @format A data frame with 699 observations on the following 11 variables.
#' \describe{
#' \item{ID}{Sample ID}
#' \item{clump_thickness}{as integer from 1 - 10}
#' \item{uniformity_cellsize}{as integer from 1 - 10}
#' \item{uniformity_cellshape}{as integer from 1 - 10}
#' \item{adhesion}{as integer from 1 - 10}
#' \item{epithelial_cellsize}{as integer from 1 - 10}
#' \item{bare_nuclei}{as integer from 1 - 10, includes 16 missings}
#' \item{chromatin}{as integer from 1 - 10}
#' \item{normal_nucleoli}{as integer from 1 - 10}
#' \item{mitoses}{as integer from 1 - 10}
#' \item{class}{benign or malignant}
#' }
#' @examples
#'
#' data(bcancer)
#' aggr(bcancer)
#'
NULL



#' Brittleness index data set
#'
#' @description A plastic product is produced in three parallel reactors (TK104, TK105, or TK107).
#' For each row in the dataset, we have the same batch of raw material that was split, and fed to the 3 reactors.
#' These values are the brittleness index for the product produced in the reactor. A simulated data set.
#'
#' @name brittleness
#' @docType data
#' @source <https://openmv.net/info/brittleness-index>
#' @keywords datasets
#' @format A data frame with 23 observations on the following 3 variables.
#' \describe{
#' \item{TK104}{Brittleness for batches of raw material in reactor 104}
#' \item{TK105}{Brittleness for batches of raw material in reactor 105}
#' \item{TK107}{Brittleness for batches of raw material in reactor 107}
#' }
#' @examples
#'
#' data(brittleness)
#' aggr(brittleness)
#'
NULL

#' Colic horse data set
#'
#' @description This is a modified version of the original training data set
#' taken from the UCI repository, see reference.
#' The modifications are only related to having appropriate levels for factor variables.
#' This data set is about horse diseases where the task is to determine,
#' if the lesion of the horse was surgical or not.
#'
#' @name colic
#' @docType data
#' @source <https://archive.ics.uci.edu/ml/datasets/Horse+Colic>
#' Creators: Mary McLeish & Matt Cecile, Department of Computer Science, University of Guelph,
#' Guelph, Ontario, Canada N1G 2W1
#' Donor: Will Taylor
#' @keywords datasets
#' @format A training data frame with 300 observations on the following 31 variables.
#' \describe{
#' \item{surgery}{yes or no}
#' \item{age}{1 equals an adult horse, 2 is a horse younger than 6 months}
#' \item{hospitalID}{ID}
#' \item{temp_rectal}{rectal temperature}
#' \item{pulse}{heart rate in beats per minute}
#' \item{respiratory_rate}{a normal rate is between 8 and 10}
#' \item{temp_extreme}{temperature of extremities}
#' \item{pulse_peripheral}{factor with four categories}
#' \item{capillayr_refill_time}{a clinical judgement. The longer the refill, the poorer the circulation. Possible values are
#' 1 = < 3 seconds and 2 = >= 3 seconds}
#' \item{pain}{a subjective judgement of the horse's pain level }
#' \item{peristalsis}{an indication of the activity in the horse's gut.
#' As the gut becomes more distended or the horse becomes more toxic, the activity decreases }
#' \item{abdominal_distension}{An animal with abdominal distension is likely to be painful and have reduced gut motility.
#' A horse with severe abdominal distension is likely to require surgery just tio relieve the pressure }
#' \item{nasogastric_tube}{This refers to any gas coming out of the tube.
#' A large gas cap in the stomach is likely to give the horse discomfort }
#' \item{nasogastric_reflux}{posible values are 1 = none, 2 = > 1 liter, 3 = < 1 liter.
#' The greater amount of reflux, the more likelihood that there is some
#' serious obstruction to the fluid passage from the rest of the intestine }
#' \item{nasogastric_reflux_PH}{scale is from 0 to 14 with 7 being neutral.
#' Normal values are in the 3 to 4 range }
#' \item{rectal_examination}{Rectal examination. Absent feces probably indicates an obstruction }
#' \item{abdomen }{abdomen. possible values 1 = normal, 2 = other, 3 = firm feces in the large intestine,
#' 4 = distended small intestine, 5 = distended large intestine }
#' \item{cell_volume }{packed cell volume. normal range is 30 to 50.
#' The level rises as the circulation becomes compromised or as the animal becomes dehydrated. }
#' \item{protein}{total protein. Normal values lie in the 6-7.5 (gms/dL) range. The higher the value the greater the dehydration }
#' \item{abdominocentesis_appearance}{Abdominocentesis appearance.
#' A needle is put in the horse's abdomen and fluid is obtained from the abdominal cavity }
#' \item{abdomcentesis_protein}{abdomcentesis total protein.
#' The higher the level of protein the more likely it is to have a compromised gut. Values are in gms/dL }
#' \item{outcome}{What eventually happened to the horse? }
#' \item{surgical_lesion}{retrospectively, was the problem (lesion) surgical?}
#' \item{lesion_type1}{type of lesion }
#' \item{lesion_type2}{type of lesion }
#' \item{lesion_type3}{type of lesion }
#' \item{cp_data}{}
#' \item{temp_extreme_ordered}{temperature of extremities (ordered)}
#' \item{mucous_membranes_col}{mucous membranes. A subjective measurement of colour }
#' \item{mucous_membranes_group}{different recodings of mucous membrances}
#' }
#' @examples
#'
#' data(colic)
#' aggr(colic)
#'
NULL

#' C-horizon of the Kola data with missing values
#'
#' This data set is the same as 
#' in package `mvoutlier`, except that values below the detection limit
#' are coded as `NA`.
#'
#'
#' @name chorizonDL
#' @docType data
#' @format A data frame with 606 observations on the following 110 variables.
#' \describe{ \item{*ID}{a numeric vector} \item{XCOO}{a
#' numeric vector} \item{YCOO}{a numeric vector} \item{Ag}{a
#' numeric vector} \item{Ag_INAA}{a numeric vector} \item{Al}{a
#' numeric vector} \item{Al2O3}{a numeric vector} \item{As}{a
#' numeric vector} \item{As_INAA}{a numeric vector}
#' \item{Au_INAA}{a numeric vector} \item{B}{a numeric vector}
#' \item{Ba}{a numeric vector} \item{Ba_INAA}{a numeric vector}
#' \item{Be}{a numeric vector} \item{Bi}{a numeric vector}
#' \item{Br_IC}{a numeric vector} \item{Br_INAA}{a numeric
#' vector} \item{Ca}{a numeric vector} \item{Ca_INAA}{a numeric
#' vector} \item{CaO}{a numeric vector} \item{Cd}{a numeric
#' vector} \item{Ce_INAA}{a numeric vector} \item{Cl_IC}{a
#' numeric vector} \item{Co}{a numeric vector} \item{Co_INAA}{a
#' numeric vector} \item{EC}{a numeric vector} \item{Cr}{a
#' numeric vector} \item{Cr_INAA}{a numeric vector}
#' \item{Cs_INAA}{a numeric vector} \item{Cu}{a numeric vector}
#' \item{Eu_INAA}{a numeric vector} \item{F_IC}{a numeric
#' vector} \item{Fe}{a numeric vector} \item{Fe_INAA}{a numeric
#' vector} \item{Fe2O3}{a numeric vector} \item{Hf_INAA}{a
#' numeric vector} \item{Hg}{a numeric vector} \item{Hg_INAA}{a
#' numeric vector} \item{Ir_INAA}{a numeric vector} \item{K}{a
#' numeric vector} \item{K2O}{a numeric vector} \item{La}{a
#' numeric vector} \item{La_INAA}{a numeric vector} \item{Li}{a
#' numeric vector} \item{LOI}{a numeric vector}
#' \item{Lu_INAA}{a numeric vector} \item{wt_INAA}{a numeric
#' vector} \item{Mg}{a numeric vector} \item{MgO}{a numeric
#' vector} \item{Mn}{a numeric vector} \item{MnO}{a numeric
#' vector} \item{Mo}{a numeric vector} \item{Mo_INAA}{a numeric
#' vector} \item{Na}{a numeric vector} \item{Na_INAA}{a numeric
#' vector} \item{Na2O}{a numeric vector} \item{Nd_INAA}{a
#' numeric vector} \item{Ni}{a numeric vector} \item{Ni_INAA}{a
#' numeric vector} \item{NO3_IC}{a numeric vector} \item{P}{a
#' numeric vector} \item{P2O5}{a numeric vector} \item{Pb}{a
#' numeric vector} \item{pH}{a numeric vector} \item{PO4_IC}{a
#' numeric vector} \item{Rb}{a numeric vector} \item{S}{a
#' numeric vector} \item{Sb}{a numeric vector} \item{Sb_INAA}{a
#' numeric vector} \item{Sc}{a numeric vector} \item{Sc_INAA}{a
#' numeric vector} \item{Se}{a numeric vector} \item{Se_INAA}{a
#' numeric vector} \item{Si}{a numeric vector} \item{SiO2}{a
#' numeric vector} \item{Sm_INAA}{a numeric vector}
#' \item{Sn_INAA}{a numeric vector} \item{SO4_IC}{a numeric
#' vector} \item{Sr}{a numeric vector} \item{Sr_INAA}{a numeric
#' vector} \item{SUM_XRF}{a numeric vector} \item{Ta_INAA}{a
#' numeric vector} \item{Tb_INAA}{a numeric vector} \item{Te}{a
#' numeric vector} \item{Th}{a numeric vector} \item{Th_INAA}{a
#' numeric vector} \item{Ti}{a numeric vector} \item{TiO2}{a
#' numeric vector} \item{U_INAA}{a numeric vector} \item{V}{a
#' numeric vector} \item{W_INAA}{a numeric vector} \item{Y}{a
#' numeric vector} \item{Yb_INAA}{a numeric vector} \item{Zn}{a
#' numeric vector} \item{Zn_INAA}{a numeric vector}
#' \item{ELEV}{a numeric vector} \item{*COUN}{a numeric vector}
#' \item{*ASP}{a numeric vector} \item{TOPC}{a numeric vector}
#' \item{LITO}{a numeric vector} \item{Al_XRF}{a numeric
#' vector} \item{Ca_XRF}{a numeric vector} \item{Fe_XRF}{a
#' numeric vector} \item{K_XRF}{a numeric vector}
#' \item{Mg_XRF}{a numeric vector} \item{Mn_XRF}{a numeric
#' vector} \item{Na_XRF}{a numeric vector} \item{P_XRF}{a
#' numeric vector} \item{Si_XRF}{a numeric vector}
#' \item{Ti_XRF}{a numeric vector} }
#' @note For a more detailed description of this data set, see the help file
#' `chorizon` in package `mvoutlier`.
#' @references Reimann, C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008)
#' *Statistical Data Analysis Explained: Applied Environmental Statistics
#' with R*. Wiley.
#' @source Kola Project (1993-1998)
#' @keywords datasets
#' @examples
#'
#' data(chorizonDL, package = "VIM")
#' summary(chorizonDL)
#'
NULL

#' Subset of the collision data
#'
#' Subset of the collision data from December 20. to December 31. 2018 from NYCD.
#'
#' Each record represents a collision in NYC by city, borough, precinct and cross street.
#'
#'
#' @name collisions
#' @docType data
#' @source <https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95>
#' @keywords datasets
#' @examples
#'
#' data(collisions)
#' aggr(collisions)
#'
NULL


#' Indian Prime Diabetes Data
#'
#' The datasets consists of several medical predictor variables and
#' one target variable, Outcome. Predictor variables includes the number of pregnancies
#' the patient has had, their BMI, insulin level, age, and so on.
#'
#' This dataset is originally from the National Institute of Diabetes and
#' Digestive and Kidney Diseases. The objective of the dataset is to
#' diagnostically predict whether or not a patient has diabetes, based
#' on certain diagnostic measurements included in the dataset.
#' Several constraints were placed on the selection of these instances
#' from a larger database. In particular, all patients here are females
#' at least 21 years old of Pima Indian heritage.
#'
#'
#' @name diabetes
#' @docType data
#' @source <https://www.kaggle.com/uciml/pima-indians-diabetes-database/data>
#' @references Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988).
#' Using the ADAP learning algorithm to forecast the onset of diabetes mellitus.
#' In Proceedings of the Symposium on Computer Applications and Medical Care (pp. 261--265). IEEE Computer Society Press.
#' @keywords datasets
#' @format A data frame with 768 observations on the following 9 variables.
#' \describe{
#' \item{Pregnancies}{Number of times pregnant}
#' \item{Glucose}{Plasma glucose concentration a 2 hours in an oral glucose tolerance test}
#' \item{BloodPressure}{Diastolic blood pressure (mm Hg)}
#' \item{SkinThickness}{Triceps skin fold thickness (mm)}
#' \item{Insulin}{2-Hour serum insulin (mu U/ml)}
#' \item{BMI}{Body mass index (weight in kg/(height in m)^2)}
#' \item{DiabetesPedigreeFunction}{Diabetes pedigree function}
#' \item{Age}{Age in years}
#' \item{Outcome}{Diabetes (yes or no)}
#' }
#' @examples
#'
#' data(diabetes)
#' aggr(diabetes)
#'
NULL


#' Food consumption
#'
#' The relative consumption of certain food items in European and Scandinavian countries.
#'
#' The numbers represent the percentage of the population consuming that food type.
#'
#' @name food
#' @docType data
#' @source <https://openmv.net/info/food-consumption>
#' @keywords datasets
#' @format A data frame with 16 observations on the following 21 variables.
#' @examples
#'
#' data(food)
#' str(food)
#' aggr(food)
#'
NULL


#' Background map for the Kola project data
#'
#' Coordinates of the Kola background map.
#'
#'
#' @name kola.background
#' @docType data
#' @references Reimann, C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008)
#' *Statistical Data Analysis Explained: Applied Environmental Statistics
#' with R*. Wiley, 2008.
#' @source Kola Project (1993-1998)
#' @keywords datasets
#' @examples
#'
#' data(kola.background, package = "VIM")
#' bgmap(kola.background)
#'
NULL

#' Pulp lignin content
#'
#' Pulp quality by lignin content remaining
#'
#' Pulp quality is measured by the lignin content remaining in the pulp:
#' the Kappa number. This data set is used to understand which variables
#' in the process influence the Kappa number, and if it can be predicted
#' accurately enough for an inferential sensor application.
#' Variables with a number at the end have been lagged by that
#' number of hours to line up the data.
#'
#' @name pulplignin
#' @docType data
#' @source <https://openmv.net/info/kamyr-digester>
#' @references K. Walkush and R.R. Gustafson. Application of feedforward neural networks and partial least
#' squares regression for modelling Kappa number in a continuous Kamyr digester",
#' Pulp and Paper Canada, 95, 1994, p T7-T13.
#' @keywords datasets
#' @format A data frame with 301 observations on the following 23 variables.
#' @examples
#'
#' data(pulplignin)
#' str(pulplignin)
#' aggr(pulplignin)
#'
NULL



#' Synthetic subset of the Austrian structural business statistics data
#'
#' Synthetic subset of the Austrian structural business statistics (SBS) data,
#' namely NACE code 52.42 (retail sale of clothing).
#'
#' The Austrian SBS data set consists of more than 320.000 enterprises.
#' Available raw (unedited) data set: 21669 observations in 90 variables,
#' structured according NACE revision 1.1 with 3891 missing values.
#'
#' We investigate 9 variables of NACE 52.42 (retail sale of clothing).
#'
#' From these confidential raw data set a non-confidential, close-to-reality,
#' synthetic data set was generated.
#'
#' @name SBS5242
#' @docType data
#' @source <http://www.statistik.at>
#' @keywords datasets
#' @examples
#'
#' data(SBS5242)
#' aggr(SBS5242)
#'
NULL





#' Mammal sleep data
#'
#' Sleep data with missing values.
#'
#'
#' @name sleep
#' @docType data
#' @format A data frame with 62 observations on the following 10 variables.
#' \describe{ \item{BodyWgt}{a numeric vector}
#' \item{BrainWgt}{a numeric vector} \item{NonD}{a numeric
#' vector} \item{Dream}{a numeric vector} \item{Sleep}{a
#' numeric vector} \item{Span}{a numeric vector} \item{Gest}{a
#' numeric vector} \item{Pred}{a numeric vector} \item{Exp}{a
#' numeric vector} \item{Danger}{a numeric vector} }
#' @source Allison, T. and Chichetti, D. (1976) Sleep in mammals: ecological
#' and constitutional correlates. *Science* **194 (4266)**, 732--734.
#'
#' The data set was imported from `GGobi`.
#' @keywords datasets
#' @examples
#'
#' data(sleep, package = "VIM")
#' summary(sleep)
#' aggr(sleep)
#'
NULL





#' Tropical Atmosphere Ocean (TAO) project data
#'
#' A small subsample of the Tropical Atmosphere Ocean (TAO) project data,
#' derived from the `GGOBI` project.
#'
#' All cases recorded for five locations and two time periods.
#'
#' @name tao
#' @docType data
#' @format A data frame with 736 observations on the following 8 variables.
#' \describe{ \item{Year}{a numeric vector} \item{Latitude}{a
#' numeric vector} \item{Longitude}{a numeric vector}
#' \item{Sea.Surface.Temp}{a numeric vector} \item{Air.Temp}{a
#' numeric vector} \item{Humidity}{a numeric vector}
#' \item{UWind}{zonal wind, i.e. latitude-parallel wind} \item{VWind}{meridional wind, i.e. longitude-parallel wind} }
#' @source <http://www.pmel.noaa.gov/tao/>
#' @keywords datasets
#' @examples
#'
#' data(tao, package = "VIM")
#' summary(tao)
#' aggr(tao)
#'
NULL


#' Simulated toy data set for examples
#'
#' A 2-dimensional data set with additional information.
#'
#'
#' @name toydataMiss
#' @docType data
#' @format data frame with 100 observations and 12 variables. The first two
#' variables represent the fully observed data.
#' @keywords datasets
#' @examples
#'
#' data(toydataMiss)
#'
NULL



#' Simulated data set for testing purpose
#'
#' 2 numeric, 2 binary, 2 nominal and 2 mixed (semi-continous) variables
#'
#'
#' @name testdata
#' @docType data
#' @format The format is: List of 4
#' * `$wna` : a `data.frame` with 500 obs. of 8 variables:
#'    * `x1`: numeric 10.87 9.53 7.83 8.53 8.67 ...
#'    * `x2`: numeric 10.9 9.32 7.68 8.2 8.41 ...  ..
#'    * `c1`: Factor w/ 4 levels "a","b","c","d": 3 2 2 1 2 2 1 3 3 2 ...
#'    * `c2`: Factor w/ 4 levels "a","b","c","d": 2 3 2 2 2 2 2 4 2 2 ...
#'    * `b1`: Factor w/ 2 levels "0","1": 2 2 1 2 1 2 1 2 1 1 ...
#'    * `b2`: Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 2 2 2 ...
#'    * `m1`: numeric 0 8.29 9.08 0 0 ...
#'    * `m2`: numeric 10.66 9.39 7.8 8.11 7.33 ...
#' * `$wona` : a `data.frame`` with 500 obs. of 8 variables:
#'    * `x1`: numeric 10.87 9.53 7.83 8.53 8.67 ...
#'    * `x2`: numeric 10.9 9.32 7.68 8.2 8.41 ...
#'    * `c1`: Factor w/ 4 levels "a","b","c","d": 3 2 2 1 2 2 1 3 3 2 ...
#'    * `c2`: Factor w/ 4 levels "a","b","c","d": 2 3 2 2 2 2 2 4 2 2 ...
#'    * `b1`: Factor w/ 2 levels "0","1": 2 2 1 2 1 2 1 2 1 1 ...
#'    * `b2`: Factor w/ 2 levels "0","1": 2 2 1 1 1 1 1 2 2 2 ...
#'    * `m1`: numeric 0 8.29 9.08 0 0 ...
#'    * `m2`: numeric 10.66 9.39 7.8 8.11 7.33 ...
#' * `$mixed`: `c("m1", "m2")`
#' * `$outlierInd`: `NULL``
#' @keywords datasets
#' @examples
#'
#' data(testdata)
#'
NULL


#' Wine tasting and price
#'
#' Wine reviews from France, Switzerland, Austria and Germany.
#'
#' The data was scraped from WineEnthusiast during the week of Nov 22th, 2017.
#' The code for the scraper can be found at https://github.com/zackthoutt/wine-deep-learning
#' This data set is slightly modified, i.e. only four countries are selected and
#' broader categories on the variety have been added.
#'
#' @name wine
#' @docType data
#' @format A data frame with 9627 observations on the following 9 variables.
#' \describe{
#' \item{country}{country of origin}
#' \item{points}{the number of points WineEnthusiast rated the wine on a scale of 1-100
#' (though they say they only post reviews for wines that score >=80)}
#' \item{price}{the cost for a bottle of the wine}
#' \item{province}{the province or state that the wine is from}
#' \item{taster_name}{name of the person who tasted and reviewed the wine}
#' \item{taster_twitter_handle}{Twitter handle for the person who tasted ane reviewed the wine}
#' \item{variety}{the type of grapes used to make the wine (ie pinot noir)}
#' \item{winery}{the winery that made the wine}
#' \item{variety_main}{broader category as variety}
#' }
#' @source <https://www.kaggle.com/zynicide/wine-reviews>
#' @keywords datasets
#' @examples
#'
#' data(wine)
#' str(wine)
#' aggr(wine)
#'
NULL


#' Visualization and Imputation of Missing Values
#'
#' This package introduces new tools for the visualization of missing or
#' imputed values in , which can be used for exploring the data and the
#' structure of the missing or imputed values. Depending on this structure,
#' they may help to identify the mechanism generating the missing values or
#' errors, which may have happened in the imputation process. This knowledge is
#' necessary for selecting an appropriate imputation method in order to
#' reliably estimate the missing values. Thus the visualization tools should be
#' applied before imputation and the diagnostic tools afterwards.
#'
#' Detecting missing values mechanisms is usually done by statistical tests or
#' models.  Visualization of missing and imputed values can support the test
#' decision, but also reveals more details about the data structure. Most
#' notably, statistical requirements for a test can be checked graphically, and
#' problems like outliers or skewed data distributions can be discovered.
#' Furthermore, the included plot methods may also be able to detect missing
#' values mechanisms in the first place.
#'
#' A graphical user interface available in the package VIMGUI allows an easy
#' handling of the plot methods.  In addition, `VIM` can be used for data
#' from essentially any field.
#'
#' \tabular{ll}{ Package: \tab VIM\cr Version: \tab 3.0.3\cr Date: \tab
#' 2013-01-09\cr Depends: \tab R (>= 2.10),e1071,car, colorspace, nnet,
#' robustbase, tcltk, tkrplot, sp, vcd, Rcpp\cr Imports: \tab car, colorspace,
#' grDevices, robustbase, stats, tcltk, sp, utils, vcd\cr License: \tab GPL (>=
#' 2)\cr URL: \tab http://cran.r-project.org/package=VIM\cr }
#'
#' @name VIM-package
#' @aliases VIM-package VIM
#' @docType package
#' @author Matthias Templ, Andreas Alfons, Alexander Kowarik, Bernd Prantner
#'
#' Maintainer: Matthias Templ <templ@@tuwien.ac.at>
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools.  *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#'
#' M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression
#' imputation using standard and robust methods.  *Journal of
#' Computational Statistics and Data Analysis*, Vol. 55, pp. 2793-2806.
#' @keywords package
NULL



setGeneric("plot")
setGeneric("print")