1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
# ---------------------------------------
# Author: Andreas Alfons ,Bernd Prantner
# and Daniel Schopfhauser
# Vienna University of Technology
# ---------------------------------------
#' Barplot with information about missing/imputed values
#'
#' Barplot with highlighting of missing/imputed values in other variables by
#' splitting each bar into two parts. Additionally, information about
#' missing/imputed values in the variable of interest is shown on the right
#' hand side.
#'
#' If more than one variable is supplied, the bars for the variable of interest
#' are split according to missingness/number of imputed missings in the
#' additional variables.
#'
#' If `only.miss=TRUE`, the missing/imputed values in the variable of
#' interest are visualized by one bar on the right hand side. If additional
#' variables are supplied, this bar is again split into two parts according to
#' missingness/number of imputed missings in the additional variables.
#'
#' Otherwise, a small barplot consisting of two bars is drawn on the right hand
#' side. The first bar corresponds to observed values in the variable of
#' interest and the second bar to missing/imputed values. Since these two bars
#' are not on the same scale as the main barplot, a second y-axis is plotted on
#' the right (if `axes=TRUE`). Each of the two bars are again split into
#' two parts according to missingness/number of imputed missings in the
#' additional variables. Note that this display does not make sense if only
#' one variable is supplied, therefore `only.miss` is ignored in that
#' case.
#'
#' If `interactive=TRUE`, clicking in the left margin of the plot results
#' in switching to the previous variable and clicking in the right margin
#' results in switching to the next variable. Clicking anywhere else on the
#' graphics device quits the interactive session. When switching to a
#' continuous variable, a histogram is plotted rather than a barplot.
#'
#' @param x a vector, matrix or `data.frame`.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param pos a numeric value giving the index of the variable of interest.
#' Additional variables in `x` are used for highlighting.
#' @param selection the selection method for highlighting missing/imputed
#' values in multiple additional variables. Possible values are `"any"`
#' (highlighting of missing/imputed values in *any* of the additional
#' variables) and `"all"` (highlighting of missing/imputed values in
#' *all* of the additional variables).
#' @param col a vector of length six giving the colors to be used. If only one
#' color is supplied, the bars are transparent and the supplied color is used
#' for highlighting missing/imputed values. Else if two colors are supplied,
#' they are recycled.
#' @param border the color to be used for the border of the bars. Use
#' `border=NA` to omit borders.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param axes a logical indicating whether axes should be drawn on the plot.
#' @param labels either a logical indicating whether labels should be plotted
#' below each bar, or a character vector giving the labels.
#' @param only.miss logical; if `TRUE`, the missing/imputed values in the
#' variable of interest are visualized by a single bar. Otherwise, a small
#' barplot is drawn on the right hand side (see \sQuote{Details}).
#' @param miss.labels either a logical indicating whether label(s) should be
#' plotted below the bar(s) on the right hand side, or a character string or
#' vector giving the label(s) (see \sQuote{Details}).
#' @param interactive a logical indicating whether variables can be switched
#' interactively (see \sQuote{Details}).
#' @param \dots further graphical parameters to be passed to
#' [graphics::title()] and [graphics::axis()].
#' @return a numeric vector giving the coordinates of the midpoints of the
#' bars.
#' @note Some of the argument names and positions have changed with version 1.3
#' due to extended functionality and for more consistency with other plot
#' functions in `VIM`. For back compatibility, the arguments
#' `axisnames`, `names.arg` and `names.miss` can still be
#' supplied to \code{\dots{}} and are handled correctly. Nevertheless, they
#' are deprecated and no longer documented. Use `labels` and
#' `miss.labels` instead.
#' @author Andreas Alfons, modifications to show imputed values by Bernd
#' Prantner
#' @seealso [spineMiss()], [histMiss()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#'
#' data(sleep, package = "VIM")
#' ## for missing values
#' x <- sleep[, c("Exp", "Sleep")]
#' barMiss(x)
#' barMiss(x, only.miss = FALSE)
#'
#' ## for imputed values
#' x_IMPUTED <- kNN(sleep[, c("Exp", "Sleep")])
#' barMiss(x_IMPUTED, delimiter = "_imp")
#' barMiss(x_IMPUTED, delimiter = "_imp", only.miss = FALSE)
#'
#'
#' @export
barMiss <- function(x, delimiter = NULL, pos = 1, selection = c("any","all"),
col = c("skyblue","red","skyblue4","red4","orange","orange4"),
border = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, axes = TRUE,
labels = axes, only.miss = TRUE,
miss.labels = axes, interactive = TRUE, ...) {
check_data(x)
x <- as.data.frame(x)
imputed <- FALSE # indicates if there are Variables with missing-index
# initializations and error messages
if(is.null(dim(x))) { # vector
# call histMiss if the plot variable is continuous
if(is.continuous(x)) {
histMiss(x, delimiter=delimiter, pos=pos, selection=selection, col=col,
border=border, main=main, sub=sub, xlab=xlab, ylab=ylab,
axes=axes, only.miss=only.miss,
miss.labels=miss.labels, interactive=interactive, ...)
return(invisible(1))
}
n <- length(x)
p <- 1
if(n == 0) stop("'x' must have positive length")
} else { # matrix or data.frame
if(!(inherits(x, c("data.frame","matrix")))) {
stop("'x' must be a data.frame or matrix")
}
# call histMiss if the plot variable is continuous
if(is.continuous(x[, pos])) {
histMiss(x, delimiter=delimiter, pos=pos, selection=selection, col=col,
border=border, main=main, sub=sub, xlab=xlab, ylab=ylab,
axes=axes, only.miss=only.miss,
miss.labels=miss.labels, interactive=interactive, ...)
return(invisible(1))
}
## delimiter ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
n <- nrow(x)
p <- ncol(x)
if(n == 0) stop("'x' has no rows")
else if(p == 0) stop("'x' has no columns")
if(is.null(colnames(x))) colnames(x) <- defaultNames(p)
}
if(p == 1) {
only.miss <- TRUE
interactive <- FALSE
} else {
if((!is.numeric(pos)) || (length(pos) != 1) || (p < pos)) {
stop("'pos' must be an integer specifying one column of 'x' and must be lesser than the number of colums of 'x'")
}
selection <- match.arg(selection)
}
if(length(col) == 0) col <- c("skyblue","red","skyblue4","red4","orange","orange4")
else if(length(col) == 1) col <- c(rep.int(c("transparent", col), 2),rep.int(col,2))
else if(length(col) == 3 || length(col) == 5) col <- rep.int(col[1:2], 3)
else if(length(col) != 6) col <- rep(col, length.out=6)
localAxis <- function(..., names.arg, axisnames, cex.names, names.miss) {
axis(...)
}
localTitle <- function(..., names.arg, axisnames, cex.names, names.miss) {
title(...)
}
# back compatibility
dots <- list(...)
nmdots <- names(dots)
has.axisnames <- "axisnames" %in% nmdots
if(missing(labels)) {
if(has.axisnames) {
if(dots$axisnames) {
if("names.arg" %in% nmdots) labels <- dots$names.arg
else labels <- TRUE
} else labels <- FALSE
} else if("names.arg" %in% nmdots) labels <- dots$names.arg
}
if(missing(miss.labels)) {
if(has.axisnames) {
if(dots$axisnames) {
if("names.miss" %in% nmdots) miss.labels <- dots$names.miss
else miss.labels <- TRUE
} else miss.labels <- FALSE
} else if("names.miss" %in% nmdots) miss.labels <- dots$names.miss
}
# workhorse to create plot
createPlot <- function(main=NULL, sub=NULL,
xlab=NULL, ylab=NULL, labels=axes) {
# prepare data
if(is.null(dim(x))) xpos <- as.factor(x)
else if(p == 1) {
xpos <- as.factor(x[,1])
if(is.null(xlab)) xlab <- colnames(x) # default x-axis label
} else {
xpos <- as.factor(x[, pos]) # plot variable
xh <- x[, -pos, drop=FALSE] # highlight variables
if(is.null(xlab)) xlab <- colnames(x)[pos] # default x-axis label
}
if(p == 2 && is.null(ylab)) { # default y-axis label
if(!imputed) ylab <- paste("missing/observed in", colnames(x)[-pos])
else ylab <- paste("imputed/observed in", colnames(x)[-pos])
}
# plot annotation
x.axis <- TRUE
if(is.logical(labels)) {
if(!is.na(labels) && labels) labels <- NULL
else x.axis <- FALSE
}
miss.axis <- TRUE
if(is.logical(miss.labels)) {
if(!is.na(miss.labels) && miss.labels) miss.labels <- NULL
else miss.axis <- FALSE
}
impp <- FALSE # indicates if the current variable has imputed missings
# get missings/imputed missings and plot limits
if(!imputed) { # barMiss
misspos <- isNA(xpos)
} else { # barImp
tmp <- isImp(x, pos = pos, delimiter = delimiter, imp_var = imp_var, selection = selection)
misspos <- tmp[["misspos"]]
impp <- tmp[["impp"]]
missh <- tmp[["missh"]]
}
missposf <- factor(ifelse(misspos, 1, 0), levels=0:1)
if(p == 1) ct <- table(missposf)[2] # number of missings
else {
if(!imputed) missh <- isNA(xh, selection) # barMiss
misshf <- factor(ifelse(missh, 1, 0), levels=1:0)
ct <- table(misshf, missposf) # contingency table for missings
ct[2,] <- ct[1,] + ct[2,] # y-coordinates for rectangles
if(only.miss) ct <- ct[,2]
}
allNA <- all(misspos)
if(allNA) {
n <- 5
counts <- 0
} else {
n <- length(levels(xpos))
counts <- summary(xpos[!misspos])
}
# extend x-axis limits
br <- c(0.2, n*1.2)
h <- br[2] - br[1]
if(only.miss) {
xlim <- c(br[1], br[2]+1+0.08*h)
ylim <- c(0, max(summary(xpos)))
} else {
xlim <- c(br[1], br[2]+0.155*h)
ylim <- c(0, max(counts))
}
if(allNA) {
b <- NULL
labels <- character()
plot(xlim, ylim, type="n", ann=FALSE, axes=FALSE, yaxs="i")
if(only.miss && axes) localAxis(side=2, ...) # y-axis
} else {
# if(p > 1 && any(missh)) {
# # missings in highlight variables: stacked barplot
# counts <- table(missh, xpos)
# b <- barplot(counts, col=col[2:1], border=border,
# main="", sub="", xlab="", ylab="", xlim=xlim,
# ylim=ylim, axes=FALSE, axisnames=FALSE)
# } else { # simple barplot
# b <- barplot(counts, col=col[1], border=border,
# main="", sub="", xlab="", ylab="", xlim=xlim,
# ylim=ylim, axes=FALSE, axisnames=FALSE)
# }
b <- barplot(counts, col=col[1], border=border,
main="", sub="", xlab="", ylab="", xlim=xlim,
ylim=ylim, axes=FALSE, axisnames=FALSE)
if(p > 1 && any(missh)) { # add barplot for missings
if(imputed) color <- col[5]
else color <- col[2]
indices <- which(is.na(x[,2]) & missh ==TRUE)
missh2 <- missh
missh2[-indices] <- FALSE
countsmiss <- table(xpos[missh], useNA="no")
countsmiss2 <- table(xpos[missh2], useNA="no")
b <- barplot(countsmiss, col=color, border=border,
add=TRUE, axes=FALSE, axisnames=FALSE)
if(length(indices) > 0 & imputed) {
b <- barplot(countsmiss2, col=col[2], border=border,
add=TRUE, axes=FALSE, axisnames=FALSE)
}
}
else if(p == 1 && impp == TRUE && any(misspos)) {
countsmiss <- table(xpos[missh], useNA="no")
b <- barplot(countsmiss, col=col[5], border=border,
add=TRUE, axes=FALSE, axisnames=FALSE)
}
if(x.axis) {
if(is.null(labels)) labels <- levels(xpos)
else labels <- rep(labels, length.out=length(levels(xpos)))
}
if(axes) localAxis(side=2, ...) # y-axis
}
localTitle(main, sub, xlab, ylab, ...) # plot annotation
abline(v=br[2]+0.04*h, col="lightgrey")
# additional information about missings
if(only.miss) { # one bar for missings in first variable
xleft <- br[2] + 0.08*h
xright <- xlim[2]
if(p == 1) {
rect(xleft, 0, xright, ct, col=col[3], border=border, xpd=TRUE)
} else {
if(!imputed) color <- col[4:3]
else color <- col[c(6,3)]
rect(rep(xleft, 2), c(0, ct[1]), rep(xright, 2), ct,
col=color, border=border, xpd=TRUE)
}
if(miss.axis) {
miss.at <- xleft+(xright-xleft)/2
if(is.null(miss.labels)) {
if(!imputed) miss.labels <- "missing"
else miss.labels <- "imputed"
}
else miss.labels <- rep(miss.labels, length.out=1)
}
} else { # stacked barplot for observed/missing in first variable
usr <- par("usr")
par(usr=c(usr[1:2], 0, max(ct[2,]))) # modify user coordinates
on.exit(par(usr=usr)) # reset user coordinates on exit
zero <- br[2]+0.08*h
xleft <- zero + c(0,0,1.5,1.5)*0.03*h
ybottom <- c(0,ct[1,1],0,ct[1,2])
xright <- zero + c(1,1,2.5,2.5)*0.03*h
ytop <- ct
if(!imputed) color <- col[c(2,1,4,3)]
else color <- col[c(5,1,6,3)]
########################################################
rect(xleft, ybottom, xright, ytop,
col=color, border=border, xpd=TRUE)
## still missings
if(length(indices) > 0 & imputed) {
sum_miss <- length(indices)
xleft1 <- xleft[1]
ybottom1 <- ybottom[1]
xright1 <- xright[1]
ytop1 <- sum_miss
color1 <- col[2]
rect(xleft1,ybottom1,xright1,ytop1,col=color1,border=border,xpd=TRUE)
}
########################################################
if(miss.axis) {
miss.at <- zero + c(0.5,2)*0.03*h
if(is.null(miss.labels)) {
if(!imputed) miss.labels <- c("observed","missing")
else miss.labels <- c("observed","imputed")
}
else miss.labels <- rep(miss.labels, length.out=2)
}
if(axes) localAxis(side=4, ...)
}
# x-axis
if(x.axis || miss.axis) {
x.axes <- TRUE
dots$side <- 1
dots$at <- c(if(x.axis) b, if(miss.axis) miss.at)
dots$labels <- c(if(x.axis) labels, if(miss.axis) miss.labels)
if(is.null(dots$line)) dots$line <- par("mgp")[3]
dots$lty <- 0
if(is.null(dots$las)) dots$las <- 3
if(dots$las %in% 2:3) {
space.vert <- (par("oma")[1]+par("mar")[1]-
dots$line-par("mgp")[2])*par("csi")
ok <- prettyLabels(dots$labels,
dots$at, space.vert, dots$cex.axis)
if(any(ok)) {
dots$at <- dots$at[ok]
dots$labels <- dots$labels[ok]
} else x.axes <- FALSE
}
if(x.axes) do.call(localAxis, dots)
}
return(b)
}
b <- createPlot(main, sub, xlab, ylab, labels)
# interactive features
interactiveDevices <- c("X11cairo","quartz","windows")
dev <- names(dev.cur())
if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
cat(paste("\nClick in in the left margin to switch to the previous",
"variable or in the right margin to switch to the next",
"variable.\n"))
cat(paste("To regain use of the VIM GUI and the R console,",
"click anywhere else in the graphics window.\n\n"))
usr <- par("usr")
pt <- locatorVIM()
while(!is.null(pt) && (pt$x < usr[1] || pt$x > usr[2])) {
if(pt$x < usr[1]) pos <- if(pos == 1) p else (pos - 1) %% p
else pos <- if(pos == p-1) p else (pos + 1) %% p
#b <- createPlot()
b <-
if(is.continuous(x[, pos])) {
histMiss(if(imputed) cbind(x,imp_var) else x, delimiter = delimiter, pos=pos, selection=selection, col=col,
border=border, axes=axes, only.miss=only.miss,
miss.labels=miss.labels, interactive=FALSE, ...)
} else createPlot(labels=if(is.logical(labels)) labels else axes)
usr <- par("usr")
pt <- locatorVIM()
}
}
invisible(b)
}
|