1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
# ---------------------------------------
# Author: Andreas Alfons, Bernd Prantner
# and Daniel Schopfhauser
# Vienna University of Technology
# ---------------------------------------
#' Growing dot map with information about missing/imputed values
#'
#' Map with dots whose sizes correspond to the values in a certain variable.
#' Observations with missing/imputed values in additional variables are
#' highlighted.
#'
#' The smallest dots correspond to the 10\% quantile and the largest dots to
#' the 99\% quantile. In between, the dots grow exponentially, with `exp`
#' defining the shape of the exponential function. Missings/imputed missings
#' in the variable of interest will be drawn as rectangles.
#'
#' If `interactive=TRUE`, detailed information for an observation can be
#' printed on the console by clicking on the corresponding point. Clicking in
#' a region that does not contain any points quits the interactive session.
#'
#' @aliases growdotMiss bubbleMiss
#' @param x a vector, matrix or `data.frame`.
#' @param coords a matrix or `data.frame` with two columns giving the
#' spatial coordinates of the observations.
#' @param map a background map to be passed to [bgmap()].
#' @param pos a numeric value giving the index of the variable determining the
#' dot sizes.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param selection the selection method for highlighting missing/imputed
#' values in multiple additional variables. Possible values are `"any"`
#' (highlighting of missing/imputed values in *any* of the additional
#' variables) and `"all"` (highlighting of missing/imputed values in
#' *all* of the additional variables).
#' @param log a logical indicating whether the variable given by `pos`
#' should be log-transformed.
#' @param col a vector of length six giving the colors to be used in the plot.
#' If only one color is supplied, it is used for the borders of non-highlighted
#' dots and the surface area of highlighted dots. Else if two colors are
#' supplied, they are recycled.
#' @param border a vector of length four giving the colors to be used for the
#' borders of the growing dots. Use `NA` to omit borders.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`. This can be used to prevent
#' overplotting.
#' @param scale scaling factor of the map.
#' @param size a vector of length two giving the sizes for the smallest and
#' largest dots.
#' @param exp a vector of length three giving the factors that define the shape
#' of the exponential function (see \sQuote{Details}).
#' @param col.map the color to be used for the background map.
#' @param legend a logical indicating whether a legend should be plotted.
#' @param legtitle the title for the legend.
#' @param cex.legtitle the character expansion factor to be used for the title
#' of the legend.
#' @param cex.legtext the character expansion factor to be used in the legend.
#' @param ncircles the number of circles displayed in the legend.
#' @param ndigits the number of digits displayed in the legend. Note that \
#' this is just a suggestion (see [format()]).
#' @param interactive a logical indicating whether information about certain
#' observations can be displayed interactively (see \sQuote{Details}).
#' @param \dots for `growdotMiss`, further arguments and graphical
#' parameters to be passed to [bgmap()]. For `bubbleMiss`, the
#' arguments to be passed to `growdotMiss`.
#' @note The function was renamed to `growdotMiss` in version 1.3.
#' `bubbleMiss` is a (deprecated) wrapper for `growdotMiss` for back
#' compatibility with older versions. However, due to extended functionality,
#' some of the argument positions have changed.
#'
#' The code is based on (removed from CRAN) bubbleFIN from package
#' StatDA.
#' @author Andreas Alfons, Matthias Templ, Peter Filzmoser, Bernd Prantner
#' @seealso [bgmap()], [mapMiss()],
#' [colormapMiss()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @examples
#'
#' data(chorizonDL, package = "VIM")
#' data(kola.background, package = "VIM")
#' coo <- chorizonDL[, c("XCOO", "YCOO")]
#' ## for missing values
#' x <- chorizonDL[, c("Ca","As", "Bi")]
#' growdotMiss(x, coo, kola.background, border = "white")
#'
#' ## for imputed values
#' x_imp <- kNN(chorizonDL[,c("Ca","As","Bi" )])
#' growdotMiss(x_imp, coo, kola.background, delimiter = "_imp", border = "white")
#'
#' @export
growdotMiss <- function(x, coords, map, pos=1, delimiter = NULL, selection = c("any","all"),
log = FALSE, col = c("skyblue", "red", "skyblue4", "red4", "orange", "orange4"),
border = par("bg"), alpha = NULL, scale = NULL,
size = NULL, exp = c(0, 0.95, 0.05),
col.map = grey(0.5), legend = TRUE,
legtitle = "Legend", cex.legtitle = par("cex"),
cex.legtext = par("cex"), ncircles = 6, ndigits = 1,
interactive = TRUE, ...) {
check_data(x)
x <- as.data.frame(x)
# FIXME: infinite values
# code is based on StatDA::bubbleFIN()
# ncircles ... number of circles for the legend
# ndigits ... number of digits for the legend
# error messages
imputed <- FALSE # indicates if there are Variables with missing-index
if(is.null(dim(x))) {
nx <- length(x)
px <- 1
} else {
if(!inherits(x, c("data.frame","matrix"))) {
stop("'x must be a data.frame or matrix")
}
## delimiter ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
nx <- nrow(x)
px <- ncol(x)
if(px == 0) stop("'x' has no columns")
}
if(!(inherits(coords, c("data.frame","matrix")))) {
stop("'coords' must be a data.frame or matrix")
}
if(ncol(coords) != 2) stop("'coords' must be 2-dimensional")
if(nx != nrow(coords)) {
stop("'x' and 'coords' must have equal number of elements/rows")
}
# if(length(col) == 0) col <- c("skyblue","red","red4")
# else if(length(col) == 1) {
# border <- c(col, "transparent", "transparent")
# col <- c("transparent", col, col)
# } else if(length(col) == 2) col <- rep(col, 1:2)
# else if(length(col) > 3) col <- col[1:3]
# if(length(border) == 0) border <- par("bg")
# else if(length(border) == 1) border <- rep.int(border, 3)
# else if(length(border) == 2) border <- rep(border, 1:2)
# else if(length(border) > 3) border <- border[1:3]
if(length(col) == 0) col <- c("skyblue", "red", "skyblue4", "red4", "orange", "orange4")
else if(length(col) == 1) {
border <- rep.int(c(col, "transparent"), 2)
col <- c(rep.int(c("transparent", col), 2),rep.int(col,2))
} else if(length(col) == 3 || length(col) == 5) col <- rep.int(col[1:2], 3)
else if(length(col) != 6) col <- rep(col, length.out=6)
if(length(border) == 0) border <- par("bg")
else if(length(border) == 1) lty <- rep.int(border, 4)
else if(length(border) == 3) border <- rep.int(border[1:2], 2)
else if(length(border) != 4) border <- rep(border, length.out=4)
coords <- as.data.frame(coords)
if(px > 1) {
if(!is.numeric(pos) || length(pos) != 1 || (px < pos)) {
stop("'pos' must be an integer specifying one column of 'x'")
}
selection <- match.arg(selection)
}
if(!is.null(alpha)) {
col <- alphablend(col, alpha) # semitransparent colors
border <- alphablend(border, alpha) # semitransparent borders
}
# initialize plot
bgmap(map, col=col.map, ...)
if(px == 1) {
if(!imputed) missPos <- is.na(x) # indicates missings in plot variable
else missPos <- isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = selection)[["missh"]]
missOther <- rep.int(FALSE, nx)
z <- as.numeric(x[!missPos]) # observed values in plot variable
miss <- rep.int(FALSE, length(z))
} else {
if(!imputed) {
missPos <- is.na(x[, pos]) # indicates missings in plot variable
missOther <- isNA(x[, -pos, drop=FALSE], selection)
z <- as.numeric(x[!missPos, pos]) # observed values in plot variable
miss <- isNA(x[!missPos, -pos, drop=FALSE], selection)
} else {
tmp <- isImp(x, pos = pos, delimiter = delimiter, imp_var = imp_var, selection = selection)
missPos <- tmp[["misspos"]]
missOther <- tmp[["missh"]]
z <- as.numeric(x[!missPos, pos]) # observed values in plot variable
miss <- isImp(x[!missPos, -pos ,drop=FALSE], pos = NULL, delimiter = delimiter, imp_var = imp_var[!missPos,], selection = selection)[["missh"]]
}
}
if(log) {
if(any(z < 0)) stop("cannot use logarithm with negative values")
z <- log10(z)
}
if(is.null(size)) { # default size depends on area and sample density
# retrieve bounding box for background map
usr <- par("usr")
xr <- usr[1:2]
if(par("xaxs") == "r") xr <- xr + c(1,-1)*diff(xr)*0.04/1.08
yr <- usr[3:4]
if(par("yaxs") == "r") yr <- yr + c(1,-1)*diff(yr)*0.04/1.08
# area of bounding box
Abox <- diff(xr)*diff(yr)
maxsize <- sqrt(Abox/nx)
size <- c(maxsize/10, maxsize)
scale <- NULL
}
if(length(z)) {
mnz <- min(z)
zz <- if(mnz < 0) z + abs(mnz) else z
q1 <- quantile(zz, 0.1)
q2 <- quantile(zz, 0.99)
c <- q1 / (q2/q1)^(exp[1]/exp[2])
C <- q2 / (q1/q2)^(exp[3]/exp[2])
xi <- pmax(pmin(zz,C), c)
di <- size[1] * (size[2]/size[1])^(log10(xi/c)/log10(C/c))
if(!is.null(scale)) di <- scale * di
coordsobs <- coords[!(missPos | missOther),]
diobs <- di[!miss]
ordobs <- order(z[!miss], decreasing=TRUE)
circles(coordsobs[ordobs, 1], coordsobs[ordobs, 2],
diobs[ordobs]/2, col=col[1], border=border[1])
# observations with missings in other variables
coordsmiss <- coords[!missPos & missOther,]
dimiss <- di[miss]
ordmiss <- order(z[miss], decreasing=TRUE)
if(!imputed) color <- col[2]
else color <- col[5]
circles(coordsmiss[ordmiss, 1], coordsmiss[ordmiss, 2],
dimiss[ordmiss]/2, col=color, border=border[2])
}
# missings in plot variable
if(any(missPos)) {
# sqx <- (C+c)/2
# s <- size[1] * (size[2]/size[1])^(log10(sqx/c)/log10(C/c)) / 2
s <- mean(size) * 0.35
if(!is.null(scale)) s <- scale * s
cp <- coords[missPos & !missOther, , drop=FALSE]
co <- coords[missPos & missOther, , drop=FALSE]
rect(cp[,1]-s, cp[,2]-s, cp[,1]+s, cp[,2]+s,
col=col[3], border=border[3])
if(!imputed) color <- col[4]
else color <- col[6]
rect(co[,1]-s, co[,2]-s, co[,1]+s, co[,2]+s,
col=color, border=border[4])
}
# add legend (top right)
if(length(z) && legend) {
probs <- seq(1, 0, length.out=ncircles)
diq <- quantile(di, probs=probs)
#zq <- quantile(x[!missPos, pos], probs=probs)
if(px == 1) zq <- quantile(x[!missPos], probs=probs)
else zq <- quantile(x[!missPos, pos], probs=probs)
lsheight <- strheight(legtitle, cex=cex.legtitle)
legtext <- format(zq, digits=ndigits)
maxsheight <- max(strheight(legtext, cex=cex.legtext))
maxswidth <- max(strwidth(legtext, cex=cex.legtext))
xmax <- max(coords[,1])
ymax <- max(coords[,2])
xt <- xmax - maxswidth
xc <- xt - max(diq)
yc <- ymax - lsheight*2
yc <- c(yc, yc - maxsheight*1.5*(1:(length(diq)-1)))
circles(xc, yc, diq/2, col=col[1], border=border[1])
text(xt, yc, legtext, adj=0, cex=cex.legtext)
lswidth <- strwidth(legtitle, cex=cex.legtitle)
tswidth <- max(diq)*2 + maxswidth
if(lswidth > tswidth)
text(xmax, ymax, legtitle, adj=1, cex=cex.legtitle)
else text(xmax-tswidth, ymax, legtitle, adj=0, cex=cex.legtitle)
}
if(interactive) {
cat("\nClick on a point to get more information.\n")
cat(paste("To regain use of the VIM GUI and the R console,",
"click in a region that does not contain any points.\n\n"))
identifyPt <- function(p, x) { # function to identify closest point
if(is.null(p) || nrow(x) == 0) return(NA)
d <- sqrt(colSums((t(x)-p)^2))
m <- min(d, na.rm=TRUE)
r <- apply(x,2,range, na.rm=TRUE)
r <- max(r[2,]-r[1,])
if(m/r < 0.05) which(d == min(d, na.rm=TRUE))
else NA
}
pt <- locatorVIM()
ind <- identifyPt(unlist(pt), coords) # get closest point
while(!is.na(ind)) {
# print(x[ind,])
if(px == 1) print(x[ind]) # print values for
else print(x[ind,]) # the identified point
pt <- locatorVIM()
ind <- identifyPt(unlist(pt), coords)
}
}
invisible()
}
# compatibility wrapper
bubbleMiss <- function(...) {
growdotMiss(...)
}
# modified version of Peter Filzmoser's function in package 'StatDA'
circles <- function(x, y, radius, col=NA, border=par("fg")) {
#draw circles
nmax <- max(length(x), length(y));
if (length(x) < nmax) x <- rep(x, length=nmax);
if (length(y) < nmax) y <- rep(y, length=nmax);
if (length(col) < nmax) col <- rep(col, length=nmax);
if (length(border) < nmax) border <- rep(border, length=nmax);
if (length(radius) < nmax) radius <- rep(radius, length=nmax);
theta <- 2* pi * seq(0, 355, by=5) / 360;
ct <- cos(theta);
st <- sin(theta);
#for(i in 1:nmax)
# polygon(x[i] + ct * radius[i], y[i] + st * radius[i],
# col=col[i], border=border[i]);
xmat <- mapply(function(x,r,c) x+c*r, x, radius, MoreArgs=list(ct))
ymat <- mapply(function(y,r,s) y+s*r, y, radius, MoreArgs=list(st))
xvec <- as.vector(rbind(xmat, rep(NA, length(x))))
yvec <- as.vector(rbind(ymat, rep(NA, length(y))))
polygon(xvec, yvec, col=col, border=border)
}
|