File: histMiss.R

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (432 lines) | stat: -rw-r--r-- 17,010 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# ------------------------------------------
# Authors: Andreas Alfons, Bernd Prantner
#          and Daniel Schopfhauser
#          Vienna University of Technology
# ------------------------------------------



#' Histogram with information about missing/imputed values
#' 
#' Histogram with highlighting of missing/imputed values in other variables by
#' splitting each bin into two parts.  Additionally, information about
#' missing/imputed values in the variable of interest is shown on the right
#' hand side.
#' 
#' If more than one variable is supplied, the bins for the variable of interest
#' will be split according to missingness/number of imputed missings in the
#' additional variables.
#' 
#' If `only.miss=TRUE`, the missing/imputed values in the variable of
#' interest are visualized by one bar on the right hand side.  If additional
#' variables are supplied, this bar is again split into two parts according to
#' missingness/number of imputed missings in the additional variables.
#' 
#' Otherwise, a small barplot consisting of two bars is drawn on the right hand
#' side.  The first bar corresponds to observed values in the variable of
#' interest and the second bar to missing/imputed values.  Since these two bars
#' are not on the same scale as the main barplot, a second y-axis is plotted on
#' the right (if `axes=TRUE`).  Each of the two bars are again split into
#' two parts according to missingness/number of imputed missings in the
#' additional variables.  Note that this display does not make sense if only
#' one variable is supplied, therefore `only.miss` is ignored in that
#' case.
#' 
#' If `interactive=TRUE`, clicking in the left margin of the plot results
#' in switching to the previous variable and clicking in the right margin
#' results in switching to the next variable.  Clicking anywhere else on the
#' graphics device quits the interactive session.  When switching to a
#' categorical variable, a barplot is produced rather than a histogram.
#' 
#' @param x a vector, matrix or `data.frame`.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param pos a numeric value giving the index of the variable of interest.
#' Additional variables in `x` are used for highlighting.
#' @param selection the selection method for highlighting missing/imputed
#' values in multiple additional variables.  Possible values are `"any"`
#' (highlighting of missing/imputed values in *any* of the additional
#' variables) and `"all"` (highlighting of missing/imputed values in
#' *all* of the additional variables).
#' @param breaks either a character string naming an algorithm to compute the
#' breakpoints (see [hist()]), or a numeric value giving the number
#' of cells.
#' @param right logical; if `TRUE`, the histogram cells are right-closed
#' (left-open) intervals.
#' @param col a vector of length six giving the colors to be used. If only one
#' color is supplied, the bars are transparent and the supplied color is used
#' for highlighting missing/imputed values.  Else if two colors are supplied,
#' they are recycled.
#' @param border the color to be used for the border of the cells.  Use
#' `border=NA` to omit borders.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param axes a logical indicating whether axes should be drawn on the plot.
#' @param only.miss logical; if `TRUE`, the missing/imputed values in the
#' first variable are visualized by a single bar.  Otherwise, a small barplot
#' is drawn on the right hand side (see \sQuote{Details}).
#' @param miss.labels either a logical indicating whether label(s) should be
#' plotted below the bar(s) on the right hand side, or a character string or
#' vector giving the label(s) (see \sQuote{Details}).
#' @param interactive a logical indicating whether the variables can be
#' switched interactively (see \sQuote{Details}).
#' @param \dots further graphical parameters to be passed to
#' [graphics::title()] and [graphics::axis()].
#' @return a list with the following components:
#' - breaks the breakpoints.
#' - counts the number of observations in each cell.
#' - missings the number of highlighted observations in each cell.
#' - mids the cell midpoints.
#' @note Some of the argument names and positions have changed with version 1.3
#' due to extended functionality and for more consistency with other plot
#' functions in `VIM`.  For back compatibility, the arguments
#' `axisnames` and `names.miss` can still be supplied to
#' \code{\dots{}} and are handled correctly.  Nevertheless, they are deprecated
#' and no longer documented.  Use `miss.labels` instead.
#' @author Andreas Alfons, Bernd Prantner
#' @seealso [spineMiss()], [barMiss()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools.  *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#' 
#' data(tao, package = "VIM")
#' ## for missing values
#' x <- tao[, c("Air.Temp", "Humidity")]
#' histMiss(x)
#' histMiss(x, only.miss = FALSE)
#' 
#' ## for imputed values
#' x_IMPUTED <- kNN(tao[, c("Air.Temp", "Humidity")])
#' histMiss(x_IMPUTED, delimiter = "_imp")
#' histMiss(x_IMPUTED, delimiter = "_imp", only.miss = FALSE)
#' 
#' @export
histMiss <- function(x, delimiter = NULL, pos = 1, selection = c("any","all"), 
                     breaks = "Sturges", right = TRUE, 
                     col = c("skyblue","red","skyblue4","red4","orange","orange4"), 
                     border = NULL, main = NULL, sub = NULL, 
                     xlab = NULL, ylab = NULL, axes = TRUE, 
                     only.miss = TRUE, miss.labels = axes, 
                     interactive = TRUE, ...) {
  check_data(x)
  x <- as.data.frame(x)

	imputed <- FALSE # indicates if there are Variables with missing-index
	# initializations and error messages
	if(is.null(dim(x))) {  # vector
		# call barMiss if the plot variable is categorial
		if(is.categorical(x)) {
			barMiss(x, delimiter=delimiter, pos=pos, selection=selection, col=col, 
					border=border, main=main, sub=sub, xlab=xlab, ylab=ylab,
					axes=axes, only.miss=only.miss, miss.labels=miss.labels,
					interactive=interactive, ...)
			return(invisible(1))
		}
		n <- length(x)
		p <- 1
		if(n == 0) stop("'x' must have positive length")
	} else {  # matrix or data.frame
		if(!(inherits(x, c("data.frame","matrix")))) { 
			stop("'x' must be a data.frame or matrix")
		}
		
		# call barMiss if the plot variable is categorial
		if(is.categorical(x[, pos])) {
			barMiss(x, delimiter=delimiter, pos=pos, selection=selection, col=col, 
					border=border, main=main, sub=sub, xlab=xlab, ylab=ylab,
					axes=axes, only.miss=only.miss, miss.labels=miss.labels,
					interactive=interactive, ...)
			return(invisible(1))
		}
		
		## delimiter ##
		if(!is.null(delimiter)) {
			tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
			if(length(tmp) > 0) {
				imp_var <- x[, tmp, drop=FALSE]
				x <- x[, -tmp, drop=FALSE]
				
				if(ncol(x) == 0) stop("Only the missing-index is given")
				if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
				
				if(is.null(dim(imp_var))) {
					if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
				} else {
					if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")	
				}
				imputed <- TRUE
			} else {
				warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
			}
		}
		
		n <- nrow(x)
		p <- ncol(x)
		if(n == 0) stop("'x' has no rows")
		else if(p == 0) stop("'x' has no columns")
		if(is.null(colnames(x))) colnames(x) <- defaultNames(p)
	}
	
	if(p == 1) {
		only.miss <- TRUE
		interactive <- FALSE
	} else {
		if((!is.numeric(pos)) || (length(pos) != 1) || (p < pos)) {
			stop("'pos' must be an integer specifying one column of 'x' and must be lesser than the number of colums of 'x'")
		}
		selection <- match.arg(selection)
	}
	if(!is.character(breaks) && 
			!(is.numeric(breaks) && length(breaks) == 1)) {
		stop("'breaks' must be a character string naming an algorithm ", 
				"or a single number giving the number of cells")
	}
	if(length(col) == 0) col <- c("skyblue","red","skyblue4","red4","orange","orange4")
	else if(length(col) == 1) col <- c(rep.int(c("transparent", col), 2),rep.int(col,2))
	else if(length(col) == 3 || length(col) == 5) col <- rep.int(col[1:2], 3)
	else if(length(col) != 6) col <- rep(col, length.out=6)
	localAxis <- function(..., names.arg, axisnames, cex.names, names.miss) {
		axis(...)
	}
	localTitle <- function(..., names.arg, axisnames, cex.names, names.miss) {
		title(...)
	}
	
	# back compatibility
	dots <- list(...)
	nmdots <- names(dots)
	if(missing(miss.labels)) {
		if("axisnames" %in% nmdots) {
			if(dots$axisnames) {
				if("names.miss" %in% nmdots) miss.labels <- dots$names.miss
				else miss.labels <- TRUE
			} else miss.labels <- FALSE
		} else if("names.miss" %in% nmdots) miss.labels <- dots$names.miss
	}
	
	# workhorse to create plot
	createPlot <- function(main=NULL, sub=NULL, xlab=NULL, ylab=NULL) {
		# prepare data
		if(is.null(dim(x))) xpos <- as.numeric(x)
		else if(p == 1) {
			xpos <- as.numeric(x[,1])
			if(is.null(xlab)) xlab <- colnames(x)  # default x-axis label
		} else {
			xpos <- as.numeric(x[, pos])  # plot variable
			xh <- x[, -pos, drop=FALSE]  # highlight variables
			if(is.null(xlab)) xlab <- colnames(x)[pos]  # default x-axis label
		}

		if(p == 2 && is.null(ylab)) {  # default y-axis label
			if(!imputed) ylab <- paste("missing/observed in", colnames(x)[-pos])
			else ylab <- paste("imputed/observed in", colnames(x)[-pos])
		}
				
		impp <- FALSE # indicates if the current variable has imputed missings
		# get missings/imputed missings and plot limits
		if(!imputed) { # histMiss
			misspos <- isNA(xpos)
		} else { # histImp
			tmp <- isImp(x, pos = pos, delimiter = delimiter, imp_var = imp_var, selection = selection)
			misspos <- tmp[["misspos"]]
			impp <- tmp[["impp"]]
			missh <- tmp[["missh"]]
		}
		missposf <- factor(ifelse(misspos, 1, 0), levels=0:1)
			
		if(p == 1) ct <- table(missposf)[2]  # number of missings
		else {
			if(!imputed) missh <- isNA(xh, selection) # histMiss
			
			misshf <- factor(ifelse(missh, 1, 0), levels=1:0)
			ct <- table(misshf, missposf)  # contingency table for missings
			ct[2,] <- ct[1,] + ct[2,]  # y-coordinates for rectangles
			if(only.miss) ct <- ct[,2]
		}
		
		# check for infinite values
		iInf <- is.infinite(xpos)  # indicates infinite values
		allNAInf <- all(misspos | iInf)
		if(any(iInf)) {
			if(is.null(dim(x))) cnw <- "'x'" 
			else cnw <- paste("variable '", colnames(x)[pos], "'", sep="")
			warning(cnw, " contains infinite values")
		}
		if(allNAInf) {
			r <- list(counts=0)
			br <- 0:1
			n <- 5
		} else {
			r <- hist(xpos, breaks=breaks, right=right, plot=FALSE)  # histogram
			br <- range(r$breaks)
			n <- length(r$counts)
			# dummy plot with original x-axis limits to retrieve tickmarks
			plot(br, 0:1, type="n", ann=FALSE, axes=FALSE)
			par(new=TRUE)
			xaxp <- par("xaxp")  # retrieve tickmarks
		}
		# extend x-axis limits
		h <- br[2] - br[1]
		if(only.miss) {
			xlim <- c(br[1], br[2]+(0.08+1/n)*h)
			ylim <- if(all(iInf)) c(0,1) else c(0, max(r$counts, ct))
		} else {
			xlim <- c(br[1], br[2]+0.155*h)
			ylim <- c(0, max(r$counts))
		}
		if(allNAInf) {
			plot(xlim, ylim, type="n", ann=FALSE, axes=FALSE)
			if(axes && only.miss) localAxis(side=2, ...)  # y-axis
		} else {
			plot(r, col=col[1], border=border, main="", sub="", xlim=xlim, 
					ylim=ylim, xlab="", ylab="", axes=FALSE)
			if(p > 1 && any(missh)) {  # add histogram for missings
				if(imputed) color <- col[5]
				else color <- col[2]
				rr <- hist(xpos[missh], breaks=r$breaks, 
						right=right, col=color, border=border, add=TRUE)
				if(imputed) {
				  indices <- which(is.na(x[,2]) & imp_var == TRUE)
				  rr1 <- hist(xpos[indices], breaks=r$breaks, 
				             right=right, col=col[2], border=border, add=TRUE)
				}
			}
			else if(p == 1 && impp == TRUE && any(misspos)) {
				rr <- hist(xpos[misspos], breaks=r$breaks, 
						right=right, col=col[5], border=border, add=TRUE)
				
			}
			else rr <- list(counts=rep.int(0, length(r$counts)))
			if(axes) {
				localAxis(side=1, at=axTicks(side=1, axp=xaxp), ...)  # x-axis
				localAxis(side=2, ...)  # y-axis
			}
		}
		localTitle(main, sub, xlab, ylab, ...)  # plot annotation
		abline(v=br[2]+0.04*h, col="lightgrey")
		
		# additional information about missings
		miss.axes <- TRUE
		if(is.logical(miss.labels)) {
			if(!is.na(miss.labels) && miss.labels) miss.labels <- NULL
			else miss.axes <- FALSE
		}
		if(miss.axes) {
			dots$side <- 1
			if(is.null(dots$line)) dots$line <- par("mgp")[3]
			dots$lty <- 0
			if(is.null(dots$las)) dots$las <- 3
		}
		if(only.miss) {  # one bar for missings in first variable
			xleft <- br[2] + 0.08*h
			xright <- xlim[2]
			if(p == 1) {
				rect(xleft, 0, xright, ct, col=col[3], border=border, xpd=TRUE)
			} else {
				if(!imputed) color <- col[4:3]
				else color <- col[c(6,3)]
				rect(rep(xleft, 2), c(0, ct[1]), rep(xright, 2), ct, 
						col=color, border=border, xpd=TRUE)
			}
			if(miss.axes) {
				dots$at <- xleft+(xright-xleft)/2
				if(is.null(miss.labels)) {
					if(!imputed) miss.labels <- "missing"
					else miss.labels <- "imputed"
				}
				else miss.labels <- rep(miss.labels, length.out=1)
				dots$labels <- miss.labels
			}
		} else {  # stacked barplot for observed/missing in first variable
			usr <- par("usr")
			on.exit(par(usr=usr))  # reset user coordinates on exit
			# set up new plot region
			par(new=TRUE)
			plot(xlim, c(0, max(ct[2,])), type="n", ann=FALSE, axes=FALSE)
			zero <- br[2]+0.08*h
			xleft <- zero + c(0,0,1.5,1.5)*0.03*h
			ybottom <- c(0,ct[1,1],0,ct[1,2])
			xright <- zero + c(1,1,2.5,2.5)*0.03*h
			ytop <- ct
			if(!imputed) color <- col[c(2,1,4,3)]
			else color <- col[c(5,1,6,3)]
			########################################################
			
			rect(xleft, ybottom, xright, ytop, 
			     col=color, border=border, xpd=TRUE)
			## still missings
			if(length(indices) > 0 & imputed) {
			  sum_miss <- length(indices)
			  xleft1 <- xleft[1]
			  ybottom1 <- ybottom[1]
			  xright1 <- xright[1]
			  ytop1 <- sum_miss
			  color1 <- col[2]
			  rect(xleft1,ybottom1,xright1,ytop1,col=color1,border=border,xpd=TRUE)
			}
			########################################################
			if(miss.axes) {
				dots$at <- zero + c(0.5,2)*0.03*h
				if(is.null(miss.labels)) {
					if(!imputed) miss.labels <- c("observed","missing")
					else miss.labels <- c("observed","imputed")
				} 
				else miss.labels <- rep(miss.labels, length.out=2)
				dots$labels <- miss.labels
			}
			if(axes) localAxis(side=4, ...)
		}
		if(miss.axes && dots$las %in% 2:3) {
			space.vert <- 
					(par("oma")[1]+par("mar")[1]-dots$line-par("mgp")[2])*par("csi")
			ok <- prettyLabels(dots$labels, dots$at, space.vert, dots$cex.axis)
			if(any(ok)) {
				dots$at <- dots$at[ok]
				dots$labels <- dots$labels[ok]
			} else miss.axes <- FALSE
		}
		if(miss.axes) do.call(localAxis, dots)
		
		if(allNAInf) return() 
		else return(list(breaks=r$breaks, counts=r$counts, 
							missings=rr$counts, mids=r$mids))
	}
	result <- createPlot(main, sub, xlab, ylab)

	# interactive features
	interactiveDevices <- c("X11cairo","quartz","windows")
	dev <- names(dev.cur())
	
	if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
		cat(paste("\nClick in in the left margin to switch to the previous",
						"variable or in the right margin to switch to the next",
						"variable.\n"))
		cat(paste("To regain use of the VIM GUI and the R console,",
						"click anywhere else in the graphics window.\n\n"))
		usr <- par("usr")
		pt <- locatorVIM()
		while(!is.null(pt) && (pt$x < usr[1] || pt$x > usr[2])) {
			if(pt$x < usr[1]) pos <- if(pos == 1) p else (pos - 1) %% p
			else pos <- if(pos == p-1) p else (pos + 1) %% p
			#result <- createPlot()
			result <- 
					if(is.categorical(x[, pos])) {
						barMiss(if(imputed) cbind(x,imp_var) else x, delimiter = delimiter, pos=pos, selection=selection, col=col, 
								border=border, axes=axes, only.miss=only.miss, 
								miss.labels=miss.labels, interactive=FALSE, ...) 
					} else createPlot()
			usr <- par("usr")
			pt <- locatorVIM()
		}
	}
	
	invisible(result)
}