1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
####Classical hotdeck methods
#Author: Alexander Kowarik, Statistics Austria
## Sequential hot(cold)deck
## Random (within domain) hot(cold)deck
## Cold deck is not implemented yet
#data - data.frame of the data with missing
#variable - vector of variablesnames to be imputed
#ord_var - list of vectors of variablesnames to be used to order the dataset
#domain_var - vector of variablesnames to be used as domains
#makeNA - vector of values which should be imputed too e.g. 8,9 or 98,99 in SPSS-data sets
#NAcond - list of conditions for each variable to create NAs there (not yet implemented)
#donorcond - list of conditions for a donor e.g. "<=10000"
#TODO: Donors from cold deck
#' Hot-Deck Imputation
#'
#' Implementation of the popular Sequential, Random (within a domain) hot-deck
#' algorithm for imputation.
#'
#'
#' @param data data.frame or matrix
#' @param variable variables where missing values should be imputed (not overlapping with ord_var)
#' @param ord_var variables for sorting the data set before imputation (not overlapping with variable)
#' @param domain_var variables for building domains and impute within these
#' domains
#' @param makeNA list of length equal to the number of variables, with values, that should be converted to NA for each variable
#' @param NAcond list of length equal to the number of variables, with a condition for imputing a NA
#' @param impNA TRUE/FALSE whether NA should be imputed
#' @param donorcond list of length equal to the number of variables, with a donorcond condition as character string.
#' e.g. ">5" or c(">5","<10). If the list element for a variable is NULL no condition will be applied for this variable.
#' @param imp_var TRUE/FALSE if a TRUE/FALSE variables for each imputed
#' variable should be created show the imputation status
#' @param imp_suffix suffix for the TRUE/FALSE variables showing the imputation
#' status
#' @return the imputed data set.
#' @author Alexander Kowarik
#' @note If the sequential hotdeck does not lead to a suitable,
#' a random donor in the group will be used.
#' @references A. Kowarik, M. Templ (2016) Imputation with
#' R package VIM. *Journal of
#' Statistical Software*, 74(7), 1-16.
#' @keywords manip
#' @family imputation methods
#' @examples
#'
#' data(sleep)
#' sleepI <- hotdeck(sleep)
#' sleepI2 <- hotdeck(sleep,ord_var="BodyWgt",domain_var="Pred")
#'
#' # Usage of donorcond in a simple example
#' sleepI3 <- hotdeck(
#' sleep,
#' variable = c("NonD", "Dream", "Sleep", "Span", "Gest"),
#' ord_var = "BodyWgt", domain_var = "Pred",
#' donorcond = list(">4", "<17", ">1.5", "%between%c(8,13)", ">5")
#' )
#'
#' set.seed(132)
#' nRows <- 1e3
#' # Generate a data set with nRows rows and several variables
#' x <- data.frame(
#' x = rnorm(nRows), y = rnorm(nRows),
#' z = sample(LETTERS, nRows, replace = TRUE),
#' d1 = sample(LETTERS[1:3], nRows, replace = TRUE),
#' d2 = sample(LETTERS[1:2], nRows, replace = TRUE),
#' o1 = rnorm(nRows), o2 = rnorm(nRows), o3 = rnorm(100)
#' )
#' origX <- x
#' x[sample(1:nRows,nRows/10), 1] <- NA
#' x[sample(1:nRows,nRows/10), 2] <- NA
#' x[sample(1:nRows,nRows/10), 3] <- NA
#' x[sample(1:nRows,nRows/10), 4] <- NA
#' xImp <- hotdeck(x,ord_var = c("o1", "o2", "o3"), domain_var = "d2")
#'
#'
#' @export
hotdeck <- function(data , variable=NULL, ord_var=NULL,domain_var=NULL,
makeNA=NULL,NAcond=NULL,impNA=TRUE,donorcond=NULL,
imp_var=TRUE,imp_suffix="imp"
){
check_data(data)
if(!is.null(variable)&&!is.null(ord_var)){
if(length(intersect(ord_var,variable))>0){
stop(paste0(intersect(ord_var,variable),collapse=", "),
" should not be in the parameters ord_var and variable.
Since this can lead to unforeseen results and errors.")
}
}
OriginalSortingVariable <- impvar <- NULL #empty init
if(is.null(variable)){
variable <- colnames(data)
variable<-variable[!variable%in%c(ord_var,domain_var)]
}
if(!is.null(makeNA)){
if(!is.list(makeNA)||!length(makeNA)==length(variable))
stop("makeNA is not defined correctly. \n It should be a list of length equal to the length of the argument 'variable'.")
}
classx <- class(data)
VariableSorting <- colnames(data)
data$OriginalSortingVariable <- 1:nrow(data)
data <- data.table(data)
if(is.null(variable)){
variable <- colnames(data)[apply(is.na(data),2,any)]
}
if(!is.null(NAcond))
warning("NAcond is not implemented yet and will be ignored.")
classWithoutLabelled <- function(x){
cl <- class(x)
return(cl[cl!="labelled"])
}
varType <- sapply(data,classWithoutLabelled)[variable]
if(imp_var){
for(v in variable){
data[,impvar:=FALSE]
impvarname <- paste(v,"_",imp_suffix,sep="")
setnames(data,"impvar",impvarname)
VariableSorting <- c(VariableSorting,impvarname)
}
}
# If no ord_var is defined, a random ordered will be used
if(is.null(ord_var)){
RandomVariableForImputationWithHotdeck <- NULL # Init for CRAN check
nrowXforRunif <- nrow(data)
data[,RandomVariableForImputationWithHotdeck:=runif(nrowXforRunif)]
ord_var <- "RandomVariableForImputationWithHotdeck"
}
setkeyv(data,ord_var)
# if no domain_var is defined, the imputeHD function is automatically called on the
# whole data set
data <- data[,imputeHD(.SD,variableX=variable,varTypeX=varType,
imp_varX=imp_var,imp_suffixX=imp_suffix,impNAX=impNA,makeNAX=makeNA,
ord_varX = ord_var, donorcond = donorcond), by = domain_var]
if(any(ord_var=="RandomVariableForImputationWithHotdeck")){
data[,RandomVariableForImputationWithHotdeck:=NULL]
ord_var <- NULL
}
setkey(data,OriginalSortingVariable)
data[,OriginalSortingVariable:=NULL]
if(all(classx!="data.table"))
return(as.data.frame(data)[,VariableSorting,drop=FALSE])
return(data[,VariableSorting,with=FALSE])
}
## xx should be a data.table and ord_var the name of variables to sort
imputeHD <- function(xx,variableX,varTypeX,imp_varX,imp_suffixX,
impNAX,makeNAX, ord_varX, donorcond){
donor_applicable <- OriginalSortingVariable <- weirdandlongname <- UniqueIdForImputation <- NULL#empty init
J <- function()NULL#empty init
xx$UniqueIdForImputation <- 1:nrow(xx)
prevKey <- key(xx)
for(v in variableX){
xx[, donor_applicable := !is.na(xx[[v]])]
if (!is.null(donorcond)) {
if(!is.null(donorcond[[match(v,variableX)]])){
condition_string <- paste0("xx[[v]]", donorcond[[match(v,variableX)]],collapse="&")
TF <- eval(parse(text=condition_string))
xx[, donor_applicable := donor_applicable & TF]
}
}
if(!impNAX){
setkeyv(xx,v)
if(is.null(makeNAX))
stop("If impNA=FALSE a list of values to be imputed must be provided.")
## NAs should not be imputed
if(varTypeX[v]%in%c("numeric","integer")){
NAs <- xx[J(NA_real_),.I,nomatch=FALSE]# get the Index of the NAS
}else{
NAs <- xx[J(NA_character_),.I,nomatch=FALSE]# get the Index of the NAS
}
#NAs hold the index of observations with NAs in the current variable
if(length(NAs)>0){
xxna <- xx[NAs] # move observation to a temp data set
xx <- xx[-NAs] # just keep the non NA obs
}else{#if no NA xx is unchanged and xxna is just an empty data.table
xxna <- data.table()
}
setkeyv(xx,prevKey)
xx$UniqueIdForImputation <- 1:nrow(xx)
}
if(!is.null(makeNAX)){
# eval(parse(text="xx[xx>1]"))
setnames(xx,v,"weirdandlongname")
xx[weirdandlongname%in%makeNAX[[match(v,variableX)]],weirdandlongname:=NA]
setnames(xx,"weirdandlongname",v)
}
setkeyv(xx,v)
if(varTypeX[v]%in%c("numeric","integer")){
impPart <- xx[J(NA_real_),UniqueIdForImputation,nomatch=FALSE]#$UniqueIdForImputation
}else{
impPart <- xx[J(NA_character_),UniqueIdForImputation,nomatch=FALSE]#$UniqueIdForImputation
}
if((length(impPart)>0)&&(length(impPart)<nrow(xx))){
if(imp_varX){
impvarname <- paste(v,"_",imp_suffixX,sep="")
xx[UniqueIdForImputation%in%impPart,c(impvarname):=TRUE]
}
impDon <- impPart-1
impDon[impDon<1] <- impPart[impDon<1]+1
setkey(xx,UniqueIdForImputation)
Don <- data.frame(xx[impDon,v,with=FALSE])[,1]
TFindex <- xx[impDon, !donor_applicable]
TF <- any(TFindex)
if(TF){
add <- 2
while(TF){
impDon[TFindex] <- impPart[TFindex]-add
if(any(impDon[TFindex][impDon[TFindex]<1]<=-nrow(xx))){
impDon[TFindex][impDon[TFindex]<1][impDon[TFindex][impDon[TFindex]<1]<=-nrow(xx)] <-
- impDon[TFindex][impDon[TFindex]<1][impDon[TFindex][impDon[TFindex]<1]<=-nrow(xx)]
}
impDon[TFindex][impDon[TFindex]<1] <- impPart[TFindex][impDon[TFindex]<1]-add+nrow(xx)
impDon2 <- impDon[TFindex]
Don[TFindex] <- data.frame(xx[impDon2,v,with=FALSE])[,1]
TFindex[TFindex] <- xx[impDon2, !donor_applicable]
TF <- any(TFindex)
if(add>min(50, nrow(xx))){
TF <- FALSE
# remaining missing values will be set to a random value from the group
if(length(Don)>0){
Don[TFindex] <- Don[!TFindex][sample(sum(!TFindex),1)]
}
if(!identical(ord_varX, "RandomVariableForImputationWithHotdeck")){
warning(paste("For variable",v,"the ordering is ignored for at least one imputation."))
}
}
add <- add +1
}
}
xx[impPart,v] <- Don
}
if(!impNAX)
xx <- rbindlist(list(xx,xxna))
}
xx[,UniqueIdForImputation:=NULL]
setkey(xx,OriginalSortingVariable)
return(xx)
}
#require(data.table)
#setwd("/Users/alex")
#Rprof("profile1.out")
###TEST
#set.seed(132)
#nRows <- 1e6
#x<-data.frame(x=rnorm(nRows),y=rnorm(nRows),z=sample(LETTERS,nRows,rep=T),
# d1=sample(LETTERS[1:3],nRows,rep=T),d2=sample(LETTERS[1:2],nRows,rep=T),o1=rnorm(nRows),o2=rnorm(nRows),o3=rnorm(100))
#origX <- x
#x[sample(1:nRows,nRows/10),1] <- NA
#x[sample(1:nRows,nRows/10),2] <- NA
#x[sample(1:nRows,nRows/10),3] <- NA
#x[sample(1:nRows,nRows/10),4] <- NA
##
#xImp <- hotdeck_work2(x,ord_var = c("o1","o2","o3"),domain_var="d2")
#Rprof(NULL)
#summaryRprof("profile1.out")
#xImp1 <- hotdeck(x,ord_var = c("o1","o2","o3"),domain_var="d2")
#identical(xImp,xImp1)
#
#
#for(v in colnames(xImp)){
# print(v)
# print(identical(xImp[,v],xImp1[,v]))
#}
#
#
#
#require(microbenchmark)
#res <- microbenchmark(xImp <- hd(x,ord_var = c("o1","o2","o3"),domain_var="d2"),times=10)
|