File: marginplot.R

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (327 lines) | stat: -rw-r--r-- 14,519 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# ----------------------------------------------------------
# Authors: Andreas Alfons, Bernd Prantner and Matthias Templ
#          Vienna University of Technology
# ----------------------------------------------------------



#' Scatterplot with additional information in the margins
#' 
#' In addition to a standard scatterplot, information about missing/imputed
#' values is shown in the plot margins. Furthermore, imputed values are
#' highlighted in the scatterplot.
#' 
#' Boxplots for available and missing/imputed data, as well as univariate
#' scatterplots for missing/imputed values in one variable are shown in the
#' plot margins.
#' 
#' Imputed values in either of the variables are highlighted in the
#' scatterplot.
#' 
#' Furthermore, the frequencies of the missing/imputed values can be displayed
#' by a number (lower left of the plot). The number in the lower left corner is
#' the number of observations that are missing/imputed in both variables.
#' 
#' @param x a `matrix` or `data.frame` with two columns.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param col a vector of length five giving the colors to be used in the plot.
#' The first color is used for the scatterplot and the boxplots for the
#' available data. In case of missing values, the second color is taken for the
#' univariate scatterplots and boxplots for missing values in one variable and
#' the third for the frequency of missing/imputed values in both variables (see
#' \sQuote{Details}). Otherwise, in case of imputed values, the fourth color is
#' used for the highlighting, the frequency, the univariate scatterplot and the
#' boxplots of mputed values in the first variable and the fifth color for the
#' same applied to the second variable. A black color is used for the
#' highlighting and the frequency of imputed values in both variables instead.
#' If only one color is supplied, it is used for the bivariate and univariate
#' scatterplots and the boxplots for missing/imputed values in one variable,
#' whereas the boxplots for the available data are transparent.  Else if two
#' colors are supplied, the second one is recycled.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`.  This can be used to prevent
#' overplotting.
#' @param pch a vector of length two giving the plot symbols to be used for the
#' scatterplot and the univariate scatterplots.  If a single plot character is
#' supplied, it is used for the scatterplot and the default value will be used
#' for the univariate scatterplots (see \sQuote{Details}).
#' @param cex the character expansion factor to be used for the bivariate and
#' univariate scatterplots.
#' @param numbers a logical indicating whether the frequencies of
#' missing/imputed values should be displayed in the lower left of the plot
#' (see \sQuote{Details}).
#' @param cex.numbers the character expansion factor to be used for the
#' frequencies of the missing/imputed values.
#' @param zeros a logical vector of length two indicating whether the variables
#' are semi-continuous, i.e., contain a considerable amount of zeros.  If
#' `TRUE`, only the non-zero observations are used for drawing the
#' respective boxplot.  If a single logical is supplied, it is recycled.
#' @param xlim,ylim axis limits.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param ann a logical indicating whether plot annotation (`main`,
#' `sub`, `xlab`, `ylab`) should be displayed.
#' @param axes a logical indicating whether both axes should be drawn on the
#' plot.  Use graphical parameter `"xaxt"` or `"yaxt"` to suppress
#' only one of the axes.
#' @param frame.plot a logical indicating whether a box should be drawn around
#' the plot.
#' @param \dots further graphical parameters to be passed down (see
#' [graphics::par()]).
#' @note Some of the argument names and positions have changed with versions
#' 1.3 and 1.4 due to extended functionality and for more consistency with
#' other plot functions in `VIM`.  For back compatibility, the argument
#' `cex.text` can still be supplied to \code{\dots{}} and is handled
#' correctly.  Nevertheless, it is deprecated and no longer documented.  Use
#' `cex.numbers` instead.
#' @author Andreas Alfons, Matthias Templ, modifications by Bernd Prantner
#' @seealso [scattMiss()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools.  *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#' 
#' 
#' data(tao, package = "VIM")
#' data(chorizonDL, package = "VIM")
#' ## for missing values
#' marginplot(tao[,c("Air.Temp", "Humidity")])
#' marginplot(log10(chorizonDL[,c("CaO", "Bi")]))
#' 
#' ## for imputed values
#' marginplot(kNN(tao[,c("Air.Temp", "Humidity")]), delimiter = "_imp")
#' marginplot(kNN(log10(chorizonDL[,c("CaO", "Bi")])), delimiter = "_imp")
#' 
#' 
#' @export marginplot
marginplot <- function(x, delimiter = NULL, col = c("skyblue","red","red4","orange","orange4"), 
        alpha = NULL, pch = c(1,16), cex = par("cex"), 
        numbers = TRUE, cex.numbers = par("cex"), 
        zeros = FALSE, xlim = NULL, ylim = NULL, 
        main = NULL, sub = NULL, xlab = NULL, ylab = NULL, 
        ann = par("ann"), axes = TRUE, frame.plot = axes, ...) {
    # back compatibility
    dots <- list(...)
    if(missing(cex.numbers) && "cex.text" %in% names(dots)) {
        cex.numbers <- dots$cex.text
    }
    # error messages
    if(!(inherits(x, c("data.frame","matrix")))) {
        stop("x must be a data.frame or matrix")
    }
	imputed <- FALSE # indicates if there are Variables with missing-index
	## delimiter ##
	if(!is.null(delimiter)) {
		tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
		if(length(tmp) > 0) {
			imp_var <- x[, tmp, drop=FALSE]
			x <- x[, -tmp, drop=FALSE]
			
			if(ncol(x) == 0) stop("Only the missing-index is given")
			if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
			
			if(is.null(dim(imp_var))) {
				if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
			} else {
				if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")	
			}
			imputed <- TRUE
		} else {
			warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
		}
	}
    if(ncol(x) != 2) stop("'x' must be 2-dimensional")
    fillbox <- TRUE
    if(length(col) == 0) col <- c("skyblue","red","red4","orange","orange4")
    else if(length(col) == 1) {
        col <- rep.int(col, 5)
        fillbox <- FALSE
    } else if(length(col) == 2 || length(col) == 4) col <- c(col, rep(col[2],3))
    else if(length(col) != 5) col <- c(col[1], rep(col[2:3],2))
    if(length(pch) == 0) pch <- c(1,16)
    else if(length(pch) == 1) pch <- c(pch, 16)
    else if(length(pch) > 2) pch <- pch[1:2]
    if(!is.logical(zeros) || length(zeros) == 0) zeros <- FALSE
    zeros <- rep(sapply(zeros, isTRUE), length.out=2)
    # prepare data
    if(is.data.frame(x)) x <- data.matrix(x)
    else if(mode(x) != "numeric") mode(x) <- "numeric"
    iInf <- apply(x, 1, function(x) any(is.infinite(x)))
    if(any(iInf)) {
        x <- x[!iInf, , drop=FALSE]
		if(imputed) imp_var <- imp_var[!iInf, , drop=FALSE]
        warning("'x' contains infinite values")
    }
    # default axis labels
    if(!is.null(colnames(x))) {
        if(is.null(xlab)) xlab <- colnames(x)[1]
        if(is.null(ylab)) ylab <- colnames(x)[2]
    }
    # semitransparent colors
    colalpha <- alphablend(col, alpha)
    # count missings
    n <- nrow(x)
    if(!imputed) nNA <- c(apply(x, 2, countNA), sum(isNA(x, "all")))
	else nNA <- c(countImp(x, delimiter, imp_var),sum(isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = "all")[["missh"]]))
	# default axis limits
    if(is.null(xlim)) {
        xlim <- if(nNA[1] == n) rep.int(0, 2) else range(x[,1], na.rm=TRUE)
    }
    if(is.null(ylim)) {
        ylim <- if(nNA[2] == n) rep.int(0, 2) else range(x[,2], na.rm=TRUE)
    }
    # initialize plot
    initializeWindow <- function(..., cex.text, 
            col, bg, pch, cex, lty, lwd) {
        plot.new()
        plot.window(...)
    }
    initializeWindow(xlim, ylim, ...)
    # define grid
    # order of graphical parameters matters
    op <- par(c("xlog", "ylog", "plt", "usr", "xaxp", "yaxp"))
    on.exit(par(op))
    pltx <- c(op$plt[2] - diff(op$plt[1:2])/c(1, 1.15/1.05, 1.15), op$plt[2])
    plty <- c(op$plt[4] - diff(op$plt[3:4])/c(1, 1.15/1.05, 1.15), op$plt[4])
    # extend usr coordinates
    gridx <- c(op$usr[1] - c(0.15, 0.05, 0)*diff(op$usr[1:2]), op$usr[2])
    gridy <- c(op$usr[3] - c(0.15, 0.05, 0)*diff(op$usr[3:4]), op$usr[4])
    op$usr <- c(gridx[c(1,4)], gridy[c(1,4)])
    # set plot region for points
    par(plt=c(pltx[3:4], plty[3:4]), usr=c(gridx[3:4], gridy[3:4]))
    # draw points
    localPoints <- function(..., cex.text, log, type, lty, lwd) {
        points(..., type="p")
    }
    localPoints(x[,1], x[,2], cex=cex, col=colalpha[1], pch=pch[1], ...)
    # univariate scatterplots of missings in other variable
    if(!imputed) miss <- is.na(x)
	else {
		tmp <- isImp(x, pos = 1, delimiter = delimiter, imp_var = imp_var, selection = "none")
		miss <- cbind(tmp[["misspos"]],tmp[["missh"]])
		# draw points for imputed values
		localPoints(x[miss[,2],1], x[miss[,2],2], cex=cex, col=colalpha[4], pch=pch[1], ...)
		localPoints(x[miss[,1],1], x[miss[,1],2], cex=cex, col=colalpha[5], pch=pch[1], ...)
		# draw points for imputed values in both variables
		both_imp <- which(apply(miss,1,all))
		col_both <- alphablend("black", alpha)
		localPoints(x[both_imp,1], x[both_imp,2], cex=cex, col=col_both, pch=pch[1], ...)
		
	}
	
	# set plot region for univariate plot of missings along x-axis
    par(xlog=op$xlog, ylog=FALSE, plt=c(pltx[3:4], plty[2:3]), 
        usr=c(gridx[3:4], 0:1))
    box(col="transparent")  # reset clipping region
	if(!imputed) {
		col_scattX <- col_scattY <- colalpha[2]
		col_boxX <- col_boxY <- col[2]
	} else {
		col_scattX <- colalpha[4]
		col_scattY <- colalpha[5]
		col_boxX <- col[4]
		col_boxY <- col[5]
	}
    localPoints(x[miss[,2], 1], rep(0.5, nNA[2]), 
        cex=cex, col=col_scattX , pch=pch[2], ...)
    # set plot region for univariate plot of missings along y-axes
    par(xlog=FALSE, ylog=op$ylog, plt=c(pltx[2:3], plty[3:4]), 
        usr=c(0:1, gridy[3:4]))
    box(col="transparent")  # reset clipping region
    localPoints(rep(0.5, nNA[1]), x[miss[,1], 2], 
        cex=cex, col=col_scattY , pch=pch[2], ...)
    # set plot region for boxplots along x-axis
    par(xlog=op$xlog, ylog=FALSE, plt=c(pltx[3:4], plty[1:2]), 
        usr=c(gridx[3:4], 0:1))
    box(col="transparent")  # reset clipping region
#      any(!is.na(x[!miss[,2],1]))
	if(any(!miss[!miss[,2],1])) {
        xbox <- x[!miss[,2],1]
        if(zeros[1]) xbox <- xbox[xbox != 0]
        boxplot(xbox, boxwex=0.4, col=if(fillbox) col[1], 
            horizontal=TRUE, add=TRUE, at=0.7, axes=FALSE)
    }
    if(any(!miss[miss[,2],1])) {
        xbox <- x[miss[,2],1]
        if(zeros[1]) xbox <- xbox[xbox != 0]
        boxplot(xbox, boxwex=0.4, col=col_boxX, 
            horizontal=TRUE, add=TRUE, at=0.3, axes=FALSE)
    }
    # set plot region for boxplots along y-axis
    par(xlog=FALSE, ylog=op$ylog, plt=c(pltx[1:2], plty[3:4]), 
        usr=c(0:1, gridy[3:4]))
    box(col="transparent")  # reset clipping region
    if(any(!miss[!miss[,1],2])) {
        xbox <- x[!miss[,1],2]
        if(zeros[2]) xbox <- xbox[xbox != 0]
        boxplot(xbox, boxwex=0.4, col=if(fillbox) col[1], 
            add=TRUE, at=0.7, axes=FALSE)
    }
    if(any(!miss[miss[,1],2])) {
        xbox <- x[miss[,1],2]
        if(zeros[2]) xbox <- xbox[xbox != 0]
        boxplot(xbox, boxwex=0.4, col=col_boxY, 
            add=TRUE, at=0.3, axes=FALSE)
    }
    # dot representing missings in both variables
    if(nNA[3]) {
		# set plot region
        par(xlog=FALSE, ylog=FALSE, plt=c(pltx[2:3], plty[2:3]), usr=c(0,1,0,1))
        box(col="transparent")  # reset clipping region
        localPoints(rep.int(0.5, nNA[3]), rep.int(0.5, nNA[3]), 
            cex=cex, col=ifelse(!imputed,colalpha[3],col_both) , pch=pch[2], ...)
    }
    # set plot region for grid lines and numbers
    par(xlog=FALSE, ylog=FALSE, plt=op$plt, usr=c(0,1.15,0,1.15))
    box(col="transparent")  # reset clipping region
    # grid lines
    abline(v=0.15, col="lightgrey")
    abline(v=0.1, col="lightgrey")
    abline(h=0.15, col="lightgrey")
    abline(h=0.1, col="lightgrey")
    # display numbers of missings
    if(isTRUE(numbers)) {
        nNA.width <- strwidth(nNA, cex=cex.numbers)
        nNA.height <- strheight(nNA, cex=cex.numbers)
        if(nNA.width[2] < 0.1 && nNA.height[2] < 0.05) {
            text(0.05, 0.125, labels=nNA[2], col=col_boxX, cex=cex.numbers)
        }
        if(nNA.width[1] < 0.05 && nNA.height[1] < 0.1) {
            text(0.125, 0.05, labels=nNA[1], col=col_boxY, cex=cex.numbers)
        }
        if(nNA.width[3] < 0.1 && nNA.height[3] < 0.1) {
            text(0.05, 0.05, labels=nNA[3], col=ifelse(!imputed,col[3],"black"), cex=cex.numbers)
        }
    }
    # axes and box
    par(op)  # reset plot region
    if(isTRUE(axes)) {
        localAxis <- function(..., cex.text, log, col, bg, pch, cex, lty, lwd) {
            axis(...)
        }
        localAxis(side=1, ...)
        localAxis(side=2, ...)
    }
    if(isTRUE(frame.plot)) {
        localBox <- function(..., cex.text, log, col, bg, pch, cex, lty, lwd) {
            box(...)
        }
        localBox()
    }
    if(isTRUE(ann)) {
        localTitle <- function(..., cex.text, 
                log, col, bg, pch, cex, lty, lwd) {
            title(...)
        }
        localTitle(main=main, sub=sub, xlab=xlab, ylab=ylab, ...)
    }
    invisible()
}