1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
# ----------------------------------------------------------
# Authors: Andreas Alfons, Bernd Prantner and Matthias Templ
# Vienna University of Technology
# ----------------------------------------------------------
#' Scatterplot with additional information in the margins
#'
#' In addition to a standard scatterplot, information about missing/imputed
#' values is shown in the plot margins. Furthermore, imputed values are
#' highlighted in the scatterplot.
#'
#' Boxplots for available and missing/imputed data, as well as univariate
#' scatterplots for missing/imputed values in one variable are shown in the
#' plot margins.
#'
#' Imputed values in either of the variables are highlighted in the
#' scatterplot.
#'
#' Furthermore, the frequencies of the missing/imputed values can be displayed
#' by a number (lower left of the plot). The number in the lower left corner is
#' the number of observations that are missing/imputed in both variables.
#'
#' @param x a `matrix` or `data.frame` with two columns.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param col a vector of length five giving the colors to be used in the plot.
#' The first color is used for the scatterplot and the boxplots for the
#' available data. In case of missing values, the second color is taken for the
#' univariate scatterplots and boxplots for missing values in one variable and
#' the third for the frequency of missing/imputed values in both variables (see
#' \sQuote{Details}). Otherwise, in case of imputed values, the fourth color is
#' used for the highlighting, the frequency, the univariate scatterplot and the
#' boxplots of mputed values in the first variable and the fifth color for the
#' same applied to the second variable. A black color is used for the
#' highlighting and the frequency of imputed values in both variables instead.
#' If only one color is supplied, it is used for the bivariate and univariate
#' scatterplots and the boxplots for missing/imputed values in one variable,
#' whereas the boxplots for the available data are transparent. Else if two
#' colors are supplied, the second one is recycled.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`. This can be used to prevent
#' overplotting.
#' @param pch a vector of length two giving the plot symbols to be used for the
#' scatterplot and the univariate scatterplots. If a single plot character is
#' supplied, it is used for the scatterplot and the default value will be used
#' for the univariate scatterplots (see \sQuote{Details}).
#' @param cex the character expansion factor to be used for the bivariate and
#' univariate scatterplots.
#' @param numbers a logical indicating whether the frequencies of
#' missing/imputed values should be displayed in the lower left of the plot
#' (see \sQuote{Details}).
#' @param cex.numbers the character expansion factor to be used for the
#' frequencies of the missing/imputed values.
#' @param zeros a logical vector of length two indicating whether the variables
#' are semi-continuous, i.e., contain a considerable amount of zeros. If
#' `TRUE`, only the non-zero observations are used for drawing the
#' respective boxplot. If a single logical is supplied, it is recycled.
#' @param xlim,ylim axis limits.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param ann a logical indicating whether plot annotation (`main`,
#' `sub`, `xlab`, `ylab`) should be displayed.
#' @param axes a logical indicating whether both axes should be drawn on the
#' plot. Use graphical parameter `"xaxt"` or `"yaxt"` to suppress
#' only one of the axes.
#' @param frame.plot a logical indicating whether a box should be drawn around
#' the plot.
#' @param \dots further graphical parameters to be passed down (see
#' [graphics::par()]).
#' @note Some of the argument names and positions have changed with versions
#' 1.3 and 1.4 due to extended functionality and for more consistency with
#' other plot functions in `VIM`. For back compatibility, the argument
#' `cex.text` can still be supplied to \code{\dots{}} and is handled
#' correctly. Nevertheless, it is deprecated and no longer documented. Use
#' `cex.numbers` instead.
#' @author Andreas Alfons, Matthias Templ, modifications by Bernd Prantner
#' @seealso [scattMiss()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#'
#'
#' data(tao, package = "VIM")
#' data(chorizonDL, package = "VIM")
#' ## for missing values
#' marginplot(tao[,c("Air.Temp", "Humidity")])
#' marginplot(log10(chorizonDL[,c("CaO", "Bi")]))
#'
#' ## for imputed values
#' marginplot(kNN(tao[,c("Air.Temp", "Humidity")]), delimiter = "_imp")
#' marginplot(kNN(log10(chorizonDL[,c("CaO", "Bi")])), delimiter = "_imp")
#'
#'
#' @export marginplot
marginplot <- function(x, delimiter = NULL, col = c("skyblue","red","red4","orange","orange4"),
alpha = NULL, pch = c(1,16), cex = par("cex"),
numbers = TRUE, cex.numbers = par("cex"),
zeros = FALSE, xlim = NULL, ylim = NULL,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes, ...) {
# back compatibility
dots <- list(...)
if(missing(cex.numbers) && "cex.text" %in% names(dots)) {
cex.numbers <- dots$cex.text
}
# error messages
if(!(inherits(x, c("data.frame","matrix")))) {
stop("x must be a data.frame or matrix")
}
imputed <- FALSE # indicates if there are Variables with missing-index
## delimiter ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
if(ncol(x) != 2) stop("'x' must be 2-dimensional")
fillbox <- TRUE
if(length(col) == 0) col <- c("skyblue","red","red4","orange","orange4")
else if(length(col) == 1) {
col <- rep.int(col, 5)
fillbox <- FALSE
} else if(length(col) == 2 || length(col) == 4) col <- c(col, rep(col[2],3))
else if(length(col) != 5) col <- c(col[1], rep(col[2:3],2))
if(length(pch) == 0) pch <- c(1,16)
else if(length(pch) == 1) pch <- c(pch, 16)
else if(length(pch) > 2) pch <- pch[1:2]
if(!is.logical(zeros) || length(zeros) == 0) zeros <- FALSE
zeros <- rep(sapply(zeros, isTRUE), length.out=2)
# prepare data
if(is.data.frame(x)) x <- data.matrix(x)
else if(mode(x) != "numeric") mode(x) <- "numeric"
iInf <- apply(x, 1, function(x) any(is.infinite(x)))
if(any(iInf)) {
x <- x[!iInf, , drop=FALSE]
if(imputed) imp_var <- imp_var[!iInf, , drop=FALSE]
warning("'x' contains infinite values")
}
# default axis labels
if(!is.null(colnames(x))) {
if(is.null(xlab)) xlab <- colnames(x)[1]
if(is.null(ylab)) ylab <- colnames(x)[2]
}
# semitransparent colors
colalpha <- alphablend(col, alpha)
# count missings
n <- nrow(x)
if(!imputed) nNA <- c(apply(x, 2, countNA), sum(isNA(x, "all")))
else nNA <- c(countImp(x, delimiter, imp_var),sum(isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = "all")[["missh"]]))
# default axis limits
if(is.null(xlim)) {
xlim <- if(nNA[1] == n) rep.int(0, 2) else range(x[,1], na.rm=TRUE)
}
if(is.null(ylim)) {
ylim <- if(nNA[2] == n) rep.int(0, 2) else range(x[,2], na.rm=TRUE)
}
# initialize plot
initializeWindow <- function(..., cex.text,
col, bg, pch, cex, lty, lwd) {
plot.new()
plot.window(...)
}
initializeWindow(xlim, ylim, ...)
# define grid
# order of graphical parameters matters
op <- par(c("xlog", "ylog", "plt", "usr", "xaxp", "yaxp"))
on.exit(par(op))
pltx <- c(op$plt[2] - diff(op$plt[1:2])/c(1, 1.15/1.05, 1.15), op$plt[2])
plty <- c(op$plt[4] - diff(op$plt[3:4])/c(1, 1.15/1.05, 1.15), op$plt[4])
# extend usr coordinates
gridx <- c(op$usr[1] - c(0.15, 0.05, 0)*diff(op$usr[1:2]), op$usr[2])
gridy <- c(op$usr[3] - c(0.15, 0.05, 0)*diff(op$usr[3:4]), op$usr[4])
op$usr <- c(gridx[c(1,4)], gridy[c(1,4)])
# set plot region for points
par(plt=c(pltx[3:4], plty[3:4]), usr=c(gridx[3:4], gridy[3:4]))
# draw points
localPoints <- function(..., cex.text, log, type, lty, lwd) {
points(..., type="p")
}
localPoints(x[,1], x[,2], cex=cex, col=colalpha[1], pch=pch[1], ...)
# univariate scatterplots of missings in other variable
if(!imputed) miss <- is.na(x)
else {
tmp <- isImp(x, pos = 1, delimiter = delimiter, imp_var = imp_var, selection = "none")
miss <- cbind(tmp[["misspos"]],tmp[["missh"]])
# draw points for imputed values
localPoints(x[miss[,2],1], x[miss[,2],2], cex=cex, col=colalpha[4], pch=pch[1], ...)
localPoints(x[miss[,1],1], x[miss[,1],2], cex=cex, col=colalpha[5], pch=pch[1], ...)
# draw points for imputed values in both variables
both_imp <- which(apply(miss,1,all))
col_both <- alphablend("black", alpha)
localPoints(x[both_imp,1], x[both_imp,2], cex=cex, col=col_both, pch=pch[1], ...)
}
# set plot region for univariate plot of missings along x-axis
par(xlog=op$xlog, ylog=FALSE, plt=c(pltx[3:4], plty[2:3]),
usr=c(gridx[3:4], 0:1))
box(col="transparent") # reset clipping region
if(!imputed) {
col_scattX <- col_scattY <- colalpha[2]
col_boxX <- col_boxY <- col[2]
} else {
col_scattX <- colalpha[4]
col_scattY <- colalpha[5]
col_boxX <- col[4]
col_boxY <- col[5]
}
localPoints(x[miss[,2], 1], rep(0.5, nNA[2]),
cex=cex, col=col_scattX , pch=pch[2], ...)
# set plot region for univariate plot of missings along y-axes
par(xlog=FALSE, ylog=op$ylog, plt=c(pltx[2:3], plty[3:4]),
usr=c(0:1, gridy[3:4]))
box(col="transparent") # reset clipping region
localPoints(rep(0.5, nNA[1]), x[miss[,1], 2],
cex=cex, col=col_scattY , pch=pch[2], ...)
# set plot region for boxplots along x-axis
par(xlog=op$xlog, ylog=FALSE, plt=c(pltx[3:4], plty[1:2]),
usr=c(gridx[3:4], 0:1))
box(col="transparent") # reset clipping region
# any(!is.na(x[!miss[,2],1]))
if(any(!miss[!miss[,2],1])) {
xbox <- x[!miss[,2],1]
if(zeros[1]) xbox <- xbox[xbox != 0]
boxplot(xbox, boxwex=0.4, col=if(fillbox) col[1],
horizontal=TRUE, add=TRUE, at=0.7, axes=FALSE)
}
if(any(!miss[miss[,2],1])) {
xbox <- x[miss[,2],1]
if(zeros[1]) xbox <- xbox[xbox != 0]
boxplot(xbox, boxwex=0.4, col=col_boxX,
horizontal=TRUE, add=TRUE, at=0.3, axes=FALSE)
}
# set plot region for boxplots along y-axis
par(xlog=FALSE, ylog=op$ylog, plt=c(pltx[1:2], plty[3:4]),
usr=c(0:1, gridy[3:4]))
box(col="transparent") # reset clipping region
if(any(!miss[!miss[,1],2])) {
xbox <- x[!miss[,1],2]
if(zeros[2]) xbox <- xbox[xbox != 0]
boxplot(xbox, boxwex=0.4, col=if(fillbox) col[1],
add=TRUE, at=0.7, axes=FALSE)
}
if(any(!miss[miss[,1],2])) {
xbox <- x[miss[,1],2]
if(zeros[2]) xbox <- xbox[xbox != 0]
boxplot(xbox, boxwex=0.4, col=col_boxY,
add=TRUE, at=0.3, axes=FALSE)
}
# dot representing missings in both variables
if(nNA[3]) {
# set plot region
par(xlog=FALSE, ylog=FALSE, plt=c(pltx[2:3], plty[2:3]), usr=c(0,1,0,1))
box(col="transparent") # reset clipping region
localPoints(rep.int(0.5, nNA[3]), rep.int(0.5, nNA[3]),
cex=cex, col=ifelse(!imputed,colalpha[3],col_both) , pch=pch[2], ...)
}
# set plot region for grid lines and numbers
par(xlog=FALSE, ylog=FALSE, plt=op$plt, usr=c(0,1.15,0,1.15))
box(col="transparent") # reset clipping region
# grid lines
abline(v=0.15, col="lightgrey")
abline(v=0.1, col="lightgrey")
abline(h=0.15, col="lightgrey")
abline(h=0.1, col="lightgrey")
# display numbers of missings
if(isTRUE(numbers)) {
nNA.width <- strwidth(nNA, cex=cex.numbers)
nNA.height <- strheight(nNA, cex=cex.numbers)
if(nNA.width[2] < 0.1 && nNA.height[2] < 0.05) {
text(0.05, 0.125, labels=nNA[2], col=col_boxX, cex=cex.numbers)
}
if(nNA.width[1] < 0.05 && nNA.height[1] < 0.1) {
text(0.125, 0.05, labels=nNA[1], col=col_boxY, cex=cex.numbers)
}
if(nNA.width[3] < 0.1 && nNA.height[3] < 0.1) {
text(0.05, 0.05, labels=nNA[3], col=ifelse(!imputed,col[3],"black"), cex=cex.numbers)
}
}
# axes and box
par(op) # reset plot region
if(isTRUE(axes)) {
localAxis <- function(..., cex.text, log, col, bg, pch, cex, lty, lwd) {
axis(...)
}
localAxis(side=1, ...)
localAxis(side=2, ...)
}
if(isTRUE(frame.plot)) {
localBox <- function(..., cex.text, log, col, bg, pch, cex, lty, lwd) {
box(...)
}
localBox()
}
if(isTRUE(ann)) {
localTitle <- function(..., cex.text,
log, col, bg, pch, cex, lty, lwd) {
title(...)
}
localTitle(main=main, sub=sub, xlab=xlab, ylab=ylab, ...)
}
invisible()
}
|