1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
# ----------------------------------------------------------
# Authors: Andreas Alfons, Bernd Prantner, Matthias Templ
# and Daniel Schopfhauser
# Vienna University of Technology
# ----------------------------------------------------------
#' Matrix plot
#'
#' Create a matrix plot, in which all cells of a data matrix are visualized by
#' rectangles. Available data is coded according to a continuous color scheme,
#' while missing/imputed data is visualized by a clearly distinguishable color.
#'
#' In a *matrix plot*, all cells of a data matrix are visualized by
#' rectangles. Available data is coded according to a continuous color scheme.
#' To compute the colors via interpolation, the variables are first scaled to
#' the interval between 0 and 1. Missing/imputed values can then be
#' visualized by a clearly distinguishable color. It is thereby possible to use
#' colors in the *HCL* or *RGB* color space. A simple way of
#' visualizing the magnitude of the available data is to apply a greyscale,
#' which has the advantage that missing/imputed values can easily be
#' distinguished by using a color such as red/orange. Note that `-Inf`
#' and `Inf` are always assigned the begin and end color, respectively, of
#' the continuous color scheme.
#'
#' Additionally, the observations can be sorted by the magnitude of a selected
#' variable. If `interactive` is `TRUE`, clicking in a column
#' redraws the plot with observations sorted by the corresponding variable.
#' Clicking anywhere outside the plot region quits the interactive session.
#'
#' @aliases matrixplot TKRmatrixplot iimagMiss
#' @param x a matrix or `data.frame`.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param sortby a numeric or character value specifying the variable to sort
#' the data matrix by, or `NULL` to plot without sorting.
#' @param col the colors to be used in the plot. RGB colors may be specified
#' as character strings or as objects of class "[colorspace::RGB()]".
#' HCL colors need to be specified as objects of class
#' "[colorspace::polarLUV()]". If only one color is supplied, it is
#' used for missing and imputed data and a greyscale is used for available
#' data. If two colors are supplied, the first is used for missing and the
#' second for imputed data and a greyscale for available data. If three colors
#' are supplied, the first is used as end color for the available data, while
#' the start color is taken to be transparent for RGB or white for HCL.
#' Missing/imputed data is visualized by the second/third color in this case.
#' If four colors are supplied, the first is used as start color and the second
#' as end color for the available data, while the third/fourth color is used
#' for missing/imputed data.
#' @param fixup a logical indicating whether the colors should be corrected to
#' valid RGB values (see [colorspace::hex()]).
#' @param xlim,ylim axis limits.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param axes a logical indicating whether axes should be drawn on the plot.
#' @param labels either a logical indicating whether labels should be plotted
#' below each column, or a character vector giving the labels.
#' @param xpd a logical indicating whether the rectangles should be allowed to
#' go outside the plot region. If `NULL`, it defaults to `TRUE`
#' unless axis limits are specified.
#' @param interactive a logical indicating whether a variable to be used for
#' sorting can be selected interactively (see \sQuote{Details}).
#' @param \dots for `matrixplot` and `iimagMiss`, further graphical
#' parameters to be passed to [graphics::plot.window()],
#' [graphics::title()] and [graphics::axis()]. For
#' `TKRmatrixplot`, further arguments to be passed to `matrixplot`.
#' @note This is a much more powerful extension to the function `imagmiss`
#' in the former CRAN package `dprep`.
#'
#' `iimagMiss` is deprecated and may be omitted in future versions of
#' `VIM`. Use `matrixplot` instead.
#' @author Andreas Alfons, Matthias Templ, modifications by Bernd Prantner
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#'
#' data(sleep, package = "VIM")
#' ## for missing values
#' x <- sleep[, -(8:10)]
#' x[,c(1,2,4,6,7)] <- log10(x[,c(1,2,4,6,7)])
#' matrixplot(x, sortby = "BrainWgt")
#'
#' ## for imputed values
#' x_imp <- kNN(sleep[, -(8:10)])
#' x_imp[,c(1,2,4,6,7)] <- log10(x_imp[,c(1,2,4,6,7)])
#' matrixplot(x_imp, delimiter = "_imp", sortby = "BrainWgt")
#'
#' @export
matrixplot <- function(x, delimiter = NULL, sortby = NULL,
col = c("red","orange"),
fixup = TRUE, xlim = NULL, ylim = NULL,
main = NULL, sub = NULL, xlab = NULL,
ylab = NULL, axes = TRUE, labels = axes,
xpd = NULL, interactive = TRUE, ...) {
check_data(x)
x <- as.data.frame(x)
# initializations and error messages
imputed <- FALSE # indicates if there are Variables with missing-index
## delimiter ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
n <- nrow(x)
p <- ncol(x)
if(p < 2) stop("'x' must be at least 2-dimensional")
if(!is.null(sortby) && length(sortby) != 1)
stop("'sortby' must have length 1")
# prepare data
if(is.data.frame(x)) x <- data.matrix(x)
else if(mode(x) != "numeric") mode(x) <- "numeric"
if(is.null(colnames(x))) colnames(x) <- defaultNames(p)
# check for infinite values
iInf <- is.infinite(x)
for(i in 1:p) {
if(any(iInf[, i])) {
warning(gettextf("variable '%s' contains infinite values",
colnames(x)[i]))
}
}
# define rectangles
xl <- (1:p)-0.5
xr <- (1:p)+0.5
yb <- (1:n)-0.5
yt <- (1:n)+0.5
rects <- merge(data.frame(yb,yt), data.frame(xl,xr))
# check colors
if(!is(col, "RGB") && !is(col, "polarLUV") &&
(!is.character(col) || length(col) == 0)) col <- c("red","orange")
if(is.character(col)) {
# colors given as character string
if(length(col) == 1) {
start <- par("bg")
end <- "black"
col <- rep(col,2)
} else if(length(col) == 2) {
start <- par("bg")
end <- "black"
}else if(length(col) == 3) {
start <- par("bg")
end <- col[1]
col <- col[2:3]
} else {
start <- col[1]
end <- col[2]
col <- col[3:4]
}
space <- "rgb"
} else {
space <- if(is(col, "RGB")) "rgb" else "hcl"
if(nrow(coords(col)) == 1) {
if(is(col, "RGB")) {
# RGB colors
start <- par("bg")
end <- "black"
} else {
# HCL colors
start <- c(100, 0, col@coords[1, "H"])
end <- c(0, 0, col@coords[1, "H"])
}
col <- rep(hex(col, fixup=fixup),2)
} else if(nrow(coords(col)) == 2) {
if(is(col, "RGB")){
# RGB colors
start <- par("bg")
end <- "black"
} else {
# HCL colors
start <- c(100, 0, col@coords[1, "H"])
end <- c(0, 0, col@coords[1, "H"])
}
col <- hex(col, fixup=fixup)
} else if(nrow(coords(col)) == 3) {
if(is(col, "RGB")){
# RGB colors
start <- par("bg")
} else {
# HCL colors
start <- polarLUV(100, 0, col@coords[1, "H"])
}
end <- col[1,]
col <- hex(col[2:3,], fixup=fixup)
} else {
start <- col[1,]
end <- col[2,]
col <- hex(col[3:4,], fixup=fixup)
}
}
if(is.character(start)) startcol <- start
else startcol <- hex(start, fixup=fixup)
if(is.character(end)) endcol <- end
else endcol <- hex(end, fixup=fixup)
# function to get color sequence (or red/orange if missing/imputed)
getCol <- function(x, ord = NULL) {
iOK <- !is.na(x)
cols <- rep.int(col[1], n)
if(imputed) {
# character vector for possible prefixes for the delimiter
escape <- getEscapeChars()
# search escape-vector for possible prefixes
for(i in 1:length(escape)) {
indexp <- colnames(imp_var) %in% paste(colnames(x),delimiter,sep=escape[i])
# end loop if a match is found
if(any(indexp)) break
}
if(any(indexp)) {
iOK <- !imp_var[,indexp]
# still some missings
indices <- which(is.na(x))
if(!is.null(ord)) iOK <- iOK[ord]
cols <- rep.int(col[2], n)
cols[indices] <- col[1]
}
}
if(any(iOK)) {
iInf <- is.infinite(x)
if(any(!iInf)) {
r <- range(x[!iInf], na.rm=TRUE)
if(r[1] == r[2]) xs <- rep.int(r[1], length(which(iOK & !iInf)))
else xs <- (x[iOK & !iInf]-r[1])/(r[2]-r[1])
cols[iOK & !iInf] <- colSequence(xs, start, end, space=space)
}
cols[iInf & x == -Inf] <- startcol
cols[iInf & x == Inf] <- endcol
}
cols
}
# create plot
dots <- list(...)
if(is.null(xpd)) xpd <- is.null(xlim) && is.null(ylim)
if(is.null(xlim)) xlim <- c(0.5, p+0.5)
if(is.null(ylim)) ylim <- c(0.5, n+0.5)
initializeWindow <- function(..., log, asp, yaxs) {
plot.new()
plot.window(..., yaxs="r")
}
initializeWindow(xlim=xlim, ylim=ylim, ...) # dummy initialization
yaxp <- par("yaxp") # retrieve y-axis tickmarks
localWindow <- function(..., log, asp, yaxs) {
plot.window(..., yaxs=if(is.null(dots$yaxs)) "i" else dots$yaxs)
}
localWindow(xlim=xlim, ylim=ylim, ...)
par(yaxp=yaxp) # reset y-axis tickmarks to make sure they include 0
createPlot <- function() {
allNA <- is.na(x)
if(imputed) {
tmp_imp <- isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = "none")[["missh"]]
allNA[,colnames(tmp)] <- tmp_imp
}
allNA <- all(allNA)
if(allNA) { # only missings/imputed missings
if(!imputed) color <- col[1]
else color <- col[2]
cols <- rep(color, n*p)
}
else if(is.null(sortby)) { # get colors
if(!imputed) cols <- as.vector(apply(x, 2, getCol))
else {
cols <- vector()
for (i in 1:p) {
cols <- append(cols,getCol(x[, i, drop=FALSE]))
}
}
} else {
ord <- order(x[,sortby]) # get order
if(!imputed) cols <- as.vector(apply(x[ord,, drop=FALSE], 2, getCol)) # get colors
else {
cols <- vector()
for (i in 1:p) {
cols <- append(cols,getCol(x[ord, i, drop=FALSE], ord = ord))
}
}
}
rect(rects$xl, rects$yb, rects$xr, rects$yt,
col=cols, border=NA, xpd=xpd)
}
createPlot()
# axes
x.axis <- TRUE
if(is.logical(labels)) {
if(!is.na(labels) && labels) labels <- NULL
else x.axis <- FALSE
}
if(x.axis) {
dots$side <- 1
dots$at <- 1:p
if(is.null(labels)) dots$labels <- colnames(x)
else dots$labels <- rep(labels, length.out=p)
dots$lty <- 0
if(is.null(dots$las)) dots$las <- 3
if(dots$las %in% 2:3) {
space.vert <- (par("mar")[1]+par("oma")[1]-1)*par("csi")
ok <- prettyLabels(dots$labels, dots$at, space.vert, dots$cex.axis)
if(any(ok)) {
dots$at <- dots$at[ok]
dots$labels <- dots$labels[ok]
} else x.axis <- FALSE
}
}
if(x.axis) {
do.call(axis, dots) # x-axis
}
if(axes) axis(2, xpd=NA, ...) # y-axis
# plot annotation
if(is.null(ylab)) ylab <- "Index"
title(main=main, sub=sub, xlab=xlab, ylab=ylab, ...)
interactiveDevices <- c("X11","quartz","windows")
dev <- names(dev.cur())
if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
cat("\nClick in a column to sort by the corresponding variable.\n")
cat(paste("To regain use of the VIM GUI and the R console,",
"click outside the plot region.\n\n"))
usr <- par("usr")
pt <- locatorVIM()
while(!is.null(pt) &&
max(0.5, usr[1]) <= pt$x && pt$x < min(p+0.5, usr[2]) &&
max(0.5, usr[3]) <= pt$y && pt$y <= min(n+0.5, usr[4])) {
sortby <- round(pt$x)
svar <- colnames(x)[sortby] # new sort variable
cat(gettextf("Matrix plot sorted by variable '%s'.\n", svar))
createPlot()
pt <- locatorVIM()
}
}
invisible()
}
# compatibility wrapper
iimagMiss <- function (x, delimiter = NULL, sortby = NULL, col = c("red","orange"), main = NULL,
sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, axes = TRUE,
xaxlabels = NULL, las = 3, interactive = TRUE,
...) {
if(is.null(xaxlabels)) xaxlabels <- axes
matrixplot(x, delimiter=delimiter,sortby=sortby, col=col, xlim=xlim, ylim=ylim,
main=main, sub=sub, xlab=xlab, axes=axes, labels=xaxlabels,
interactive=TRUE, las=las, ...)
}
|