1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
# ----------------------------------------------------------
# Authors: Andreas Alfons, Bernd Prantner, Matthias Templ
# and Daniel Schopfhauser
# Vienna University of Technology
# ----------------------------------------------------------
#' Parallel boxplots with information about missing/imputed values
#'
#' Boxplot of one variable of interest plus information about missing/imputed
#' values in other variables.
#'
#' This plot consists of several boxplots. First, a standard boxplot of the
#' variable of interest is produced. Second, boxplots grouped by observed and
#' missing/imputed values according to `selection` are produced for the
#' variable of interest.
#'
#' Additionally, the frequencies of the missing/imputed values can be
#' represented by numbers. If so, the first line corresponds to the observed
#' values of the variable of interest and their distribution in the different
#' groups, the second line to the missing/imputed values.
#'
#' If `interactive=TRUE`, clicking in the left margin of the plot results
#' in switching to the previous variable and clicking in the right margin
#' results in switching to the next variable. Clicking anywhere else on the
#' graphics device quits the interactive session.
#'
#' @param x a vector, matrix or `data.frame`.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param pos a numeric value giving the index of the variable of interest.
#' Additional variables in `x` are used for grouping according to
#' missingness/number of imputed missings.
#' @param selection the selection method for grouping according to
#' missingness/number of imputed missings in multiple additional variables.
#' Possible values are `"none"` (grouping according to missingness/number
#' of imputed missings in every other variable that contains missing/imputed
#' values), `"any"` (grouping according to missingness/number of imputed
#' missings in *any* of the additional variables) and `"all"`
#' (grouping according to missingness/number of imputed missings in *all*
#' of the additional variables).
#' @param col a vector of length five giving the colors to be used in the plot.
#' The first color is used for the boxplots of the available data, the
#' second/fourth are used for missing/imputed data, respectively, and the
#' third/fifth color for the frequencies of missing/imputed values in both
#' variables (see \sQuote{Details}). If only one color is supplied, it is used
#' for the boxplots for missing/imputed data, whereas the boxplots for the
#' available data are transparent. Else if two colors are supplied, the second
#' one is recycled.
#' @param numbers a logical indicating whether the frequencies of
#' missing/imputed values should be displayed (see \sQuote{Details}).
#' @param cex.numbers the character expansion factor to be used for the
#' frequencies of the missing/imputed values.
#' @param xlim,ylim axis limits.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param axes a logical indicating whether axes should be drawn on the plot.
#' @param frame.plot a logical indicating whether a box should be drawn around
#' the plot.
#' @param labels either a logical indicating whether labels should be plotted
#' below each box, or a character vector giving the labels.
#' @param interactive a logical indicating whether variables can be switched
#' interactively (see \sQuote{Details}).
#' @param \dots for `pbox`, further arguments and graphical parameters to
#' be passed to [graphics::boxplot()] and other functions. For
#' `TKRpbox`, further arguments to be passed to `pbox`.
#' @return a list as returned by [graphics::boxplot()].
#' @note Some of the argument names and positions have changed with version 1.3
#' due to extended functionality and for more consistency with other plot
#' functions in `VIM`. For back compatibility, the arguments `names`
#' and `cex.text` can still be supplied to \code{\dots{}} and are handled
#' correctly. Nevertheless, they are deprecated and no longer documented. Use
#' `labels` and `cex.numbers` instead.
#' @author Andreas Alfons, Matthias Templ, modifications by Bernd Prantner
#' @seealso [parcoordMiss()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#'
#' data(chorizonDL, package = "VIM")
#' ## for missing values
#' pbox(log(chorizonDL[, c(4,5,8,10,11,16:17,19,25,29,37,38,40)]))
#'
#' ## for imputed values
#' pbox(kNN(log(chorizonDL[, c(4,8,10,11,17,19,25,29,37,38,40)])),
#' delimiter = "_imp")
#'
#' @export
pbox <- function(x, delimiter = NULL, pos = 1, selection = c("none","any","all"),
col = c("skyblue","red","red4","orange","orange4"), numbers = TRUE,
cex.numbers = par("cex"), xlim = NULL, ylim = NULL,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
axes = TRUE, frame.plot = axes, labels = axes,
interactive = TRUE, ...) {
check_data(x)
x <- as.data.frame(x)
# initializations and error messages
imputed <- FALSE # indicates if there are Variables with missing-index
if(is.null(dim(x))) { # vector
n <- length(x)
p <- 1
if(n == 0) stop("'x' must have positive length")
} else { # matrix or data.frame
if(!(inherits(x, c("data.frame","matrix")))) {
stop("'x' must be a data.frame or matrix")
}
##delimiterh ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
n <- nrow(x)
p <- ncol(x)
if(n == 0) stop("'x' has no rows")
else if(p == 0) stop("'x' has no columns")
if(is.null(colnames(x))) colnames(x) <- defaultNames(p)
}
if(p == 1) {
pos <- 1
interactive <- FALSE
} else {
if(!is.numeric(pos) || length(pos) != 1 ||(p < pos)) {
stop("'pos' must be an integer specifying one column of 'x' and must be lesser than the number of colums of 'x'")
}
if(p == 2) selection <- "none"
else selection <- match.arg(selection)
}
if(length(col) == 0) col = c("skyblue","red","red4","orange","orange4")
else if(length(col) == 1) col <- c("transparent", rep.int(col, 4))
else if(length(col) == 2 || length(col) == 4) col <- c(col, rep(col[2],3))
else if(length(col) != 5) col <- c(col[1],rep(col[2:3],2))
# define local function and initialize call
localBoxplot <- function(..., plot, log,
axes, frame.plot, horizontal, add) {
boxplot(..., add=TRUE, axes=FALSE)
}
ca <- as.call(list(localBoxplot, ...))
nmdots <- names(ca)[-1]
# back compatibility
if(missing(cex.numbers) && "cex.text" %in% nmdots) {
cex.numbers <- ca$cex.text
}
if(missing(labels) && "names" %in% nmdots) labels <- ca$names
# workhorse to create plot
createPlot <- function(main=NULL, sub=NULL,
xlab=NULL, ylab=NULL, labels=axes, at=NULL) {
# prepare data
if(is.null(dim(x))) {
xpos <- as.numeric(x)
cn <- ""
} else if(p == 1) {
xpos <- as.numeric(x[,1])
cn <- colnames(x) # default x-axis label
} else {
xpos <- as.numeric(x[, pos]) # plot variable
cn <- colnames(x)[pos] # default x-axis label
}
# count missings/imputed missings
if(p == 1) {
if(!imputed) nNA <- countNA(xpos)
else nNA <- countImp(x[, pos, drop = FALSE], delimiter, imp_var)
nh <- 0 # no highlight variables with missings
} else {
if(!imputed) nNA <- apply(x, 2, countNA)
else nNA <- countImp(x, delimiter, imp_var)
# number of highlight variables with missings
nh <- length(which(nNA[-pos] > 0))
}
# plot x-axis?
x.axis <- nh > 0
if(is.logical(labels)) {
if(is.na(labels) || !labels) x.axis <- FALSE
labels <- NULL
}
# get positions on x-axis for boxes
if(nh) {
if(selection == "none") {
xh <- x[, 1:p != pos & nNA > 0, drop=FALSE] # highlight vars
nb <- 1 + 2*nh # number of boxes to draw
ind1 <- seq(from=2, by=2, length.out=nh)
ind2 <- seq(from=3, by=2, length.out=nh)
ord <- order(c(1, ind1, ind2))
if(length(at) == 0) {
at1 <- (1:nh)*3
at2 <- (1:nh)*3+1
at <- c(1, at1, at2)[ord]
} else if(length(at) != nb) {
stop(gettextf("'at' must have length %i", nb))
}
if(length(labels) == 0) {
labels1 <- labels2 <- colnames(xh)
labels1 <- paste("obs. in", labels1)
if(!imputed) labels2 <- paste("miss. in", labels2)
else labels2 <- paste("imp. in", labels2)
labels <- c(cn, labels1, labels2)[ord]
} else if(length(labels) != nb) {
stop(gettextf("'labels' must have length %i", nb))
}
# indices of missings/imputed missings (for each variable that contains missings/imputed missings)
if(!imputed) i <- lapply(xh, function(x) is.na(x))
else {
tmp <- isImp(cbind(x[,pos, drop = FALSE],xh), pos = 1, delimiter, imp_var, selection)
i <- as.list(as.data.frame(tmp[["missh"]]))
misspos <- tmp[["misspos"]]
}
boxlist1 <- lapply(i, function(i,x) x[!i], xpos)
boxlist2 <- lapply(i, function(i,x) x[i], xpos)
boxlist <- c(list(xpos), boxlist1, boxlist2)[ord]
} else {
xh <- x[, -pos, drop=FALSE] # highlight vars
nb <- 3
if(length(at) == 0) at <- c(1, 3, 4)
else if(length(at) != 3) stop("'at' must have length 3")
if(length(labels) == 0) {
if(selection == "any") {
if(!imputed) labels <- c(cn, "all observed", "any missing")
else labels <- c(cn, "all observed", "any imputed")
} else {
if(!imputed) labels <- c(cn, "any observed", "all missing")
else labels <- c(cn, "any observed", "all imputed")
}
}
else if(length(labels) != 3) stop("'labels' must have length 3")
if(!imputed) i <- isNA(xh, selection) # indices of missings
else { # indices of imputed missings
tmp <- isImp(x, pos = pos, delimiter, imp_var, selection)
i <- tmp[["missh"]]
misspos <- tmp[["misspos"]]
}
boxlist <- list(xpos, observed=xpos[!i], missing=xpos[i])
}
} else {
nb <- 1
if(length(at) == 0) at <- 1
else if(length(at) != 1) stop("'at' must have length 1")
if(length(labels) == 0) labels <- cn
else if(length(labels) != 1) stop("'labels' must have length 1")
}
# lower margin might have to be adjusted
if(is.null(ca$mar)) {
mar <- par("mar")
if(x.axis && (is.null(ca$las) ||
(!is.null(ca$las) && ca$las %in% 2:3))) {
# missings in at least one of the highlight variables,
# hence we need to extend the lower plot margin
if(selection == "none") mar[1] <- mar[1] + 3
else mar[1] <- mar[1] + 1.5
}
} else mar <- ca$mar
op <- par(mar=mar)
on.exit(par(op))
# default axis limits
# if(is.null(xlim)) {
# if(!is.null(at)) xlim <- c(min(at)-0.5, max(at)+0.5)
# else xlim <- c(0.5, 1.5+nh*3)
# }
if(is.null(xlim)) xlim <- c(min(at)-0.5, max(at)+0.5)
# check for infinite values
iInf <- is.infinite(xpos) # indicates infinite values
anyInf <- any(iInf)
if(!imputed || nh == 0) misspos <- is.na(xpos)
allNAInf <- all(misspos | iInf)
if(anyInf) {
if(is.null(dim(x))) cnw <- "'x'"
else cnw <- paste("variable '", cn, "'", sep="")
warning(cnw, " contains infinite values")
}
if(is.null(ylim)) {
if(allNAInf) ylim <- rep.int(0, 2)
else if(anyInf) ylim <- range(xpos[!iInf], na.rm=TRUE)
else ylim <- range(xpos, na.rm=TRUE)
}
# initialize plot
initializeWindow <- function(..., range, notch, width,
varwidth, outline, names, plot, notch.frac, border,
frame.plot, horizontal, add, at, show.names, pars,
cex.text, col, bg, pch, cex, lty, lwd) {
plot.new()
plot.window(...)
}
initializeWindow(xlim, ylim, ...)
if(numbers){
if(nh) {
num <- lapply(boxlist, length)
if(!imputed) numNA <- lapply(boxlist, countNA)
else if(selection == "none") {
numNA1 <- lapply(i, function(i,x) length(which(x[!i])), misspos)
numNA2 <- lapply(i, function(i,x) length(which(x[i])), misspos)
numNA <- c(length(which(misspos)), numNA1, numNA2)[ord]
} else {
numNA <- list(length(which(misspos)), length(which(misspos[!i])), length(which(misspos[i])))
names(numNA) <- names(boxlist)
}
} else {
num <- n
numNA <- nNA[pos]
}
space.vert <- par("pin")[2]*0.05/1.1
num.ok <- prettyLabels(num, at, space.vert,
cex.numbers, rotate=rep(FALSE, nb), xlim=par("usr")[1:2])
numNA.ok <- prettyLabels(numNA, at, space.vert,
cex.numbers, rotate=rep(FALSE, nb), xlim=par("usr")[1:2])
if(!any(c(num.ok, numNA.ok))) {
numbers <- FALSE
warning("not enough space to display frequencies")
}
}
if(numbers) {
# define grid
# order of graphical parameters matters
op <- c(op, par(c("xlog", "ylog", "plt", "usr", "yaxp")))
plty <- c(op$plt[4] - diff(op$plt[3:4])/c(1, 1.1), op$plt[4])
# extend usr coordinates
gridy <- c(op$usr[3] - c(0.1, 0)*diff(op$usr[3:4]), op$usr[4])
op$usr <- c(op$usr[1:2], gridy[c(1,3)])
# set plot region for boxplots
par(plt=c(op$plt[1:2], plty[2:3]), usr=c(op$usr[1:2], gridy[2:3]))
}
if(!imputed){
colNum <- rep.int(col[1:2], nh)
colNA <- c(col[2], rep.int(col[2:3], nh))
} else {
colNum <- rep.int(col[c(1,4)], nh)
colNA <- c(col[4], rep.int(col[4:5], nh))
}
# create boxplots
if(allNAInf) b <- NULL
else {
if(nh) {
ca$x <- lapply(boxlist, function(x) x[!is.infinite(x)])
if(is.null(ca$varwidth)) ca$varwidth <- TRUE
ca$names <- labels
ca$col <- c("transparent", colNum)
ca$at <- at
b <- eval(ca)
} else {
ca$x <- xpos[!iInf]
ca$names <- labels
ca$col <- "transparent"
ca$at <- at
b <- eval(ca)
}
}
if(numbers) {
par(xlog=op$xlog, ylog=FALSE,
plt=op$plt, usr=c(op$usr[1:2], c(0,1.1)))
box(col="transparent") # reset clipping region
abline(h=0.1, col="lightgrey")
num[!num.ok] <- ""
text(at, 0.075, labels=num, cex=cex.numbers,
col=c(par("fg"), colNum))
numNA[!numNA.ok] <- ""
text(at, 0.025, labels=numNA, cex=cex.numbers,
col=colNA)
par(op[c("xlog", "ylog", "plt", "usr", "yaxp")]) # reset plot region
}
# axes and box
if(x.axis) {
localXAxis <- function(..., range, notch, width, varwidth,
outline, names, plot, notch.frac, log, border,
frame.plot, horizontal, add, show.names, pars,
cex.text, col, bg, pch, cex, lty, lwd) {
axis(..., lty=0)
}
dots <- list(...)
dots$side <- 1
dots$at <- at
dots$labels <- c("", labels[-1])
if(is.null(dots$line)) dots$line <- par("mgp")[3]
if(is.null(dots$las)) dots$las <- 3
if(dots$las %in% 2:3) {
space.vert <- (par("oma")[1]+par("mar")[1]-
dots$line-par("mgp")[2])*par("csi")
ok <- prettyLabels(dots$labels, dots$at,
space.vert, dots$cex.axis)
if(any(ok)) {
dots$at <- dots$at[ok]
dots$labels <- dots$labels[ok]
} else x.axis <- FALSE
}
}
if(x.axis) do.call(localXAxis, dots)
if(axes) {
localYAxis <- function(..., range, notch, width, varwidth,
outline, names, plot, notch.frac, log, border,
frame.plot, horizontal, add, at, show.names,
pars, cex.text, col, bg, pch, cex, lty, lwd) {
axis(...)
}
localYAxis(side=2, ...) # y-axis
}
if(frame.plot) {
localBox <- function(..., range, notch, width, varwidth,
outline, names, plot, notch.frac, log, border,
frame.plot, horizontal, add, at, show.names,
pars, cex.text, col, bg, pch, cex, lty, lwd) {
box(...)
}
localBox(...)
}
localTitle <- function(..., range, notch, width, varwidth,
outline, names, plot, notch.frac, log, border,
frame.plot, horizontal, add, at, show.names,
pars, cex.text, col, bg, pch, cex, lty, lwd) {
title(...)
}
if(is.null(ylab)) ylab <- cn
localTitle(main, sub, xlab, ylab, ...)
return(b)
}
b <- createPlot(main, sub, xlab, ylab, labels, ca$at)
# interactive features
interactiveDevices <- c("X11cairo","quartz","windows")
dev <- names(dev.cur())
if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
cat(paste("\nClick in in the left margin to switch to the previous",
"variable or in the right margin to switch to the next",
"variable.\n"))
cat(paste("To regain use of the VIM GUI and the R console,",
"click anywhere else in the graphics window.\n\n"))
usr <- par("usr")
pt <- locatorVIM()
while(!is.null(pt) && (pt$x < usr[1] || pt$x > usr[2])) {
if(pt$x < usr[1]) pos <- if(pos == 1) p else (pos - 1) %% p
else pos <- if(pos == p-1) p else (pos + 1) %% p
b <- createPlot(labels=if(is.logical(labels)) labels else axes)
usr <- par("usr")
pt <- locatorVIM()
}
}
invisible(b)
}
|