File: scattJitt.R

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (249 lines) | stat: -rw-r--r-- 10,963 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# ----------------------------------------------------------
# Authors: Matthias Templ, Bernd Prantner and Andreas Alfons
#          Vienna University of Technology
# ----------------------------------------------------------



#' Bivariate jitter plot
#' 
#' Create a bivariate jitter plot.
#' 
#' The amount of observed and missing/imputed values is visualized by jittered
#' points.  Thereby the plot region is divided into up to four regions
#' according to the existence of missing/imputed values in one or both
#' variables.  In addition, the amount of observed and missing/imputed values
#' can be represented by a number.
#' 
#' @param x a `data.frame` or `matrix` with two columns.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param col a vector of length five giving the colors to be used in the plot.
#' The first color will be used for complete observations, the second/fourth
#' color for missing/imputed values in only one variable, and the third/fifth
#' color for missing/imputed values in both variables.  If only one color is
#' supplied, it is used for all.  Else if two colors are supplied, the second
#' one is recycled.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`.  This can be used to prevent
#' overplotting.
#' @param cex the character expansion factor for the plot characters.
#' @param col.line the color for the lines dividing the plot region.
#' @param lty the line type for the lines dividing the plot region (see
#' [graphics::par()]).
#' @param lwd the line width for the lines dividing the plot region.
#' @param numbers a logical indicating whether the frequencies of observed and
#' missing/imputed values should be displayed (see \sQuote{Details}).
#' @param cex.numbers the character expansion factor to be used for the
#' frequencies of the observed and missing/imputed values.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param axes a logical indicating whether both axes should be drawn on the
#' plot.  Use graphical parameter `"xaxt"` or `"yaxt"` to suppress
#' just one of the axes.
#' @param frame.plot a logical indicating whether a box should be drawn around
#' the plot.
#' @param labels a vector of length three giving the axis labels for the
#' regions for observed, missing and imputed values (see \sQuote{Details}).
#' @param \dots further graphical parameters to be passed down (see
#' [graphics::par()]).
#' @note Some of the argument names and positions have changed with version 1.3
#' due to extended functionality and for more consistency with other plot
#' functions in `VIM`.  For back compatibility, the argument
#' `cex.text` can still be supplied to \code{\dots{}} and is handled
#' correctly.  Nevertheless, it is deprecated and no longer documented.  Use
#' `cex.numbers` instead.
#' @author Matthias Templ, modifications by Andreas Alfons and Bernd Prantner
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools.  *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#' 
#' data(tao, package = "VIM")
#' ## for missing values
#' scattJitt(tao[, c("Air.Temp", "Humidity")])
#' 
#' ## for imputed values
#' scattJitt(kNN(tao[, c("Air.Temp", "Humidity")]), delimiter = "_imp")
#' 
#' @export scattJitt
scattJitt <- function(x, delimiter = NULL, col = c("skyblue","red","red4","orange","orange4"),
		alpha = NULL, cex = par("cex"), col.line = "lightgrey", 
        lty = "dashed", lwd = par("lwd"), 
        numbers = TRUE, cex.numbers = par("cex"), 
        main = NULL, sub = NULL, xlab = NULL, 
        ylab = NULL, axes = TRUE, frame.plot = axes, 
        labels = c("observed","missing","imputed"), ...) {
    # back compatibility
    dots <- list(...)
    nmdots <- names(dots)
    if(missing(cex.numbers) && "cex.text" %in% nmdots) {
        cex.numbers <- dots$cex.text
    }
    # error messages
    if(!(inherits(x,c("data.frame","matrix")))) {
        stop("'x' must be a data.frame or matrix")
    }
	imputed <- FALSE # indicates if there are Variables with missing-index
	## delimiter ##
	if(!is.null(delimiter)) {
		tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
		if(length(tmp) > 0) {
			imp_var <- x[, tmp, drop=FALSE]
			x <- x[, -tmp, drop=FALSE]
			
			if(ncol(x) == 0) stop("Only the missing-index is given")
			if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
			
			if(is.null(dim(imp_var))) {
				if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
			} else {
				if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")	
			}
			imputed <- TRUE
		} else {
			warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
		}
	}
	if(ncol(x) != 2) stop("'x' must be 2-dimensional")
    if(length(col) == 0) col <- c("skyblue","red","red4","orange","orange4")
    else if(length(col) == 1) col <- rep.int(col, 5)
    else if(length(col) == 2 || length(col) == 4) col <- c(col, rep(col[2],3))
	else if(length(col) != 5) col <- c(col[1],rep(col[2:3],2))
    if(length(labels)  == 0) {
		if(!imputed) labels <- c("observed","missing")
		else labels <- c("observed","imputed")
	}
    else if(length(labels) == 1) stop("'labels' must be a vector of length 2 or 3")
    else if(length(labels) > 2) {
		if(!imputed) labels <- labels[1:2]
		else labels <- labels[c(1,3)]
	}
    # semitransparent colors
    if(!is.null(alpha)) col <- alphablend(col, alpha)  
    # get number of complete observations and missings
    nobs <- nrow(na.omit(x))
    if(!imputed) {
		nmissx <- countNA(x[,1])
    	nmissy <- countNA(x[,2])
    	nmissall <- length(which(isNA(x, "all")))
	} else {
		nmiss <- countImp(x, delimiter, imp_var)
		nmissx <- nmiss[1]
		nmissy <- nmiss[2]
		nmissall <- length(which(isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = "all")[["missh"]]))
	}
    z <- cbind(
        x=jitter(rep(c(-1,1,-1,1), c(nobs,nmissx,nmissy,nmissall)), amount=0.7), 
        y=jitter(rep(c(-1,-1,1,1), c(nobs,nmissx,nmissy,nmissall)), amount=0.7))
    if(is.null(colnames(x))) {
        if(is.null(xlab)) xlab <- ""
        if(is.null(ylab)) ylab <- ""
    } else colnames(z) <- colnames(x)
    plot.xaxis <- if(is.null(dots$xaxt)) axes else dots$xaxt != "n" && axes
    plot.yaxis <- if(is.null(dots$yaxt)) axes else dots$yaxt != "n" && axes
    if(nmissx && nmissy) {  # missings in both variables
        if(!imputed) col <- col[1:3]
		else col <- col[c(1,4,5)]
		col <- rep(col,c(nobs, nmissx+nmissy, nmissall))
        localPlot <- function(..., cex.text, type, 
                xlim, ylim, log, axes, frame.plot, 
                panel.first, panel.last, asp) {
            plot(..., xlim=c(-1.7,1.7), ylim=c(-1.7,1.7), axes=FALSE)
        }
        localPlot(z, col=col, cex=cex, main=main, 
            sub=sub, xlab=xlab, ylab=ylab, ...)
        abline(h=0, col=col.line, lty=lty, lwd=lwd)
        abline(v=0, col=col.line, lty=lty, lwd=lwd)
        if(numbers) {  # display numbers
            text(x=rep(-0.1,2), y=c(-0.15,0.15), labels=c(nobs,nmissy), 
                adj=c(1,0.5), cex=cex.numbers)
            text(x=rep(0.1,2), y=c(-0.15,0.15), labels=c(nmissx,nmissall), 
                adj=c(0,0.5), cex=cex.numbers)
        }
        # arguments for axis
        x.at <- c(-0.9,0.9)
        x.labels <- labels
        y.at <- c(-0.9,0.9)
        y.labels=labels
    } else if(nmissx && !nmissy) {  # missings only in x-variable
        if(!imputed) col <- col[1:2]
		else col <- col[c(1,4)]
		col <- rep(col,c(nobs, nmissx))
        localPlot <- function(..., cex.text, type, 
                xlim, ylim, log, axes, frame.plot, 
                panel.first, panel.last, asp) {
            plot(..., xlim=c(-1.7,1.7), ylim=c(-1.7,-0.3), axes=FALSE)
        }
        localPlot(z, col=col, cex=cex, main=main, 
            sub=sub, xlab=xlab, ylab=ylab, ...)
        abline(v=0, col=col.line, lty=lty, lwd=lwd)
        if(numbers) {  # display numbers
            text(x=-0.1, y=-1, labels=nobs, adj=c(1,0.5), cex=cex.numbers)
            text(x=0.1, y=-1, labels=nmissx, adj=c(0,0.5), cex=cex.numbers)
        }
        # arguments for axis
        x.at <- c(-0.9,0.9)
        x.labels <- labels
        y.at <- -1
        y.labels=labels[1]
    } else if(!nmissx && nmissy) {  # missings only in y-variable
		if(!imputed) col <- col[1:2]
		else col <- col[c(1,4)]
		col <- rep(col,c(nobs, nmissy))
        localPlot <- function(..., cex.text, type, 
                xlim, ylim, log, axes, frame.plot, 
                panel.first, panel.last, asp) {
            plot(..., xlim=c(-1.7,-0.3), ylim=c(-1.7,1.7), axes=FALSE)
        }
        localPlot(z, col=col, cex=cex, main=main, 
            sub=sub, xlab=xlab, ylab=ylab, ...)
        abline(h=0, col=col.line, lty=lty, lwd=lwd)
        if(numbers) {  # display numbers
            text(x=-1, y=-0.15, labels=nobs, adj=c(0.5,0.5), cex=cex.numbers)
            text(x=-1, y=0.15, labels=nmissy, adj=c(0.5,0.5), cex=cex.numbers)
        }
        # arguments for axis
        x.at <- -1
        x.labels <- labels[1]
        y.at <- c(-0.9,0.9)
        y.labels=labels
    } else {  # no missings
    	col <- col[1]
        localPlot <- function(..., cex.text, type, 
            xlim, ylim, log, axes, frame.plot, 
            panel.first, panel.last, asp) {
            plot(..., xlim=c(-1.7,-0.3), ylim=c(-1.7,-0.3), axes=FALSE)
        }
        localPlot(z, col=col, cex=cex, main=main, 
            sub=sub, xlab=xlab, ylab=ylab, ...)
        # arguments for axis
        x.at <- -1
        x.labels <- labels[1]
        y.at <- -1
        y.labels=labels[1]
    }
    localAxis <- function(..., cex.text, type, xlim, 
            ylim, log, ann, panel.first, panel.last,
            asp, col, bg, pch, cex, lty, lwd) {
        axis(..., lty=0)
    }
    if(plot.xaxis) localAxis(side=1, at=x.at, labels=x.labels, ...)
    if(plot.yaxis) localAxis(side=2, at=y.at, labels=y.labels, ...)
    if(frame.plot) {
        localBox <- function(..., cex.text, type, xlim, 
                ylim, log, ann, panel.first, panel.last,
                asp, col, bg, pch, cex, lty, lwd) {
            box(...)
        }
        localBox()
    }
    invisible()
}