1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
# ----------------------------------------------------------
# Authors: Matthias Templ, Bernd Prantner and Andreas Alfons
# Vienna University of Technology
# ----------------------------------------------------------
#' Bivariate jitter plot
#'
#' Create a bivariate jitter plot.
#'
#' The amount of observed and missing/imputed values is visualized by jittered
#' points. Thereby the plot region is divided into up to four regions
#' according to the existence of missing/imputed values in one or both
#' variables. In addition, the amount of observed and missing/imputed values
#' can be represented by a number.
#'
#' @param x a `data.frame` or `matrix` with two columns.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param col a vector of length five giving the colors to be used in the plot.
#' The first color will be used for complete observations, the second/fourth
#' color for missing/imputed values in only one variable, and the third/fifth
#' color for missing/imputed values in both variables. If only one color is
#' supplied, it is used for all. Else if two colors are supplied, the second
#' one is recycled.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`. This can be used to prevent
#' overplotting.
#' @param cex the character expansion factor for the plot characters.
#' @param col.line the color for the lines dividing the plot region.
#' @param lty the line type for the lines dividing the plot region (see
#' [graphics::par()]).
#' @param lwd the line width for the lines dividing the plot region.
#' @param numbers a logical indicating whether the frequencies of observed and
#' missing/imputed values should be displayed (see \sQuote{Details}).
#' @param cex.numbers the character expansion factor to be used for the
#' frequencies of the observed and missing/imputed values.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param axes a logical indicating whether both axes should be drawn on the
#' plot. Use graphical parameter `"xaxt"` or `"yaxt"` to suppress
#' just one of the axes.
#' @param frame.plot a logical indicating whether a box should be drawn around
#' the plot.
#' @param labels a vector of length three giving the axis labels for the
#' regions for observed, missing and imputed values (see \sQuote{Details}).
#' @param \dots further graphical parameters to be passed down (see
#' [graphics::par()]).
#' @note Some of the argument names and positions have changed with version 1.3
#' due to extended functionality and for more consistency with other plot
#' functions in `VIM`. For back compatibility, the argument
#' `cex.text` can still be supplied to \code{\dots{}} and is handled
#' correctly. Nevertheless, it is deprecated and no longer documented. Use
#' `cex.numbers` instead.
#' @author Matthias Templ, modifications by Andreas Alfons and Bernd Prantner
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#'
#' data(tao, package = "VIM")
#' ## for missing values
#' scattJitt(tao[, c("Air.Temp", "Humidity")])
#'
#' ## for imputed values
#' scattJitt(kNN(tao[, c("Air.Temp", "Humidity")]), delimiter = "_imp")
#'
#' @export scattJitt
scattJitt <- function(x, delimiter = NULL, col = c("skyblue","red","red4","orange","orange4"),
alpha = NULL, cex = par("cex"), col.line = "lightgrey",
lty = "dashed", lwd = par("lwd"),
numbers = TRUE, cex.numbers = par("cex"),
main = NULL, sub = NULL, xlab = NULL,
ylab = NULL, axes = TRUE, frame.plot = axes,
labels = c("observed","missing","imputed"), ...) {
# back compatibility
dots <- list(...)
nmdots <- names(dots)
if(missing(cex.numbers) && "cex.text" %in% nmdots) {
cex.numbers <- dots$cex.text
}
# error messages
if(!(inherits(x,c("data.frame","matrix")))) {
stop("'x' must be a data.frame or matrix")
}
imputed <- FALSE # indicates if there are Variables with missing-index
## delimiter ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
if(ncol(x) != 2) stop("'x' must be 2-dimensional")
if(length(col) == 0) col <- c("skyblue","red","red4","orange","orange4")
else if(length(col) == 1) col <- rep.int(col, 5)
else if(length(col) == 2 || length(col) == 4) col <- c(col, rep(col[2],3))
else if(length(col) != 5) col <- c(col[1],rep(col[2:3],2))
if(length(labels) == 0) {
if(!imputed) labels <- c("observed","missing")
else labels <- c("observed","imputed")
}
else if(length(labels) == 1) stop("'labels' must be a vector of length 2 or 3")
else if(length(labels) > 2) {
if(!imputed) labels <- labels[1:2]
else labels <- labels[c(1,3)]
}
# semitransparent colors
if(!is.null(alpha)) col <- alphablend(col, alpha)
# get number of complete observations and missings
nobs <- nrow(na.omit(x))
if(!imputed) {
nmissx <- countNA(x[,1])
nmissy <- countNA(x[,2])
nmissall <- length(which(isNA(x, "all")))
} else {
nmiss <- countImp(x, delimiter, imp_var)
nmissx <- nmiss[1]
nmissy <- nmiss[2]
nmissall <- length(which(isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = "all")[["missh"]]))
}
z <- cbind(
x=jitter(rep(c(-1,1,-1,1), c(nobs,nmissx,nmissy,nmissall)), amount=0.7),
y=jitter(rep(c(-1,-1,1,1), c(nobs,nmissx,nmissy,nmissall)), amount=0.7))
if(is.null(colnames(x))) {
if(is.null(xlab)) xlab <- ""
if(is.null(ylab)) ylab <- ""
} else colnames(z) <- colnames(x)
plot.xaxis <- if(is.null(dots$xaxt)) axes else dots$xaxt != "n" && axes
plot.yaxis <- if(is.null(dots$yaxt)) axes else dots$yaxt != "n" && axes
if(nmissx && nmissy) { # missings in both variables
if(!imputed) col <- col[1:3]
else col <- col[c(1,4,5)]
col <- rep(col,c(nobs, nmissx+nmissy, nmissall))
localPlot <- function(..., cex.text, type,
xlim, ylim, log, axes, frame.plot,
panel.first, panel.last, asp) {
plot(..., xlim=c(-1.7,1.7), ylim=c(-1.7,1.7), axes=FALSE)
}
localPlot(z, col=col, cex=cex, main=main,
sub=sub, xlab=xlab, ylab=ylab, ...)
abline(h=0, col=col.line, lty=lty, lwd=lwd)
abline(v=0, col=col.line, lty=lty, lwd=lwd)
if(numbers) { # display numbers
text(x=rep(-0.1,2), y=c(-0.15,0.15), labels=c(nobs,nmissy),
adj=c(1,0.5), cex=cex.numbers)
text(x=rep(0.1,2), y=c(-0.15,0.15), labels=c(nmissx,nmissall),
adj=c(0,0.5), cex=cex.numbers)
}
# arguments for axis
x.at <- c(-0.9,0.9)
x.labels <- labels
y.at <- c(-0.9,0.9)
y.labels=labels
} else if(nmissx && !nmissy) { # missings only in x-variable
if(!imputed) col <- col[1:2]
else col <- col[c(1,4)]
col <- rep(col,c(nobs, nmissx))
localPlot <- function(..., cex.text, type,
xlim, ylim, log, axes, frame.plot,
panel.first, panel.last, asp) {
plot(..., xlim=c(-1.7,1.7), ylim=c(-1.7,-0.3), axes=FALSE)
}
localPlot(z, col=col, cex=cex, main=main,
sub=sub, xlab=xlab, ylab=ylab, ...)
abline(v=0, col=col.line, lty=lty, lwd=lwd)
if(numbers) { # display numbers
text(x=-0.1, y=-1, labels=nobs, adj=c(1,0.5), cex=cex.numbers)
text(x=0.1, y=-1, labels=nmissx, adj=c(0,0.5), cex=cex.numbers)
}
# arguments for axis
x.at <- c(-0.9,0.9)
x.labels <- labels
y.at <- -1
y.labels=labels[1]
} else if(!nmissx && nmissy) { # missings only in y-variable
if(!imputed) col <- col[1:2]
else col <- col[c(1,4)]
col <- rep(col,c(nobs, nmissy))
localPlot <- function(..., cex.text, type,
xlim, ylim, log, axes, frame.plot,
panel.first, panel.last, asp) {
plot(..., xlim=c(-1.7,-0.3), ylim=c(-1.7,1.7), axes=FALSE)
}
localPlot(z, col=col, cex=cex, main=main,
sub=sub, xlab=xlab, ylab=ylab, ...)
abline(h=0, col=col.line, lty=lty, lwd=lwd)
if(numbers) { # display numbers
text(x=-1, y=-0.15, labels=nobs, adj=c(0.5,0.5), cex=cex.numbers)
text(x=-1, y=0.15, labels=nmissy, adj=c(0.5,0.5), cex=cex.numbers)
}
# arguments for axis
x.at <- -1
x.labels <- labels[1]
y.at <- c(-0.9,0.9)
y.labels=labels
} else { # no missings
col <- col[1]
localPlot <- function(..., cex.text, type,
xlim, ylim, log, axes, frame.plot,
panel.first, panel.last, asp) {
plot(..., xlim=c(-1.7,-0.3), ylim=c(-1.7,-0.3), axes=FALSE)
}
localPlot(z, col=col, cex=cex, main=main,
sub=sub, xlab=xlab, ylab=ylab, ...)
# arguments for axis
x.at <- -1
x.labels <- labels[1]
y.at <- -1
y.labels=labels[1]
}
localAxis <- function(..., cex.text, type, xlim,
ylim, log, ann, panel.first, panel.last,
asp, col, bg, pch, cex, lty, lwd) {
axis(..., lty=0)
}
if(plot.xaxis) localAxis(side=1, at=x.at, labels=x.labels, ...)
if(plot.yaxis) localAxis(side=2, at=y.at, labels=y.labels, ...)
if(frame.plot) {
localBox <- function(..., cex.text, type, xlim,
ylim, log, ann, panel.first, panel.last,
asp, col, bg, pch, cex, lty, lwd) {
box(...)
}
localBox()
}
invisible()
}
|