File: scattMiss.R

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (293 lines) | stat: -rw-r--r-- 13,712 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# ---------------------------------------
# Author: Andreas Alfons, Bernd Prantner
#         Vienna University of Technology
# ---------------------------------------



#' Scatterplot with information about missing/imputed values
#' 
#' In addition to a standard scatterplot, lines are plotted for the missing
#' values in one variable. If there are imputed values, they will be
#' highlighted.
#' 
#' Information about missing values in one variable is included as vertical or
#' horizontal lines, as determined by the `side` argument.  The lines are
#' thereby drawn at the observed x- or y-value. In case of imputed values, they
#' will additionally be highlighted in the scatterplot. Supplementary,
#' percentage coverage ellipses can be drawn to give a clue about the shape of
#' the bivariate data distribution.
#' 
#' If `interactive`is `TRUE`, clicking in the bottom margin redraws
#' the plot with information about missing/imputed values in the first variable
#' and clicking in the left margin redraws the plot with information about
#' missing/imputed values in the second variable.  Clicking anywhere else in
#' the plot quits the interactive session.
#' 
#' @param x a `matrix` or `data.frame` with two columns.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param side if `side=1`, a rug representation and vertical lines are
#' plotted for the missing/imputed values in the second variable; if
#' `side=2`, a rug representation and horizontal lines for the
#' missing/imputed values in the first variable.
#' @param col a vector of length four giving the colors to be used in the plot.
#' The first color is used for the scatterplot, the second/third color for the
#' rug representation for missing/imputed values. The second color is also used
#' for the lines for missing values. Imputed values will be highlighted with
#' the third color, and the fourth color is used for the ellipses (see
#' \sQuote{Details}). If only one color is supplied, it is used for the
#' scatterplot, the rug representation and the lines, whereas the default color
#' is used for the ellipses.  Else if a vector of length two is supplied, the
#' default color is used for the ellipses as well.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`.  This can be used to prevent
#' overplotting.
#' @param lty a vector of length two giving the line types for the lines and
#' ellipses.  If a single value is supplied, it will be used for both.
#' @param lwd a vector of length two giving the line widths for the lines and
#' ellipses.  If a single value is supplied, it will be used for both.
#' @param quantiles a vector giving the quantiles of the chi-square
#' distribution to be used for the tolerance ellipses, or `NULL` to
#' suppress plotting ellipses (see \sQuote{Details}).
#' @param inEllipse plot lines only inside the largest ellipse.  Ignored if
#' `quantiles` is `NULL` or if there are imputed values.
#' @param zeros a logical vector of length two indicating whether the variables
#' are semi-continuous, i.e., contain a considerable amount of zeros.  If
#' `TRUE`, only the non-zero observations are used for computing the
#' tolerance ellipses.  If a single logical is supplied, it is recycled.
#' Ignored if `quantiles` is `NULL`.
#' @param xlim,ylim axis limits.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param interactive a logical indicating whether the `side` argument can
#' be changed interactively (see \sQuote{Details}).
#' @param \dots further graphical parameters to be passed down (see
#' [graphics::par()]).
#' @note The argument `zeros` has been introduced in version 1.4. As a
#' result, some of the argument positions have changed.
#' @author Andreas Alfons, modifications by Bernd Prantner
#' @seealso [marginplot()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools.  *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#' 
#' data(tao, package = "VIM")
#' ## for missing values
#' scattMiss(tao[,c("Air.Temp", "Humidity")])
#' 
#' ## for imputed values
#' scattMiss(kNN(tao[,c("Air.Temp", "Humidity")]), delimiter = "_imp")
#' 
#' @export scattMiss
scattMiss <- function(x, delimiter = NULL, side = 1, col = c("skyblue","red","orange","lightgrey"), 
        alpha = NULL, lty = c("dashed","dotted"), 
        lwd = par("lwd"), quantiles = c(0.5, 0.975), 
        inEllipse = FALSE, zeros = FALSE, 
        xlim = NULL, ylim = NULL, main = NULL, 
        sub = NULL, xlab = NULL, ylab = NULL, 
        interactive = TRUE, ...) {
    # error messages
    if(!(inherits(x, c("data.frame","matrix")))) {
        stop("'x' must be a data.frame or matrix")
    }
	imputed <- FALSE # indicates if there are Variables with missing-index
	## delimiter ##
	if(!is.null(delimiter)) {
		tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
		if(length(tmp) > 0) {
			imp_var <- x[, tmp, drop=FALSE]
			x <- x[, -tmp, drop=FALSE]
			
			if(ncol(x) == 0) stop("Only the missing-index is given")
			if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
			
			if(is.null(dim(imp_var))) {
				if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
			} else {
				if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")	
			}
			imputed <- TRUE
		} else {
			warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
		}
	}
    if(ncol(x) != 2) stop("'x' must be 2-dimensional")
    if(length(col) == 0) col <- c("skyblue","red","orange","lightgrey")
    else if(length(col) == 1) col <- c(rep.int(col, 3), "lightgrey")
    else if(length(col) == 2) col <- c(rep(col,1:2), "lightgrey")
    else if(length(col) == 3) col <- c(col,"lightgrey")
    else if(length(col) != 4) stop("'col' must be a vector of length 3 or 4")
    if(length(side) == 0) s <- 1
    else {
        s <- side[1]
        if(!(s %in% 1:2)) stop("'side' must be 1 or 2")
    }
    if(length(lty) == 0) lty <- c("dashed","dotted")
    else if(length(lty) == 1) lty <- rep.int(lty, 2)
    else if(length(lty) > 2) lty <- lty[1:2]
    if(length(lwd) == 0) lwd <- rep.int(par("lwd"), 2)
    else if(length(lwd) == 1) lwd <- rep.int(lwd, 2)
    else if(length(lwd) > 2) lwd <- lwd[1:2]
    if(!is.logical(zeros) || length(zeros) == 0) zeros <- FALSE
    zeros <- rep(sapply(zeros, isTRUE), length.out=2)
    # prepare data
    if(is.data.frame(x)) x <- data.matrix(x)
    else if(mode(x) != "numeric") mode(x) <- "numeric"
    iInf <- apply(x, 1, function(x) any(is.infinite(x)))
    if(any(iInf)) {
        x <- x[!iInf, , drop=FALSE]
        warning("'x' contains infinite values")
    }
    # default axis labels
    if(is.null(colnames(x))) {
        if(is.null(xlab)) xlab <- ""
        if(is.null(ylab)) ylab <- ""
    }
    # semitransparent colors
    if(!is.null(alpha)) col <- alphablend(col, alpha)
    # count missings
    n <- nrow(x)
	if(!imputed) {
		nNA <- apply(x, 2, countNA)
	} else {
		nNA <- countImp(x, delimiter, imp_var)
	} 
    plot.ellipse <- !is.null(quantiles) && all(n - nNA > 2)
    createPlot <- function() {
        if(is.null(xlim) && nNA[1] == n) xlim <- rep.int(0, 2)
        if(is.null(ylim) && nNA[2] == n) ylim <- rep.int(0, 2)
        sm <- s %% 2 + 1
        if(nNA[sm]) {  # missings in other variable
            if(plot.ellipse) {
                # define ellipse
                xMcd <- x
                if(zeros[1]) xMcd <- xMcd[xMcd[,1] != 0,]
                if(zeros[2]) xMcd <- xMcd[xMcd[,2] != 0,]
                cov <- covMcd(xMcd, alpha=0.75)
                cen <- cov$cen
                cov <- cov$cov
                cov.svd <- svd(cov, nv=0)
                r <- cov.svd[["u"]] %*% diag(sqrt(cov.svd[["d"]]))
                t <- 2*pi*(0:100)/100  # parameter for ellipse
                qch <- qchisq(quantiles, 2)  # quantiles of qchisquare dist.
                getEll <- function(q, t, r, cen) {
                    e <- cbind(cos(t) * sqrt(q), sin(t) * sqrt(q))
                    t(r %*% t(e)) + rep(1, 101) %o% cen
                }
                tt <- sapply(qch, getEll, t, r, cen, simplify=FALSE)
                ttmax <- tt[[which.max(quantiles)]]
                # axis limits
                if(is.null(xlim)) {
                    xlim <- range(c(x[,1], ttmax[,1]), na.rm=TRUE)
                }
                if(is.null(ylim)) {
                    ylim <- range(c(x[,2], ttmax[,2]), na.rm=TRUE)
                }
            }
			if(!imputed) miss <- is.na(x)
			else {
				tmp <- isImp(x, pos = 1, delimiter = delimiter, imp_var = imp_var, selection = "none")
				miss <- cbind(tmp[["misspos"]],tmp[["missh"]])
			}
            xsmiss <- x[!miss[,s] & miss[,sm], s]
			localPlot <- function(..., type, plot.first, plot.last) {
                plot(..., 
                    panel.first={
                        if(plot.ellipse) # plot ellipses
                            for(t in tt) lines(t[,1], t[,2], col=col[4], 
                                    lty=lty[2], lwd=lwd[2])
                        # plot points instead of lines when imputed values exist 
						if(!imputed) {
							if(plot.ellipse && inEllipse) {
	                            xsell <- xsmiss[min(ttmax[,s]) <= xsmiss & 
	                                    xsmiss <= max(ttmax[,s])]
	                            if(length(xsell)) {
	                                rho <- cov[1,2]/sqrt(cov[1,1]*cov[2,2])
	                                phalf <- rho*sqrt(cov[sm,sm])*
	                                    (xsell-cen[s])/sqrt(cov[s,s])
	                                q <- cov[sm,sm]*((xsell-cen[s])^2/cov[s,s]-
	                                        (1-rho^2)*qch[length(qch)])
	                                z <- rbind(phalf + sqrt(phalf^2-q), 
	                                    phalf - sqrt(phalf^2-q))
	                                xsmell <- z + cen[sm]
	                                xsell <- as.vector(rbind(xsell, xsell, 
	                                        rep(NA, length(xsell))))
	                                xsmell <- as.vector(rbind(xsmell, 
	                                        rep(NA, ncol(xsmell))))
	                                if(s == 1) lines(xsell, xsmell, col=col[2], 
	                                        lty=lty[1], lwd=lwd[1])
	                                else lines(xsmell, xsell, col=col[2], 
	                                        lty=lty[1], lwd=lwd[1])
	                            }
	                        } else {
	                            if(s == 1) {
	                                abline(v=xsmiss, col=col[2], 
	                                    lty=lty[1], lwd=lwd[1])
	                            } else {
	                                abline(h=xsmiss, col=col[2], 
	                                    lty=lty[1], lwd=lwd[1])
	                            }
	                        }
						}
                    })
            }
        } else {
            localPlot <- function(..., type, plot.first, plot.last) plot(...)
            rugNA(x[,1], x[, 2], miss = miss, side=s, col=ifelse(!imputed,col[2],col[3]))
        }
        localPlot(x, col=col[1], xlim=xlim, ylim=ylim, 
            main=main, sub=sub, xlab=xlab, ylab=ylab, ...)
		# plot points instead of lines when imputed values exist	
		if(!imputed) miss <- NULL
		else {
		  points(x[miss[,sm],], col=col[3])
		  # fix bug - in case there are still some NA after imputation
		  indices <- which(!is.na(x[miss[,sm],2]))
		  if(s == 1) {
		    abline(v=xsmiss[-indices], col=col[2], 
		           lty=lty[1], lwd=lwd[1])
		  } else {
		    abline(h=xsmiss[-indices], col=col[2], 
		           lty=lty[1], lwd=lwd[1])
		  }
		  indices1 <- which(miss[,2]==TRUE & is.na(x[,2]))
		  indices2 <- which(miss[,2]==TRUE & !is.na(x[,2]))
		  miss1 <- miss2 <- miss
		  miss1[indices1,2] <- FALSE
		  miss2[indices2,2] <- FALSE
		  rugNA(x[, 1], x[, 2], miss = miss1, side=s, col=col[3])
		  rugNA(x[, 1], x[, 2], miss = miss2, side=s, col=col[2])
		}
    #####
		#rugNA(x[,1], x[, 2], miss = miss, side=s, col=ifelse(!imputed,col[2],col[3]))
    }
    createPlot()
    dev <- names(dev.cur())
    interactiveDevices <- c("X11","quartz","windows")
    if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
        cat(paste("\nClick in bottom or left margin to",
                "change the 'side' argument accordingly.\n"))
        cat(paste("To regain use of the VIM GUI and the R console,",
                "click anywhere else in the graphics window.\n\n"))
        usr <- par("usr")
        pt <- locatorVIM()
        while(!is.null(pt) && 
            ((usr[1] <= pt$x && pt$x <= usr[2] && pt$y < usr[3]) || 
                (pt$x < usr[1] && usr[3] <= pt$y && pt$y <= usr[4]))) {
            s <- if(usr[1] <= pt$x && pt$x <= usr[2] && pt$y < usr[3]) 1 else 2
            createPlot()
            usr <- par("usr")
            pt <- locatorVIM()
        }
    }
    invisible()
}