1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
# ---------------------------------------
# Author: Andreas Alfons, Bernd Prantner
# Vienna University of Technology
# ---------------------------------------
#' Scatterplot with information about missing/imputed values
#'
#' In addition to a standard scatterplot, lines are plotted for the missing
#' values in one variable. If there are imputed values, they will be
#' highlighted.
#'
#' Information about missing values in one variable is included as vertical or
#' horizontal lines, as determined by the `side` argument. The lines are
#' thereby drawn at the observed x- or y-value. In case of imputed values, they
#' will additionally be highlighted in the scatterplot. Supplementary,
#' percentage coverage ellipses can be drawn to give a clue about the shape of
#' the bivariate data distribution.
#'
#' If `interactive`is `TRUE`, clicking in the bottom margin redraws
#' the plot with information about missing/imputed values in the first variable
#' and clicking in the left margin redraws the plot with information about
#' missing/imputed values in the second variable. Clicking anywhere else in
#' the plot quits the interactive session.
#'
#' @param x a `matrix` or `data.frame` with two columns.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param side if `side=1`, a rug representation and vertical lines are
#' plotted for the missing/imputed values in the second variable; if
#' `side=2`, a rug representation and horizontal lines for the
#' missing/imputed values in the first variable.
#' @param col a vector of length four giving the colors to be used in the plot.
#' The first color is used for the scatterplot, the second/third color for the
#' rug representation for missing/imputed values. The second color is also used
#' for the lines for missing values. Imputed values will be highlighted with
#' the third color, and the fourth color is used for the ellipses (see
#' \sQuote{Details}). If only one color is supplied, it is used for the
#' scatterplot, the rug representation and the lines, whereas the default color
#' is used for the ellipses. Else if a vector of length two is supplied, the
#' default color is used for the ellipses as well.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`. This can be used to prevent
#' overplotting.
#' @param lty a vector of length two giving the line types for the lines and
#' ellipses. If a single value is supplied, it will be used for both.
#' @param lwd a vector of length two giving the line widths for the lines and
#' ellipses. If a single value is supplied, it will be used for both.
#' @param quantiles a vector giving the quantiles of the chi-square
#' distribution to be used for the tolerance ellipses, or `NULL` to
#' suppress plotting ellipses (see \sQuote{Details}).
#' @param inEllipse plot lines only inside the largest ellipse. Ignored if
#' `quantiles` is `NULL` or if there are imputed values.
#' @param zeros a logical vector of length two indicating whether the variables
#' are semi-continuous, i.e., contain a considerable amount of zeros. If
#' `TRUE`, only the non-zero observations are used for computing the
#' tolerance ellipses. If a single logical is supplied, it is recycled.
#' Ignored if `quantiles` is `NULL`.
#' @param xlim,ylim axis limits.
#' @param main,sub main and sub title.
#' @param xlab,ylab axis labels.
#' @param interactive a logical indicating whether the `side` argument can
#' be changed interactively (see \sQuote{Details}).
#' @param \dots further graphical parameters to be passed down (see
#' [graphics::par()]).
#' @note The argument `zeros` has been introduced in version 1.4. As a
#' result, some of the argument positions have changed.
#' @author Andreas Alfons, modifications by Bernd Prantner
#' @seealso [marginplot()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools. *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#'
#' data(tao, package = "VIM")
#' ## for missing values
#' scattMiss(tao[,c("Air.Temp", "Humidity")])
#'
#' ## for imputed values
#' scattMiss(kNN(tao[,c("Air.Temp", "Humidity")]), delimiter = "_imp")
#'
#' @export scattMiss
scattMiss <- function(x, delimiter = NULL, side = 1, col = c("skyblue","red","orange","lightgrey"),
alpha = NULL, lty = c("dashed","dotted"),
lwd = par("lwd"), quantiles = c(0.5, 0.975),
inEllipse = FALSE, zeros = FALSE,
xlim = NULL, ylim = NULL, main = NULL,
sub = NULL, xlab = NULL, ylab = NULL,
interactive = TRUE, ...) {
# error messages
if(!(inherits(x, c("data.frame","matrix")))) {
stop("'x' must be a data.frame or matrix")
}
imputed <- FALSE # indicates if there are Variables with missing-index
## delimiter ##
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
if(ncol(x) != 2) stop("'x' must be 2-dimensional")
if(length(col) == 0) col <- c("skyblue","red","orange","lightgrey")
else if(length(col) == 1) col <- c(rep.int(col, 3), "lightgrey")
else if(length(col) == 2) col <- c(rep(col,1:2), "lightgrey")
else if(length(col) == 3) col <- c(col,"lightgrey")
else if(length(col) != 4) stop("'col' must be a vector of length 3 or 4")
if(length(side) == 0) s <- 1
else {
s <- side[1]
if(!(s %in% 1:2)) stop("'side' must be 1 or 2")
}
if(length(lty) == 0) lty <- c("dashed","dotted")
else if(length(lty) == 1) lty <- rep.int(lty, 2)
else if(length(lty) > 2) lty <- lty[1:2]
if(length(lwd) == 0) lwd <- rep.int(par("lwd"), 2)
else if(length(lwd) == 1) lwd <- rep.int(lwd, 2)
else if(length(lwd) > 2) lwd <- lwd[1:2]
if(!is.logical(zeros) || length(zeros) == 0) zeros <- FALSE
zeros <- rep(sapply(zeros, isTRUE), length.out=2)
# prepare data
if(is.data.frame(x)) x <- data.matrix(x)
else if(mode(x) != "numeric") mode(x) <- "numeric"
iInf <- apply(x, 1, function(x) any(is.infinite(x)))
if(any(iInf)) {
x <- x[!iInf, , drop=FALSE]
warning("'x' contains infinite values")
}
# default axis labels
if(is.null(colnames(x))) {
if(is.null(xlab)) xlab <- ""
if(is.null(ylab)) ylab <- ""
}
# semitransparent colors
if(!is.null(alpha)) col <- alphablend(col, alpha)
# count missings
n <- nrow(x)
if(!imputed) {
nNA <- apply(x, 2, countNA)
} else {
nNA <- countImp(x, delimiter, imp_var)
}
plot.ellipse <- !is.null(quantiles) && all(n - nNA > 2)
createPlot <- function() {
if(is.null(xlim) && nNA[1] == n) xlim <- rep.int(0, 2)
if(is.null(ylim) && nNA[2] == n) ylim <- rep.int(0, 2)
sm <- s %% 2 + 1
if(nNA[sm]) { # missings in other variable
if(plot.ellipse) {
# define ellipse
xMcd <- x
if(zeros[1]) xMcd <- xMcd[xMcd[,1] != 0,]
if(zeros[2]) xMcd <- xMcd[xMcd[,2] != 0,]
cov <- covMcd(xMcd, alpha=0.75)
cen <- cov$cen
cov <- cov$cov
cov.svd <- svd(cov, nv=0)
r <- cov.svd[["u"]] %*% diag(sqrt(cov.svd[["d"]]))
t <- 2*pi*(0:100)/100 # parameter for ellipse
qch <- qchisq(quantiles, 2) # quantiles of qchisquare dist.
getEll <- function(q, t, r, cen) {
e <- cbind(cos(t) * sqrt(q), sin(t) * sqrt(q))
t(r %*% t(e)) + rep(1, 101) %o% cen
}
tt <- sapply(qch, getEll, t, r, cen, simplify=FALSE)
ttmax <- tt[[which.max(quantiles)]]
# axis limits
if(is.null(xlim)) {
xlim <- range(c(x[,1], ttmax[,1]), na.rm=TRUE)
}
if(is.null(ylim)) {
ylim <- range(c(x[,2], ttmax[,2]), na.rm=TRUE)
}
}
if(!imputed) miss <- is.na(x)
else {
tmp <- isImp(x, pos = 1, delimiter = delimiter, imp_var = imp_var, selection = "none")
miss <- cbind(tmp[["misspos"]],tmp[["missh"]])
}
xsmiss <- x[!miss[,s] & miss[,sm], s]
localPlot <- function(..., type, plot.first, plot.last) {
plot(...,
panel.first={
if(plot.ellipse) # plot ellipses
for(t in tt) lines(t[,1], t[,2], col=col[4],
lty=lty[2], lwd=lwd[2])
# plot points instead of lines when imputed values exist
if(!imputed) {
if(plot.ellipse && inEllipse) {
xsell <- xsmiss[min(ttmax[,s]) <= xsmiss &
xsmiss <= max(ttmax[,s])]
if(length(xsell)) {
rho <- cov[1,2]/sqrt(cov[1,1]*cov[2,2])
phalf <- rho*sqrt(cov[sm,sm])*
(xsell-cen[s])/sqrt(cov[s,s])
q <- cov[sm,sm]*((xsell-cen[s])^2/cov[s,s]-
(1-rho^2)*qch[length(qch)])
z <- rbind(phalf + sqrt(phalf^2-q),
phalf - sqrt(phalf^2-q))
xsmell <- z + cen[sm]
xsell <- as.vector(rbind(xsell, xsell,
rep(NA, length(xsell))))
xsmell <- as.vector(rbind(xsmell,
rep(NA, ncol(xsmell))))
if(s == 1) lines(xsell, xsmell, col=col[2],
lty=lty[1], lwd=lwd[1])
else lines(xsmell, xsell, col=col[2],
lty=lty[1], lwd=lwd[1])
}
} else {
if(s == 1) {
abline(v=xsmiss, col=col[2],
lty=lty[1], lwd=lwd[1])
} else {
abline(h=xsmiss, col=col[2],
lty=lty[1], lwd=lwd[1])
}
}
}
})
}
} else {
localPlot <- function(..., type, plot.first, plot.last) plot(...)
rugNA(x[,1], x[, 2], miss = miss, side=s, col=ifelse(!imputed,col[2],col[3]))
}
localPlot(x, col=col[1], xlim=xlim, ylim=ylim,
main=main, sub=sub, xlab=xlab, ylab=ylab, ...)
# plot points instead of lines when imputed values exist
if(!imputed) miss <- NULL
else {
points(x[miss[,sm],], col=col[3])
# fix bug - in case there are still some NA after imputation
indices <- which(!is.na(x[miss[,sm],2]))
if(s == 1) {
abline(v=xsmiss[-indices], col=col[2],
lty=lty[1], lwd=lwd[1])
} else {
abline(h=xsmiss[-indices], col=col[2],
lty=lty[1], lwd=lwd[1])
}
indices1 <- which(miss[,2]==TRUE & is.na(x[,2]))
indices2 <- which(miss[,2]==TRUE & !is.na(x[,2]))
miss1 <- miss2 <- miss
miss1[indices1,2] <- FALSE
miss2[indices2,2] <- FALSE
rugNA(x[, 1], x[, 2], miss = miss1, side=s, col=col[3])
rugNA(x[, 1], x[, 2], miss = miss2, side=s, col=col[2])
}
#####
#rugNA(x[,1], x[, 2], miss = miss, side=s, col=ifelse(!imputed,col[2],col[3]))
}
createPlot()
dev <- names(dev.cur())
interactiveDevices <- c("X11","quartz","windows")
if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
cat(paste("\nClick in bottom or left margin to",
"change the 'side' argument accordingly.\n"))
cat(paste("To regain use of the VIM GUI and the R console,",
"click anywhere else in the graphics window.\n\n"))
usr <- par("usr")
pt <- locatorVIM()
while(!is.null(pt) &&
((usr[1] <= pt$x && pt$x <= usr[2] && pt$y < usr[3]) ||
(pt$x < usr[1] && usr[3] <= pt$y && pt$y <= usr[4]))) {
s <- if(usr[1] <= pt$x && pt$x <= usr[2] && pt$y < usr[3]) 1 else 2
createPlot()
usr <- par("usr")
pt <- locatorVIM()
}
}
invisible()
}
|