File: scattmatrixMiss.R

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (328 lines) | stat: -rw-r--r-- 15,028 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# ----------------------------------------------------------
# Authors: Andreas Alfons, Bernd Prantner, Matthias Templ
#          and Daniel Schopfhauser
#          Vienna University of Technology
# ----------------------------------------------------------



#' Scatterplot matrix with information about missing/imputed values
#' 
#' Scatterplot matrix in which observations with missing/imputed values in
#' certain variables are highlighted.
#' 
#' `scattmatrixMiss` uses [pairsVIM()] with a panel function
#' that allows highlighting of missing/imputed values.
#' 
#' If `interactive=TRUE`, the variables to be used for highlighting can be
#' selected interactively.  Observations with missing/imputed values in any or
#' in all of the selected variables are highlighted (as determined by
#' `selection`).  A variable can be added to the selection by clicking in
#' a diagonal panel.  If a variable is already selected, clicking on the
#' corresponding diagonal panel removes it from the selection.  Clicking
#' anywhere else quits the interactive session.
#' 
#' The graphical parameter `oma` will be set unless supplied as an
#' argument.
#' 
#' `TKRscattmatrixMiss` behaves like `scattmatrixMiss`, but uses
#' tkrplot to embed the plot in a *Tcl/Tk* window.
#' This is useful if the number of variables is large, because scrollbars allow
#' to move from one part of the plot to another.
#' 
#' @param x a matrix or `data.frame`.
#' @param delimiter a character-vector to distinguish between variables and
#' imputation-indices for imputed variables (therefore, `x` needs to have
#' [colnames()]). If given, it is used to determine the corresponding
#' imputation-index for any imputed variable (a logical-vector indicating which
#' values of the variable have been imputed). If such imputation-indices are
#' found, they are used for highlighting and the colors are adjusted according
#' to the given colors for imputed variables (see `col`).
#' @param highlight a vector giving the variables to be used for highlighting.
#' If `NULL` (the default), all variables are used for highlighting.
#' @param selection the selection method for highlighting missing/imputed
#' values in multiple highlight variables.  Possible values are `"any"`
#' (highlighting of missing/imputed values in *any* of the highlight
#' variables) and `"all"` (highlighting of missing/imputed values in
#' *all* of the highlight variables).
#' @param plotvars a vector giving the variables to be plotted.  If `NULL`
#' (the default), all variables are plotted.
#' @param col a vector of length three giving the colors to be used in the
#' plot.  The second/third color will be used for highlighting missing/imputed
#' values.
#' @param alpha a numeric value between 0 and 1 giving the level of
#' transparency of the colors, or `NULL`.  This can be used to prevent
#' overplotting.
#' @param pch a vector of length two giving the plot characters.  The second
#' plot character will be used for the highlighted observations.
#' @param lty a vector of length two giving the line types for the density
#' plots in the diagonal panels (if `diagonal="density"`).  The second
#' line type is used for the highlighted observations.  If a single value is
#' supplied, it is used for both non-highlighted and highlighted observations.
#' @param diagonal a character string specifying the plot to be drawn in the
#' diagonal panels.  Possible values are `"density"` (density plots for
#' non-highlighted and highlighted observations) and `"none"`.
#' @param interactive a logical indicating whether the variables to be used for
#' highlighting can be selected interactively (see \sQuote{Details}).
#' @param \dots for `scattmatrixMiss`, further arguments and graphical
#' parameters to be passed to [pairsVIM()].  `par("oma")` will
#' be set appropriately unless supplied (see [graphics::par()]).  For
#' `TKRscattmatrixMiss`, further arguments to be passed to
#' `scattmatrixMiss`.
#' @note Some of the argument names and positions have changed with version 1.3
#' due to a re-implementation and for more consistency with other plot
#' functions in `VIM`.  For back compatibility, the argument
#' `colcomb` can still be supplied to \code{\dots{}} and is handled
#' correctly.  Nevertheless, it is deprecated and no longer documented.  Use
#' `highlight` instead.  The arguments `smooth`, `reg.line` and
#' `legend.plot` are no longer used and ignored if supplied.
#' @author Andreas Alfons, Matthias Templ, modifications by Bernd Prantner
#' @seealso [pairsVIM()], [marginmatrix()]
#' @references M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
#' data using visualization tools.  *Journal of Advances in Data Analysis
#' and Classification*, Online first. DOI: 10.1007/s11634-011-0102-y.
#' @keywords hplot
#' @family plotting functions
#' @examples
#' 
#' data(sleep, package = "VIM")
#' ## for missing values
#' x <- sleep[, 1:5]
#' x[,c(1,2,4)] <- log10(x[,c(1,2,4)])
#' scattmatrixMiss(x, highlight = "Dream")
#' 
#' ## for imputed values
#' x_imp <- kNN(sleep[, 1:5])
#' x_imp[,c(1,2,4)] <- log10(x_imp[,c(1,2,4)])
#' scattmatrixMiss(x_imp, delimiter = "_imp", highlight = "Dream")
#' 
#' @export
scattmatrixMiss <- function(x, delimiter = NULL, highlight = NULL, 
                            selection = c("any","all"), plotvars = NULL, 
                            col = c("skyblue","red","orange"), alpha = NULL, 
                            pch = c(1,3), lty = par("lty"), 
                            diagonal = c("density","none"), 
                            interactive = TRUE, ...)  {
  check_data(x)
  x <- as.data.frame(x)
    # initializations and error messages
	imputed <- FALSE # indicates if there are Variables with missing-index
	## delimiter ##
	if(!is.null(delimiter)) {
		tmp <- grep(delimiter, colnames(x)) # Position of the missing-index
		if(length(tmp) > 0) {
			imp_var <- x[, tmp, drop=FALSE]
			x <- x[, -tmp, drop=FALSE]
			
			if(ncol(x) == 0) stop("Only the missing-index is given")
			if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
			
			if(is.null(dim(imp_var))) {
				if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
			} else {
				if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")	
			}
			imputed <- TRUE
		} else {
			warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
		}
	}
	px <- ncol(x)
    if(is.null(colnames(x))) colnames(x) <- defaultNames(px)
    if(length(highlight) > px) stop("'highlight' is too long")
    if(length(plotvars) > px) stop("'plotvars' is too long")
    z <- if(is.null(plotvars)) x else x[, plotvars, drop=FALSE]
    pz <- ncol(z)
    if(pz < 2) stop("the data to be plotted must be at least 2-dimensional")
    selection <- match.arg(selection)
    if(length(col) == 0) col <- c("skyblue","red","orange")
    if(length(pch) == 0) pch <- c(1,3)
    if(length(col) == 1 && length(pch) == 1) {
        stop("same color and plot symbol for observed and missing values")
    }
    if(length(col) == 1) col <- rep(col, 3)
	else if(length(col) == 2) col <- rep(col,1:2)
    else if(length(col) > 3) col <- col[1:3]
    if(length(pch) == 1) pch <- rep(pch, 2)
    else if(length(pch) > 2) pch <- pch[1:2]
    # semitransparent colors
    colalpha <- alphablend(col, alpha)
    # prepare data
    if(is.data.frame(z)) z <- data.matrix(z)
    else if(mode(z) != "numeric") mode(z) <- "numeric"
    # diagonal panel
    diagonal <- match.arg(diagonal)
    if(diagonal == "density") {
        if(length(lty) == 0) lty <- par("lty")
        if(length(lty) == 1) {
            if(col[1] == col[2]) {
				stop("same color and line type for observed and missing values")
            } else if(col[1] == col[3]) {
				stop("same color and line type for observed and imputed values")
			}
            lty <- rep.int(lty, 2)
        }
        else if(length(lty) > 2) lty <- lty[1:2]
    }
    # initialize call
    localPairs <- function(..., colcomb, smooth, reg.line, legend.plot) {
        pairsVIM(...)
    }
    ca <- as.call(list(localPairs, ...))
    # back compatibility
    if(missing(highlight) && !is.null(ca$colcomb)) {
        if(length(ca$colcomb) && ca$colcomb[1] == "missnonmiss") {
            highlight <- NULL
        } else highlight <- ca$colcomb
    }
    if(interactive) {
        # 'gap', 'oma' and 'layout' are needed later on
        if(is.null(ca$oma)) {
            # only 'oma' is used by 'pairsVIM' for outer margins
            ca$oma <- rep.int(4, 4)
            if(!is.null(ca$main)) ca$oma[3] <- 6
            if(!is.null(ca$sub)) ca$oma[1] <- 5
        }
        if(is.null(ca$gap)) ca$gap <- 1
        if(is.null(ca$layout)) ca$layout <- "matrix"
    }
    createPlot <- function() {
        # find observations with missings
        if(is.null(highlight)) {
			if(!imputed) NAvec <- isNA(x, selection)
			else NAvec <- isImp(x, pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = selection)[["missh"]]
		}
        else {
			if(!imputed) NAvec <- isNA(x[, highlight], selection)
			else NAvec <- isImp(x[, highlight, drop=FALSE], pos = NULL, delimiter = delimiter, imp_var = imp_var, selection = selection)[["missh"]]
		}
        # panel functions
        panel.miss <- function(x, y, ...) {
            if(!imputed) {
				miss <- NULL
				color <- colalpha[2]
			} else {
				tmp <- isImp(cbind(x,y), pos = 1, delimiter = delimiter, imp_var = imp_var, selection = "none")
				miss <- cbind(tmp[["misspos"]],tmp[["missh"]])
				color <- colalpha[3]
			}
			xOK <- x[!NAvec, ,drop = FALSE]
            yOK <- y[!NAvec, ,drop = FALSE]
            points(xOK, yOK, col=colalpha[1], pch=pch[1], ...) 
            rugNA(xOK, yOK, miss = miss[!NAvec,], side=1, col=colalpha[1])
			rugNA(xOK, yOK, miss = miss[!NAvec,], side=2, col=colalpha[1])
            xNA <- x[NAvec]
            yNA <- y[NAvec]
			points(xNA, yNA, col=color, pch=pch[2], ...)
			rugNA(xNA, yNA, miss = miss[NAvec,], side=1, col=color)
			rugNA(xNA, yNA, miss = miss[NAvec,], side=2, col=color)
        }
        panel.density <- function(x, ...) {
            if(!all(is.na(x))) {
                xobs <- x[!NAvec]
                xobs <- xobs[is.finite(xobs)]
                xNA <- x[NAvec]
                xNA <- xNA[is.finite(xNA)]
                rx <- range(x, finite=TRUE)
                if(par("ylog")) {
                    # y-axis should not be on logarithmic scale
                    localPlot <- function(..., type, log, main, sub, xlab, ylab,
                            ann, axes, frame.plot, panel.first, panel.last) {
                        par(new=TRUE)
                        log <- if(par("xlog")) "x" else ""
                        plot(..., type="n", log=log, ann=FALSE, axes=FALSE)
                    }
                    localPlot(rx, rx, ...)
                }
                if(length(xobs)) dobs <- density(xobs, from=rx[1], to=rx[2])
                else dobs <- list(x=NULL, y=NULL)
                if(length(xNA)) dNA <- density(xNA, from=rx[1], to=rx[2])
                else dNA <- list(x=NULL, y=NULL)
                dy <- c(dobs$y, dNA$y)  # y-values of both densities
                if(length(dy)) {  # cannot compute maximum otherwise 
                    mdy <- max(c(dobs$y, dNA$y))
                    lines(dobs$x, rx[1]+dobs$y*diff(rx)/mdy, 
                        col=col[1], lty=lty[1], 
                        ...)
					if(!imputed) color <- col[2]
					else color <- col[3]
                    lines(dNA$x, rx[1]+dNA$y*diff(rx)/mdy, 
                        col=color, lty=lty[2], 
                        ...)
                }
            }
        }
#        panel.text <- function(x, y, txt, cex, font, ...) {
#            usr <- par("usr")
#            txt.width <- strwidth(txt, cex=cex, font=font, ...)
#            txt.height <- strheight(txt, cex=cex, font=font, ...)
#            if(txt.width < diff(usr[1:2]) && txt.height < diff(usr[3:4])) {
#                text(x, y, txt, cex = cex, font = font, ...)
#            }
#        }
        ca$x <- z
        ca$panel <- panel.miss
        ca$lower <- NULL
        ca$upper <- NULL
        ca$diagonal <- switch(diagonal, density=panel.density, none=NULL)
#        ca$text.panel <- panel.text
        eval(ca)
    }
    createPlot()
    
    # check for interactive graphics device
    dev <- names(dev.cur())
    interactiveDevices <- c("X11","quartz","windows")
    if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
        cat(paste("\nClick in a diagonal panel to add to", 
                "or remove from the highlight selection.\n"))
        cat(paste("To regain use of the VIM GUI and the R console,",
                "click anywhere else in the graphics window.\n\n"))
        # retrieve geometry of graphics device
        gap <- ca$gap
        oma <- ca$oma
        rf <- if(pz == 2) 5/6 else 2/3  # reduction factor for line height
        op <- par(mar=oma*rf, usr=c(0,1,0,1))
        on.exit(par(op))
        xcenter <- seq(from=1/(2*pz), by=1/pz, length.out=pz)
        ycenter <- if(ca$layout == "matrix") rev(xcenter) else xcenter
        cxy <- par("cxy")  # cxy[2] gives the line height of the graphics device
        lxy <- 1/(2*pz) - gap*cxy[2]*rf/2  # half side length of the panels
        xleft <- xcenter - lxy
        ybottom <- ycenter - lxy
        xright <- xcenter + lxy
        ytop <- ycenter + lxy
        # initializations for selection
        cn <- colnames(x)
        if(is.null(highlight)) highlight <- cn
        else if(!is.character(highlight)) highlight <- cn[highlight]
        plotvars <- colnames(z)
        # start interactive session
        highlightInfo(highlight, selection, imputed)  # print out current selection
        pt <- locatorVIM(error=TRUE)
        while(!is.null(pt)  && class(pt) != "try-error") {
            i <- which(pt$y > ybottom & pt$y < ytop)
            j <- which(pt$x > xleft & pt$x < xright)
#            # can't happen since margins must be non-negative
#            if(length(i) > 0) i <- i[1]
#            if(length(j) > 0) j <- j[1]
            if(length(i) && length(j) && i == j) {
                highlight <- 
                    if(plotvars[i] %in% highlight) 
                        setdiff(highlight, plotvars[i]) 
                    else c(highlight, plotvars[i])
                createPlot()
                highlightInfo(highlight, selection, imputed)  # print out current selection
#                # make sure user coordinate system remains as set up above 
#                # before locator is called again (pairs seems to leave user 
#                # coordinates in an uncontrollable state if 'row1attop=FALSE') 
#                par(mar=oma*rf, usr=c(0,1,0,1))
                pt <- locatorVIM(error=TRUE)
            }
            else pt <- NULL
        }
        if(inherits(pt, "try-error")) on.exit()
    }
    
    invisible()
}