File: aggr.Rd

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (265 lines) | stat: -rw-r--r-- 9,376 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/aggr.R
\name{aggr}
\alias{aggr}
\alias{plot.aggr}
\alias{print.aggr}
\alias{summary.aggr}
\alias{print.summary.aggr}
\title{Aggregations for missing/imputed values}
\usage{
aggr(x, delimiter = NULL, plot = TRUE, ...)

\method{plot}{aggr}(
  x,
  col = c("skyblue", "red", "orange"),
  bars = TRUE,
  numbers = FALSE,
  prop = TRUE,
  combined = FALSE,
  varheight = FALSE,
  only.miss = FALSE,
  border = par("fg"),
  sortVars = FALSE,
  sortCombs = TRUE,
  ylabs = NULL,
  axes = TRUE,
  labels = axes,
  cex.lab = 1.2,
  cex.axis = par("cex"),
  cex.numbers = par("cex"),
  gap = 4,
  ...
)

\method{print}{aggr}(x, ..., digits = NULL)

\method{summary}{aggr}(object, ...)

\method{print}{summary.aggr}(x, ...)
}
\arguments{
\item{x}{an object of class \code{"summary.aggr"}.}

\item{delimiter}{a character-vector to distinguish between variables and
imputation-indices for imputed variables (therefore, \code{x} needs to have
\code{\link[=colnames]{colnames()}}). If given, it is used to determine the corresponding
imputation-index for any imputed variable (a logical-vector indicating which
values of the variable have been imputed). If such imputation-indices are
found, they are used for highlighting and the colors are adjusted according
to the given colors for imputed variables (see \code{col}).}

\item{plot}{a logical indicating whether the results should be plotted (the
default is \code{TRUE}).}

\item{\dots}{Further arguments, currently ignored.}

\item{col}{a vector of length three giving the colors to be used for
observed, missing and imputed data. If only one color is supplied, it is
used for missing and imputed data and observed data is transparent. If only
two colors are supplied, the first one is used for observed data and the
second color is used for missing and imputed data.}

\item{bars}{a logical indicating whether a small barplot for the frequencies
of the different combinations should be drawn.}

\item{numbers}{a logical indicating whether the proportion or frequencies of
the different combinations should be represented by numbers.}

\item{prop}{a logical indicating whether the proportion of missing/imputed
values and combinations should be used rather than the total amount.}

\item{combined}{a logical indicating whether the two plots should be
combined.  If \code{FALSE}, a separate barplot on the left hand side shows
the amount of missing/imputed values in each variable.  If \code{TRUE}, a
small version of this barplot is drawn on top of the plot for the
combinations of missing/imputed and non-missing values.  See
\dQuote{Details} for more information.}

\item{varheight}{a logical indicating whether the cell heights are given by
the frequencies of occurrence of the corresponding combinations.}

\item{only.miss}{a logical indicating whether the small barplot for the
frequencies of the combinations should only be drawn for combinations
including missing/imputed values (if \code{bars} is \code{TRUE}).  This is
useful if most observations are complete, in which case the corresponding
bar would dominate the barplot such that the remaining bars are too
compressed.  The proportion or frequency of complete observations (as
determined by \code{prop}) is then represented by a number instead of a bar.}

\item{border}{the color to be used for the border of the bars and
rectangles.  Use \code{border=NA} to omit borders.}

\item{sortVars}{a logical indicating whether the variables should be sorted
by the number of missing/imputed values.}

\item{sortCombs}{a logical indicating whether the combinations should be
sorted by the frequency of occurrence.}

\item{ylabs}{if \code{combined} is \code{TRUE}, a character string giving
the y-axis label of the combined plot, otherwise a character vector of
length two giving the y-axis labels for the two plots.}

\item{axes}{a logical indicating whether axes should be drawn.}

\item{labels}{either a logical indicating whether labels should be plotted
on the x-axis, or a character vector giving the labels.}

\item{cex.lab}{the character expansion factor to be used for the axis
labels.}

\item{cex.axis}{the character expansion factor to be used for the axis
annotation.}

\item{cex.numbers}{the character expansion factor to be used for the
proportion or frequencies of the different combinations}

\item{gap}{if \code{combined} is \code{FALSE}, a numeric value giving the
distance between the two plots in margin lines.}

\item{digits}{the minimum number of significant digits to be used (see
\code{\link[=print.default]{print.default()}}).}

\item{object}{an object of class \code{"aggr"}.}
}
\value{
for \code{aggr}, a list of class \code{"aggr"} containing the
following components:
\itemize{
\item x the data used.
\item combinations a character vector representing the combinations of
variables.
\item count the frequencies of these combinations.
\item percent the percentage of these combinations.
\item missings a \code{data.frame} containing the amount of
missing/imputed values in each variable.
\item tabcomb the indicator matrix for the combinations of variables.
}

a list of class \code{"summary.aggr"} containing the following
components:
\itemize{
\item missings a \code{data.frame} containing the amount of missing or
imputed values in each variable.
\item combinations a \code{data.frame} containing a character vector
representing the combinations of variables along with their frequencies and
percentages.
}
}
\description{
Calculate or plot the amount of missing/imputed values in each variable and
the amount of missing/imputed values in certain combinations of variables.

Print method for objects of class \code{"aggr"}.

Summary method for objects of class \code{"aggr"}.

Print method for objects of class \code{"summary.aggr"}.
}
\details{
Often it is of interest how many missing/imputed values are contained in
each variable.  Even more interesting, there may be certain combinations of
variables with a high number of missing/imputed values.

If \code{combined} is \code{FALSE}, two separate plots are drawn for the
missing/imputed values in each variable and the combinations of
missing/imputed and non-missing values. The barplot on the left hand side
shows the amount of missing/imputed values in each variable.  In the
\emph{aggregation plot} on the right hand side, all existing combinations of
missing/imputed and non-missing values in the observations are visualized.
Available, missing and imputed data are color coded as given by \code{col}.
Additionally, there are two possibilities to represent the frequencies of
occurrence of the different combinations.  The first option is to visualize
the proportions or frequencies by a small bar plot and/or numbers.  The
second option is to let the cell heights be given by the frequencies of the
corresponding combinations. Furthermore, variables may be sorted by the
number of missing/imputed values and combinations by the frequency of
occurrence to give more power to finding the structure of missing/imputed
values.

If \code{combined} is \code{TRUE}, a small version of the barplot showing
the amount of missing/imputed values in each variable is drawn on top of the
aggregation plot.

The graphical parameter \code{oma} will be set unless supplied as an
argument.
}
\note{
Some of the argument names and positions have changed with version 1.3
due to extended functionality and for more consistency with other plot
functions in \code{VIM}.  For back compatibility, the arguments \code{labs}
and \code{names.arg} can still be supplied to \code{\dots{}} and are handled
correctly.  Nevertheless, they are deprecated and no longer documented.  Use
\code{ylabs} and \code{labels} instead.
}
\examples{

data(sleep, package="VIM")
## for missing values
a <- aggr(sleep)
a
summary(a)

## for imputed values
sleep_IMPUTED <- kNN(sleep)
a <- aggr(sleep_IMPUTED, delimiter="_imp")
a
summary(a)


data(sleep, package = "VIM")
a <- aggr(sleep, plot=FALSE)
a


data(sleep, package = "VIM")
summary(aggr(sleep, plot=FALSE))


data(sleep, package = "VIM")
s <- summary(aggr(sleep, plot=FALSE))
s

}
\references{
M. Templ, A. Alfons, P. Filzmoser (2012) Exploring incomplete
data using visualization tools.  \emph{Journal of Advances in Data Analysis
and Classification}, Online first. DOI: 10.1007/s11634-011-0102-y.
}
\seealso{
\code{\link[=print.aggr]{print.aggr()}}, \code{\link[=summary.aggr]{summary.aggr()}}

\code{\link[=aggr]{aggr()}}

\code{\link[=print.summary.aggr]{print.summary.aggr()}}, \code{\link[=aggr]{aggr()}}

\code{\link[=summary.aggr]{summary.aggr()}}, \code{\link[=aggr]{aggr()}}

Other plotting functions: 
\code{\link{barMiss}()},
\code{\link{histMiss}()},
\code{\link{marginmatrix}()},
\code{\link{marginplot}()},
\code{\link{matrixplot}()},
\code{\link{mosaicMiss}()},
\code{\link{pairsVIM}()},
\code{\link{parcoordMiss}()},
\code{\link{pbox}()},
\code{\link{scattJitt}()},
\code{\link{scattMiss}()},
\code{\link{scattmatrixMiss}()},
\code{\link{spineMiss}()}
}
\author{
Andreas Alfons, Matthias Templ, modifications for displaying imputed
values by Bernd Prantner

Matthias Templ, modifications by Andreas Alfons and Bernd Prantner

Matthias Templ, modifications by Andreas Alfons

Andreas Alfons, modifications by Bernd Prantner
}
\concept{plotting functions}
\keyword{hplot}
\keyword{print}