1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/matchImpute.R
\name{matchImpute}
\alias{matchImpute}
\title{Fast matching/imputation based on categorical variable}
\usage{
matchImpute(
data,
variable = colnames(data)[!colnames(data) \%in\% match_var],
match_var,
imp_var = TRUE,
imp_suffix = "imp"
)
}
\arguments{
\item{data}{data.frame, data.table or matrix}
\item{variable}{variables to be imputed}
\item{match_var}{variables used for matching}
\item{imp_var}{TRUE/FALSE if a TRUE/FALSE variables for each imputed
variable should be created show the imputation status}
\item{imp_suffix}{suffix for the TRUE/FALSE variables showing the imputation
status}
}
\value{
the imputed data set.
}
\description{
Suitable donors are searched based on matching of the categorical variables.
The variables are dropped in reversed order, so that the last element of
'match_var' is dropped first and the first element of the vector is dropped last.
}
\details{
The method works by sampling values from the suitable donors.
}
\examples{
data(sleep,package="VIM")
imp_data <- matchImpute(sleep,variable=c("NonD","Dream","Sleep","Span","Gest"),
match_var=c("Exp","Danger"))
data(testdata,package="VIM")
imp_testdata1 <- matchImpute(testdata$wna,match_var=c("c1","c2","b1","b2"))
dt <- data.table::data.table(testdata$wna)
imp_testdata2 <- matchImpute(dt,match_var=c("c1","c2","b1","b2"))
}
\seealso{
\code{\link[=hotdeck]{hotdeck()}}
Other imputation methods:
\code{\link{hotdeck}()},
\code{\link{impPCA}()},
\code{\link{irmi}()},
\code{\link{kNN}()},
\code{\link{medianSamp}()},
\code{\link{rangerImpute}()},
\code{\link{regressionImp}()},
\code{\link{sampleCat}()}
}
\author{
Johannes Gussenbauer, Alexander Kowarik
}
\concept{imputation methods}
\keyword{manip}
|