File: regressionImp.Rd

package info (click to toggle)
r-cran-vim 6.2.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,556 kB
  • sloc: cpp: 141; sh: 12; makefile: 2
file content (77 lines) | stat: -rw-r--r-- 2,153 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/regressionImp.R
\name{regressionImp}
\alias{regressionImp}
\title{Regression Imputation}
\usage{
regressionImp(
  formula,
  data,
  family = "AUTO",
  robust = FALSE,
  imp_var = TRUE,
  imp_suffix = "imp",
  mod_cat = FALSE
)
}
\arguments{
\item{formula}{model formula to impute one variable}

\item{data}{A data.frame containing the data}

\item{family}{family argument for \code{\link[=glm]{glm()}}. \code{"AUTO"} (the default) tries to choose
automatically and is the only really tested option!!!}

\item{robust}{\code{TRUE}/\code{FALSE} if robust regression should be used. See details.}

\item{imp_var}{\code{TRUE}/\code{FALSE} if a \code{TRUE}/\code{FALSE} variables for each imputed
variable should be created show the imputation status}

\item{imp_suffix}{suffix used for TF imputation variables}

\item{mod_cat}{\code{TRUE}/\code{FALSE} if \code{TRUE} for categorical variables the level with
the highest prediction probability is selected, otherwise it is sampled
according to the probabilities.}
}
\value{
the imputed data set.
}
\description{
Impute missing values based on a regression model.
}
\details{
\code{\link[=lm]{lm()}} is used for family "normal" and \code{\link[=glm]{glm()}} for all other families.
(robust=TRUE: \code{\link[=lmrob]{lmrob()}}, \code{\link[=glmrob]{glmrob()}})
}
\examples{

data(sleep)
sleepImp1 <- regressionImp(Dream+NonD~BodyWgt+BrainWgt,data=sleep)
sleepImp2 <- regressionImp(Sleep+Gest+Span+Dream+NonD~BodyWgt+BrainWgt,data=sleep)

data(testdata)
imp_testdata1 <- regressionImp(b1+b2~x1+x2,data=testdata$wna)
imp_testdata3 <- regressionImp(x1~x2,data=testdata$wna,robust=TRUE)

}
\references{
A. Kowarik, M. Templ (2016) Imputation with
R package VIM.  \emph{Journal of
Statistical Software}, 74(7), 1-16.
}
\seealso{
Other imputation methods: 
\code{\link{hotdeck}()},
\code{\link{impPCA}()},
\code{\link{irmi}()},
\code{\link{kNN}()},
\code{\link{matchImpute}()},
\code{\link{medianSamp}()},
\code{\link{rangerImpute}()},
\code{\link{sampleCat}()}
}
\author{
Alexander Kowarik
}
\concept{imputation methods}
\keyword{manip}