1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
---
title: "Donor based Imputation Methods"
author: Wolfgang Rannetbauer
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Donor based Imputation Methods}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 6,
fig.align = "center"
)
```
## Overview
In addition to Model based Imputation Methods (see `vignette("modelImp")`) the `VIM` package also presents donor based imputation methods, namely Hot-Deck Imputation, k-Nearest Neighbour Imputation and fast matching/imputation based on categorical variable.
This vignette showcases the functions `hotdeck()` and `kNN()`, which can both be used to generate imputations for several variables in a
dataset. Moreover, the function `matchImpute()` is presented, which is in contrast a imputation method based on categorical variables.
## Data
The following example demonstrates the functionality of `hodeck()` and `kNN()` using a subset of `sleep`. The columns have been selected deliberately to include some interactions between the missing values.
```{r setup, message=F}
library(VIM)
library(magrittr)
dataset <- sleep[, c("Dream", "NonD", "BodyWgt", "Span")]
dataset$BodyWgt <- log(dataset$BodyWgt)
dataset$Span <- log(dataset$Span)
aggr(dataset)
```
The plot indicates several missing values in `Dream`, `NonD`, and `Span. `
```{r}
sapply(dataset, function(x)sum(is.na(x)))
```
## Imputation
The call of the functions is straightforward. We will start by just imputing `NonD` based on the other variables. Besides imputing missing variables for a single variable, these functions also support imputation of multiple variables.
For `matchImpute()` suitable donors are searched based on matching of the categorical variables.
```{r}
imp_hotdeck <- hotdeck(dataset, variable = "NonD") # hotdeck imputation
imp_knn <- kNN(dataset, variable = "NonD") # kNN imputation
imp_match <- matchImpute(dataset, variable = "NonD", match_var = c("BodyWgt","Span")) # match imputation
aggr(imp_knn, delimiter = "_imp")
aggr(imp_match, delimiter = "_imp")
```
We can see that `kNN()` imputed all missing values for `NonD` in our dataset. The same is true for the values imputed via `hotdeck()`.
The specified variables in `matchImpute()` serve as a donor and enable imputation for `NonD`.
### Diagnosing the results
As we can see in the next two plots, the origninal data structure of `NonD` and `Span` is preserved by `hotdeck()`. `kNN()` reveals the typically procedure of methods, which are based on similar data points weighted by the distance.
```{r, fig.height=5}
imp_hotdeck[, c("NonD", "Span", "NonD_imp")] %>%
marginplot(delimiter = "_imp")
imp_knn[, c("NonD", "Span", "NonD_imp")] %>%
marginplot(delimiter = "_imp")
```
`matchImpute()` works by sampling values from the suitable donors and also provides reasonable results.
```{r, fig.height=5}
imp_match[, c("NonD", "Span", "NonD_imp")] %>%
marginplot(delimiter = "_imp")
```
## Performance of method
In order to validate the performance of `kNN()` and to highlight the ability to impute different datatypes the `iris` dataset is used. Firstly, some values are randomly set to `NA`.
```{r}
data(iris)
df <- iris
colnames(df) <- c("S.Length","S.Width","P.Length","P.Width","Species")
# randomly produce some missing values in the data
set.seed(1)
nbr_missing <- 50
y <- data.frame(row = sample(nrow(iris), size = nbr_missing, replace = TRUE),
col = sample(ncol(iris), size = nbr_missing, replace = TRUE))
y<-y[!duplicated(y), ]
df[as.matrix(y)] <- NA
aggr(df)
sapply(df, function(x) sum(is.na(x)))
```
We can see that there are missings in all variables and some observations reveal missing values on several points.
```{r}
imp_knn <- kNN(df)
aggr(imp_knn, delimiter = "imp")
```
The plot indicates that all missing values have been imputed by `kNN()`. The following table displays the rounded first five results of the imputation for all variables.
```{r echo=F,warning=F}
library(reactable)
results <- cbind("TRUE1" = as.numeric(iris[as.matrix(y[which(y$col==1),])]),
"IMPUTED1" = round(as.numeric(imp_knn[as.matrix(y[which(y$col==1),])]),2),
"TRUE2" = as.numeric(iris[as.matrix(y[which(y$col==2),])]),
"IMPUTED2" = round(as.numeric(imp_knn[as.matrix(y[which(y$col==2),])]),2),
"TRUE3" = as.numeric(iris[as.matrix(y[which(y$col==3),])]),
"IMPUTED3" = round(as.numeric(imp_knn[as.matrix(y[which(y$col==3),])]),2),
"TRUE4" = as.numeric(iris[as.matrix(y[which(y$col==4),])]),
"IMPUTED4" = round(as.numeric(imp_knn[as.matrix(y[which(y$col==4),])]),2),
"TRUE5" = (iris[as.matrix(y[which(y$col==5),])]),
"IMPUTED5" = (imp_knn[as.matrix(y[which(y$col==5),])]))[1:5,]
reactable(results, columns = list(
TRUE1 = colDef(name = "True"),
IMPUTED1 = colDef(name = "Imputed"),
TRUE2 = colDef(name = "True"),
IMPUTED2 = colDef(name = "Imputed"),
TRUE3 = colDef(name = "True"),
IMPUTED3 = colDef(name = "Imputed"),
TRUE4 = colDef(name = "True"),
IMPUTED4 = colDef(name = "Imputed"),
TRUE5 = colDef(name = "True"),
IMPUTED5 = colDef(name = "Imputed")
),
columnGroups = list(
colGroup(name = "S.Length", columns = c("TRUE1", "IMPUTED1")),
colGroup(name = "S.Width", columns = c("TRUE2", "IMPUTED2")),
colGroup(name = "P.Length", columns = c("TRUE3", "IMPUTED3")),
colGroup(name = "P.Width", columns = c("TRUE4", "IMPUTED4")),
colGroup(name = "Species", columns = c("TRUE5", "IMPUTED5"))
),
striped = TRUE,
highlight = TRUE,
bordered = TRUE
)
```
|