File: denoise.R

package info (click to toggle)
r-cran-waveslim 1.8.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,096 kB
  • sloc: ansic: 894; makefile: 2
file content (328 lines) | stat: -rw-r--r-- 11,368 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#' Wavelet Shrinkage via Thresholding
#' 
#' Perform wavelet shrinkage using data-analytic, hybrid SURE, manual, SURE, or
#' universal thresholding.
#' 
#' An extensive amount of literature has been written on wavelet shrinkage.
#' The functions here represent the most basic approaches to the problem of
#' nonparametric function estimation.  See the references for further
#' information.
#' 
#' @usage da.thresh(wc, alpha = .05, max.level = 4, verbose = FALSE, return.thresh = FALSE)
#' @usage hybrid.thresh(wc, max.level = 4, verbose = FALSE, seed = 0)
#' @usage manual.thresh(wc, max.level = 4, value, hard = TRUE)
#' @usage sure.thresh(wc, max.level = 4, hard = TRUE)
#' @usage universal.thresh(wc, max.level = 4, hard = TRUE)
#' @usage universal.thresh.modwt(wc, max.level = 4, hard = TRUE)
#' @aliases Thresholding da.thresh hybrid.thresh manual.thresh sure.thresh
#' universal.thresh universal.thresh.modwt bishrink soft
#' @param wc wavelet coefficients
#' @param alpha level of the hypothesis tests
#' @param max.level maximum level of coefficients to be affected by threshold
#' @param verbose if \code{verbose=TRUE} then information is printed to the
#' screen
#' @param value threshold value (only utilized in \code{manual.thresh})
#' @param hard Boolean value, if \code{hard=F} then soft thresholding is used
#' @param seed sets random seed (only utilized in \code{hybrid.thresh})
#' @param return.thresh if \code{return.thresh=TRUE} then the vector of
#' threshold values is returned, otherwise the surviving wavelet coefficients
#' are returned
#' @return The default output is a list structure, the same length as was
#' input, containing only those wavelet coefficients surviving the threshold.
#' @author B. Whitcher (some code taken from R. Todd Ogden)
#' @references Gencay, R., F. Selcuk and B. Whitcher (2001) \emph{An
#' Introduction to Wavelets and Other Filtering Methods in Finance and
#' Economics}, Academic Press.
#' 
#' Ogden, R. T. (1996) \emph{Essential Wavelets for Statistical Applications
#' and Data Analysis}, Birkhauser.
#' 
#' Percival, D. B. and A. T. Walden (2000) \emph{Wavelet Methods for Time
#' Series Analysis}, Cambridge University Press.
#' 
#' Vidakovic, B. (1999) \emph{Statistical Modeling by Wavelets}, John Wiley and
#' Sons.
#' @keywords ts
manual.thresh <- function(wc, max.level=4, value, hard=TRUE)
{
  wc.fine <- wc[["d1"]]
  factor <- median(abs(wc.fine)) / .6745

  wc.shrink <- wc

  if(hard) {
    # Hard thresholding
    for(i in names(wc)[1:max.level]) {
      wci <- wc[[i]]
      unithresh <- factor * value
      wc.shrink[[i]] <- wci * (abs(wci) > unithresh)
    }
  }
  else {
    # Soft thresholding
    for(i in names(wc)[1:max.level]) {
      wci <- wc[[i]]
      unithresh <- factor * value
      wc.shrink[[i]] <- sign(wci) * (abs(wci) - unithresh) * 
        (abs(wci) > unithresh)
    }
  }
  wc.shrink
}

universal.thresh <- function(wc, max.level=4, hard=TRUE)
{
  n <- length(idwt(wc))

  wc.fine <- wc[["d1"]]
  factor <- median(abs(wc.fine)) / .6745

  wc.shrink <- wc

  if(hard) {
    # Hard thresholding
    for(i in names(wc)[1:max.level]) {
      wci <- wc[[i]]
      unithresh <- factor * sqrt(2 * log(n))
      wc.shrink[[i]] <- wci * (abs(wci) > unithresh)
    }
  }
  else {
    # Soft thresholding
    for(i in names(wc)[1:max.level]) {
      wci <- wc[[i]]
      unithresh <- factor * sqrt(2 * log(n))
      wc.shrink[[i]] <- sign(wci) * (abs(wci) - unithresh) *
        (abs(wci) > unithresh)
    }
  }
  wc.shrink
}

universal.thresh.modwt <- function(wc, max.level=4, hard=TRUE)
{
  n <- length(wc[[1]])
  wc.fine <- wc[["d1"]]
  factor <- sqrt(2) * median(abs(wc.fine)) / .6745
  wc.shrink <- wc
  j <- 1
  if(hard) {
    ## Hard thresholding
    for(i in names(wc)[1:max.level]) {
      wci <- wc[[i]]
      unithresh <- factor * sqrt(2 * log(n)) / 2^(j/2)
      wc.shrink[[i]] <- wci * (abs(wci) > unithresh)
      j <- j+1
    }
  }
  else {
    ## Soft thresholding
    for(i in names(wc)[1:max.level]) {
      wci <- wc[[i]]
      unithresh <- factor * sqrt(2 * log(n)) / 2^(j/2)
      wc.shrink[[i]] <- sign(wci) * (abs(wci) - unithresh) *
        (abs(wci) > unithresh)
      j <- j+1
    }
  }
  wc.shrink
}

sure.thresh <- function(wc, max.level=4, hard=TRUE)
{
  wc.shrink <- wc

  sure <- function(t, x) {
    ax <- sort(abs(x))    
    num <- match(FALSE, ax <= t, nomatch = length(ax) + 1) - 1
    length(ax) - 2 * num + sum(pmin(ax, t)^2)
  }

  for(i in names(wc)[1:max.level]) {
    wci <- wc[[i]]
    ni <- length(wci)
    factor <- median(abs(wci)) / .6745
    xi <- wci / factor
    sxi <- sort(abs(xi))^2
    s <- cumsum(sxi) + ((ni - 1):0) * sxi
    risk <- (ni - (2 * (1:ni)) + s) / ni
    surethresh <- sqrt(sxi[order(risk)[1]])
    if(hard) {
      ## Hard thresholding
      wc.shrink[[i]] <- wci * (abs(xi) > surethresh)
    }
    else {
      ## Soft thresholding
      wc.shrink[[i]] <- sign(wci) * (abs(wci) - factor*surethresh) *
        (abs(xi) > surethresh)
    }
  }
  return(wc.shrink)
}

hybrid.thresh <- function(wc, max.level = 4, verbose = FALSE, seed = 0)
{
  shrinkit <- function(coeffs, thresh)
    sign(coeffs) * pmax(abs(coeffs) - thresh, 0)

  sure <- function(t, x) {
    ax <- sort(abs(x))    
    num <- match(FALSE, ax <= t, nomatch = length(ax) + 1) - 1
    length(ax) - 2 * num + sum(pmin(ax, t)^2)
  }

  wc.shrink <- wc
  n <- length(unlist(wc))
  nlev <- log(n + 1, 2) - 1
  i <- 1
  iloc <- 1
  while(i <= max.level) {
    ## Extract current level coefficients from all wavelet coefficients
    raw <- wc[[names(wc)[i]]]
    d <- length(raw)
    ## Test:  if the variance is small enough, just use threshold sqrt(2logd)
    if((sum(raw^2) - d)/d <= sqrt(i^3/2^i)) {
      if(verbose)
        cat(paste("At level ", i, " the threshhold is sqrt(2log(d)): ", 
                  sqrt(2 * log(d)), "\n", sep = ""))
      wc.shrink[[names(wc)[i]]] <- shrinkit(wc[[names(wc)[i]]], sqrt(2*log(d)))
    }
      else {
        ## Generate random subset
        if(length(seed) != 1)
          .Random.seed <- seed
        Iset <- sort(sample(d, d/2))
        rawI <- raw[Iset] / (median(abs(raw[Iset])) / .6745)
        rawIp <- raw[ - Iset] / (median(abs(raw[ - Iset])) / .6745)
        ggI <- sort(abs(rawI))
        ggIp <- sort(abs(rawIp))        
        ## Calculate SURE for all possible thresholds
        surevecI <- sapply(c(ggI[ggI < sqrt(2 * log(d))], 0,
                             sqrt(2 * log(d))), sure, ggI)
        surevecIp <- sapply(c(ggIp[ggI < sqrt(2 * log(d))], 0, 
                              sqrt(2 * log(d))), sure, ggIp)    
        ## Threshold that minimizes risk
        llI <- length(surevecI)
        llIp <- length(surevecIp)       
        ## The minimum occurs either at sqrt(2logd), 
        if(min(surevecI) == surevecI[llI])
          threshI <- sqrt(2 * log(d))
        else if(min(surevecI) == surevecI[llI - 1])
          threshI <- 0
        else threshI <- ggI[match(min(surevecI), surevecI)]     
        ## or at 0, 
        if(min(surevecIp) == surevecIp[llIp])
          threshIp <- sqrt(2 * log(d))
        else if(min(surevecIp) == surevecI[llIp - 1])
          threshIp <- 0
        else
          threshIp <- ggIp[match(min(surevecIp), surevecIp)]
        ## or at 0, 
        if(verbose) {
          cat(paste("At level ", i, ", threshold1 is ", threshI, "\n",
                    sep = ""))
          cat(paste("At level ", i, ", threshold2 is ", threshIp,
                    "\n", sep = ""))
        }
        ## Perform shrinking
        newI <- shrinkit(rawI, threshIp)
        newIp <- shrinkit(rawIp, threshI)
        new <- rep(0, d)
        new[Iset] <- newI
        new[ - Iset] <- newIp
        wc.shrink[[names(wc)[i]]] <- new
      }
    ## Otherwise, go through all this stuff
    iloc <- iloc + 2^i
    i <- i + 1
  }
  wc.shrink
}

da.thresh <- function(wc, alpha=.05, max.level=4, verbose=FALSE,
                      return.thresh=FALSE) {
  onebyone2 <- function(dat, alpha) {
    kolsmi.chi2 <- function(dat) {
      n <- length(dat)
      return(max(abs(cumsum(dat)-(1:n)*sum(dat)/n))/sqrt(2*n))
    }
    crit <- c(seq(0.28,1.49,by=.01), seq(1.50,2.48,by=.02))
    alph <- c(.999999,.999996,.999991,.999979,.999954,.999909,.999829,
              .999697,.999489,.999174,.998715,.998071,.997192,.996028,
              .994524,.992623,.990270,.987410,.983995,.979978,.975318,
              .969983,.963945,.957186,.949694,.941466,.932503,.922817,
              .912423,.901344,.889605,.877240,.864282,.850771,.836775,
              .822247,.807323,.792013,.776363,.760418,.744220,.727811,
              .711235,.694529,.677735,.660887,.644019,.627167,.610360,
              .593628,.576998,.560495,.544143,.527959,.511970,.496192,
              .480634,.465318,.450256,.435454,.420930,.406684,.392730,
              .379072,.365714,.352662,.339918,.327484,.315364,.303556,
              .292060,.280874,.270000,.259434,.249174,.239220,.229566,
              .220206,.211140,.202364,.193872,.185658,.177718,.170050,
              .162644,.155498,.148606,.141962,.135558,.129388,.123452,
              .117742,.112250,.106970,.101896,.097028,.092352,.087868,
              .083568,.079444,.075495,.071712,.068092,.064630,.061318,
              .058152,.055128,.052244,.049488,.046858,.044350,.041960,
              .039682,.037514,.035448,.033484,.031618,.029842,.028154,
              .026552,.025030,.023588,.022218,.019690,.017422,.015390,
              .013574,.011952,.010508,.009223,.008083,.007072,.006177,
              .005388,.004691,.004078,.003540,.003068,.002654,.002293,
              .001977,.001703,.001464,.001256,.001076,.000921,.000787,
              .000671,.000572,.000484,.000412,.000350,.000295,.000250,
              .000210,.000178,.000148,.000126,.000104,.000088,.000074,
              .000060,.000051,.000042,.000035,.000030,.000024,.000020,
              .000016,.000013,.000011,.000009)
    if(alpha < min(alph) || alpha > max(alph))
      stop("alpha =",alpha,"is out of range")
    ind <- match(TRUE, alpha > alph)
    critval <- crit[ind-1]+(alph[ind-1]-alpha)*(crit[ind]-crit[ind-1]) / 
      (alph[ind-1]-alph[ind])
    i <- length(dat)
    cc <- kolsmi.chi2(dat)
    while(cc[length(cc)] > critval && i > 1) {
      i <- i-1
      cc <- c(cc,kolsmi.chi2(dat[sort(order(dat)[1:i])]))
    }
    return(cc)
  }
  getthrda2 <- function(dat, alpha) {
    a <- onebyone2(dat, alpha)
    if(length(a) == length(dat))
      if(1 - pchisq(min(dat),1) < alpha)
        ggg <- 0
      else
        ggg <- sqrt(min(dat))
    else
      ggg <- sqrt(max(dat[sort(order(dat)[1:(length(dat)-length(a)+1)])]))
    return(ggg)
  }
  shrinkit <- function(coeffs, thresh)
    sign(coeffs) * pmax(abs(coeffs) - thresh, 0)

  if(alpha <= .000009 || alpha >= .999999)
    stop("alpha out of range")
  ans <- wc
  n <- length(unlist(wc))
  nlev <- log(n+1, 2)-1
  i <- 1
  iloc <- 1
  while(i <= max.level) {
    gg <- wc[[names(wc)[i]]]
    thresh <- getthrda2(gg^2,alpha)
    if(verbose)
      cat(paste("At level ",i,", the threshold is ",thresh, "\n",sep=""))
    if(return.thresh)
      if(i == nlev)
        rt <- thresh
      else
        rt <- c(thresh, rt)
    else
      ans[[names(wc)[i]]] <- shrinkit(wc[[names(wc)[i]]], thresh)
    iloc <- iloc + 2^i
    i <- i+1
  }
  if(return.thresh)
    return(rt)
  else
    return(ans)
}