1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
#' (Inverse) Discrete Wavelet Packet Transforms
#'
#' All possible filtering combinations (low- and high-pass) are performed to
#' decompose a vector or time series. The resulting coefficients are
#' associated with a binary tree structure corresponding to a partitioning of
#' the frequency axis.
#'
#' The code implements the one-dimensional DWPT using the pyramid algorithm
#' (Mallat, 1989).
#'
#' @usage dwpt(x, wf = "la8", n.levels = 4, boundary = "periodic")
#' @usage idwpt(y, y.basis)
#' @aliases dwpt idwpt modwpt
#' @param x a vector or time series containing the data be to decomposed. This
#' must be a dyadic length vector (power of 2).
#' @param wf Name of the wavelet filter to use in the decomposition. By
#' default this is set to \code{"la8"}, the Daubechies orthonormal compactly
#' supported wavelet of length L=8 (Daubechies, 1992), least asymmetric family.
#' @param n.levels Specifies the depth of the decomposition.This must be a
#' number less than or equal to
#' \eqn{\log(\mbox{length}(x),2)}{log2[length(x)]}.
#' @param boundary Character string specifying the boundary condition. If
#' \code{boundary=="periodic"} the default, then the vector you decompose is
#' assumed to be periodic on its defined interval,\cr if
#' \code{boundary=="reflection"}, the vector beyond its boundaries is assumed
#' to be a symmetric reflection of itself.
#' @param y Object of S3 class \code{dwpt}.
#' @param y.basis Vector of character strings that describe leaves on the DWPT
#' basis tree.
#' @return Basically, a list with the following components
#' \item{w?.?}{Wavelet coefficient vectors. The first index is associated with
#' the scale of the decomposition while the second is associated with the
#' frequency partition within that level.}
#' \item{wavelet}{Name of the wavelet filter used.}
#' \item{boundary}{How the boundaries were handled.}
#' @author B. Whitcher
#' @seealso \code{\link{dwt}}, \code{\link{modwpt}}, \code{\link{wave.filter}}.
#' @references Mallat, S. G. (1989) A theory for multiresolution signal
#' decomposition: the wavelet representation, \emph{IEEE Transactions on
#' Pattern Analysis and Machine Intelligence}, \bold{11}(7), 674--693.
#'
#' Percival, D. B. and A. T. Walden (2000) \emph{Wavelet Methods for Time
#' Series Analysis}, Cambridge University Press.
#'
#' Wickerhauser, M. V. (1994) \emph{Adapted Wavelet Analysis from Theory to
#' Software}, A K Peters.
#' @keywords ts
#' @examples
#'
#' data(mexm)
#' J <- 4
#' mexm.mra <- mra(log(mexm), "mb8", J, "modwt", "reflection")
#' mexm.nomean <- ts(
#' apply(matrix(unlist(mexm.mra), ncol=J+1, byrow=FALSE)[,-(J+1)], 1, sum),
#' start=1957, freq=12)
#' mexm.dwpt <- dwpt(mexm.nomean[-c(1:4)], "mb8", 7, "reflection")
#'
#' @export dwpt
dwpt <- function(x, wf="la8", n.levels=4, boundary="periodic") {
N <- length(x)
J <- n.levels
if(N/2^J != trunc(N/2^J))
stop("Sample size is not a power of 2")
if(2^J > N)
stop("wavelet transform exceeds sample size in dwt")
dict <- wave.filter(wf)
L <- dict$length
storage.mode(L) <- "integer"
h <- dict$hpf
storage.mode(h) <- "double"
g <- dict$lpf
storage.mode(g) <- "double"
y <- vector("list", sum(2^(1:J)))
crystals1 <- rep(1:J, 2^(1:J))
crystals2 <- unlist(apply(as.matrix(2^(1:J) - 1), 1, seq, from=0))
names(y) <- paste("w", crystals1, ".", crystals2, sep="")
for(j in 1:J) {
jj <- min((1:length(crystals1))[crystals1 == j])
for(n in 0:(2^j/2-1)) {
if(j > 1)
x <- y[[(1:length(crystals1))[crystals1 == j-1][n+1]]]
W <- V <- numeric(N/2^j)
if(n %% 2 == 0) {
z <- .C(C_dwt, as.double(x), as.integer(N/2^(j-1)), L, h, g,
W=as.double(W), V=as.double(V))
y[[jj + 2*n + 1]] <- z$W
y[[jj + 2*n]] <- z$V
}
else {
z <- .C(C_dwt, as.double(x), as.integer(N/2^(j-1)), L, h, g,
W=as.double(W), V=as.double(V))
y[[jj + 2*n]] <- z$W
y[[jj + 2*n + 1 ]] <- z$V
}
}
}
attr(y, "wavelet") <- wf
return(y)
}
idwpt <- function(y, y.basis)
{
J <- trunc(log(length(y), 2))
dict <- wave.filter(attributes(y)$wavelet)
L <- dict$length
storage.mode(L) <- "integer"
h <- dict$hpf
storage.mode(h) <- "double"
g <- dict$lpf
storage.mode(g) <- "double"
for(j in J:1) {
a <- min((1:length(rep(1:J, 2^(1:J))))[rep(1:J, 2^(1:J)) == j])
b <- max((1:length(rep(1:J, 2^(1:J))))[rep(1:J, 2^(1:J)) == j])
n <- a
while(n <= b) {
if(y.basis[n]) {
m <- length(y[[n]])
XX <- numeric(2 * m)
if(floor((n-a)/2) %% 2 == 0)
X <- .C(C_idwt, as.double(y[[n+1]]), as.double(y[[n]]),
as.integer(m), L, h, g, out=as.double(XX))$out
else
X <- .C(C_idwt, as.double(y[[n]]), as.double(y[[n+1]]),
as.integer(m), L, h, g, out=as.double(XX))$out
if(j != 1) {
y[[a-(b-a+1)/2 + (n-a)/2]] <- X
y.basis[[a-(b-a+1)/2 + (n-a)/2]] <- 1
}
n <- n + 2
}
else { n <- n + 1 }
}
}
return(X)
}
##plot.dwpt <- function(x, n.levels, pgrid=TRUE)
##{
## J <- n.levels
## scales <- rep(1:J, 2^(1:J))
## y <- matrix(NA, 2*length(x[[1]]), J)
## for(j in 1:J) {
## a <- min((1:length(scales))[scales == j])
## b <- max((1:length(scales))[scales == j])
## y[, j] <- unlist(x[a:b])
## x.length <- length(y[, j])
## }
## plot(ts(y), ylim=c(-.45,.45))
## if(pgrid) {
## lines(x.length * c(0,1), c(0,0), lty=2)
## for(j in 1:J) {
## lines(x.length * c(0,1), c(-j,-j), lty=2)
## for(n in 0:2^j) lines(x.length * c(n/2^j, n/2^j), c(-j,-(j-1)), lty=2)
## }
## }
## title(ylab="Level")
##}
#' Produce Boolean Vector from Wavelet Basis Names
#'
#' Produce a vector of zeros and ones from a vector of basis names.
#'
#' None.
#'
#' @param x Output from the discrete wavelet package transfrom (DWPT).
#' @param basis.names Vector of character strings that describe leaves on the
#' DWPT basis tree. See the examples below for appropriate syntax.
#' @return Vector of zeros and ones.
#' @seealso \code{\link{dwpt}}.
#' @keywords ts
#' @examples
#'
#' data(acvs.andel8)
#' \dontrun{
#' x <- hosking.sim(1024, acvs.andel8[,2])
#' x.dwpt <- dwpt(x, "la8", 7)
#' ## Select orthonormal basis from wavelet packet tree
#' x.basis <- basis(x.dwpt, c("w1.1","w2.1","w3.0","w4.3","w5.4","w6.10",
#' "w7.22","w7.23"))
#' for(i in 1:length(x.dwpt))
#' x.dwpt[[i]] <- x.basis[i] * x.dwpt[[i]]
#' ## Resonstruct original series using selected orthonormal basis
#' y <- idwpt(x.dwpt, x.basis)
#' par(mfrow=c(2,1), mar=c(5-1,4,4-1,2))
#' plot.ts(x, xlab="", ylab="", main="Original Series")
#' plot.ts(y, xlab="", ylab="", main="Reconstructed Series")
#' }
#'
#' @export basis
basis <- function(x, basis.names)
{
m <- length(x)
n <- length(basis.names)
y <- numeric(m)
for(i in 1:n) { y <- y + as.integer(names(x) == basis.names[i]) }
return(y)
}
#' Derive Orthonormal Basis from Wavelet Packet Tree
#'
#' An orthonormal basis for the discrete wavelet transform may be characterized
#' via a disjoint partitioning of the frequency axis that covers
#' \eqn{[0,\frac{1}{2})}{[0,1/2)}. This subroutine produces an orthonormal
#' basis from a full wavelet packet tree.
#'
#' A wavelet packet tree is a binary tree of Boolean variables. Parent nodes
#' are removed if any of their children exist.
#'
#' @param xtree is a vector whose entries are associated with a wavelet packet
#' tree.
#' @return Boolean vector describing the orthonormal basis for the DWPT.
#' @author B. Whitcher
#' @keywords ts
#' @examples
#'
#' data(japan)
#' J <- 4
#' wf <- "mb8"
#' japan.mra <- mra(log(japan), wf, J, boundary="reflection")
#' japan.nomean <-
#' ts(apply(matrix(unlist(japan.mra[-(J+1)]), ncol=J, byrow=FALSE), 1, sum),
#' start=1955, freq=4)
#' japan.nomean2 <- ts(japan.nomean[42:169], start=1965.25, freq=4)
#' plot(japan.nomean2, type="l")
#' japan.dwpt <- dwpt(japan.nomean2, wf, 6)
#' japan.basis <-
#' ortho.basis(portmanteau.test(japan.dwpt, p=0.01, type="other"))
#' # Not implemented yet
#' # par(mfrow=c(1,1))
#' # plot.basis(japan.basis)
#'
#' @export ortho.basis
ortho.basis <- function(xtree) {
J <- trunc(log(length(xtree), 2))
X <- vector("list", J)
X[[1]] <- xtree[rep(1:J, 2^(1:J)) == 1]
for(i in 2:J) {
for(j in i:J) {
if(i == 2) X[[j]] <- xtree[rep(1:J, 2^(1:J)) == j]
X[[j]] <- X[[j]] + 2 * c(apply(matrix(xtree[rep(1:J, 2^(1:J)) == i-1]),
1, rep, 2^(j-i+1)))
}
}
X[[J]][X[[J]] == 0] <- 1
ifelse(unlist(X) == 1, 1, 0)
}
##plot.basis <- function(xtree)
##{
## J <- trunc(log(length(xtree), base=2))
## j <- rep(1:J, 2^(1:J))
## n <- unlist(apply(matrix(2^(1:J)-1), 1, seq, from=0))
## basis <- ifelse(xtree, paste("w", j, ".", n, sep=""), NA)
## pgrid.plot(basis[basis != "NA"])
## invisible()
##}
phase.shift.packet <- function(z, wf, inv=FALSE)
{
## Center of energy
coe <- function(g)
sum(0:(length(g)-1) * g^2) / sum(g^2)
J <- length(z) - 1
g <- wave.filter(wf)$lpf
h <- wave.filter(wf)$hpf
if(!inv) {
for(j in 1:J) {
ph <- round(2^(j-1) * (coe(g) + coe(h)) - coe(g), 0)
Nj <- length(z[[j]])
z[[j]] <- c(z[[j]][(ph+1):Nj], z[[j]][1:ph])
}
ph <- round((2^J-1) * coe(g), 0)
J <- J + 1
z[[J]] <- c(z[[J]][(ph+1):Nj], z[[J]][1:ph])
} else {
for(j in 1:J) {
ph <- round(2^(j-1) * (coe(g) + coe(h)) - coe(g), 0)
Nj <- length(z[[j]])
z[[j]] <- c(z[[j]][(Nj-ph+1):Nj], z[[j]][1:(Nj-ph)])
}
ph <- round((2^J-1) * coe(g), 0)
J <- J + 1
z[[J]] <- c(z[[j]][(Nj-ph+1):Nj], z[[j]][1:(Nj-ph)])
}
return(z)
}
modwpt <- function(x, wf="la8", n.levels=4, boundary="periodic")
{
N <- length(x); storage.mode(N) <- "integer"
J <- n.levels
if(2^J > N) stop("wavelet transform exceeds sample size in modwt")
dict <- wave.filter(wf)
L <- dict$length
storage.mode(L) <- "integer"
ht <- dict$hpf/sqrt(2)
storage.mode(ht) <- "double"
gt <- dict$lpf/sqrt(2)
storage.mode(gt) <- "double"
y <- vector("list", sum(2^(1:J)))
yn <- length(y)
crystals1 <- rep(1:J, 2^(1:J))
crystals2 <- unlist(apply(as.matrix(2^(1:J) - 1), 1, seq, from=0))
names(y) <- paste("w", crystals1, ".", crystals2, sep="")
W <- V <- numeric(N)
storage.mode(W) <- storage.mode(V) <- "double"
for(j in 1:J) {
index <- 0
jj <- min((1:yn)[crystals1 == j])
for(n in 0:(2^j / 2 - 1)) {
index <- index + 1
if(j > 1)
x <- y[[(1:yn)[crystals1 == j-1][index]]]
if(n %% 2 == 0) {
z <- .C(C_modwt, as.double(x), N, as.integer(j), L, ht, gt,
W = W, V = V)[7:8]
y[[jj + 2*n + 1]] <- z$W
y[[jj + 2*n]] <- z$V
}
else {
z <- .C(C_modwt, as.double(x), N, as.integer(j), L, ht, gt,
W = W, V = V)[7:8]
y[[jj + 2*n]] <- z$W
y[[jj + 2*n + 1 ]] <- z$V
}
}
}
attr(y, "wavelet") <- wf
return(y)
}
dwpt.brick.wall <- function(x, wf, n.levels, method="modwpt")
{
N <- length(x[[1]])
m <- wave.filter(wf)$length
J <- n.levels
crystals1 <- rep(1:J, 2^(1:J))
crystals2 <- unlist(apply(as.matrix(2^(1:J) - 1), 1, seq, from=0))
if(method=="dwpt") {
## for DWPT
for(j in 1:J) {
jj <- min((1:length(crystals1))[crystals1 == j])
L <- switch(j,
(m-2)/2,
((m-2)/2 + floor(m/4)),
((m-2)/2 + floor((m/2 + floor(m/4))/2)))
if(is.null(L)) L <- (m-2)
for(n in 0:(2^j-1))
x[[jj+n]][1:L] <- NA
}
}
else {
## for MODWPT
for(j in 1:J) {
jj <- min((1:length(crystals1))[crystals1 == j])
L <- min((2^j - 1) * (m - 1), N)
for(n in 0:(2^j-1))
x[[jj+n]][1:L] <- NA
}
}
return(x)
}
#' Testing the Wavelet Packet Tree for White Noise
#'
#' A wavelet packet tree, from the discrete wavelet packet transform (DWPT), is
#' tested node-by-node for white noise. This is the first step in selecting an
#' orthonormal basis for the DWPT.
#'
#' Top-down recursive testing of the wavelet packet tree is
#'
#' @usage cpgram.test(y, p = 0.05, taper = 0.1)
#' @usage css.test(y)
#' @usage entropy.test(y)
#' @usage portmanteau.test(y, p = 0.05, type = "Box-Pierce")
#' @aliases cpgram.test css.test entropy.test portmanteau.test
#' @param y wavelet packet tree (from the DWPT)
#' @param p significance level
#' @param taper weight of cosine bell taper (\code{cpgram.test} only)
#' @param type \code{"Box-Pierce"} and \code{other} recognized
#' (\code{portmanteau.test} only)
#' @return Boolean vector of the same length as the number of nodes in the
#' wavelet packet tree.
#' @author B. Whitcher
#' @seealso \code{\link{ortho.basis}}.
#' @references Brockwell and Davis (1991) \emph{Time Series: Theory and
#' Methods}, (2nd. edition), Springer-Verlag.
#'
#' Brown, Durbin and Evans (1975) Techniques for testing the constancy of
#' regression relationships over time, \emph{Journal of the Royal Statistical
#' Society B}, \bold{37}, 149-163.
#'
#' Percival, D. B., and A. T. Walden (1993) \emph{Spectral Analysis for
#' Physical Applications: Multitaper and Conventional Univariate Techniques},
#' Cambridge University Press.
#' @keywords ts
#' @examples
#'
#' data(mexm)
#' J <- 6
#' wf <- "la8"
#' mexm.dwpt <- dwpt(mexm[-c(1:4)], wf, J)
#' ## Not implemented yet
#' ## plot.dwpt(x.dwpt, J)
#' mexm.dwpt.bw <- dwpt.brick.wall(mexm.dwpt, wf, 6, method="dwpt")
#' mexm.tree <- ortho.basis(portmanteau.test(mexm.dwpt.bw, p=0.025))
#' ## Not implemented yet
#' ## plot.basis(mexm.tree)
#'
css.test <- function(y)
{
K <- length(y)
test <- numeric(K)
for(k in 1:K) {
x <- y[[k]]
x <- x[!is.na(x)]
n <- length(x)
plus <- 1:n/(n - 1) - cumsum(x^2)/sum(x^2)
minus <- cumsum(x^2)/sum(x^2) - 0:(n - 1)/(n - 1)
D <- max(abs(plus), abs(minus))
if(D < 1.224/(sqrt(n) + 0.12 + 0.11/sqrt(n))) test[k] <- 1
}
return(test)
}
entropy.test <- function(y)
{
K <- length(y)
test <- numeric(K)
for(k in 1:K) {
x <- y[[k]]
test[k] <- sum(x^2 * log(x^2), na.rm=TRUE)
}
return(test)
}
cpgram.test <- function(y, p=0.05, taper=0.1)
{
K <- length(y)
test <- numeric(K)
for(k in 1:K) {
x <- y[[k]]
x <- x[!is.na(x)]
x <- spec.taper(scale(x, center=TRUE, scale=FALSE), p=taper)
y <- Mod(fft(x))^2/length(x)
y[1] <- 0
n <- length(x)
x <- (0:(n/2))/n
if(length(x) %% 2 == 0) {
n <- length(x) - 1
y <- y[1:n]
x <- x[1:n]
}
else y <- y[1:length(x)]
mp <- length(x) - 1
if(p == 0.05)
crit <- 1.358/(sqrt(mp) + 0.12 + 0.11/sqrt(mp))
else {
if(p == 0.01) crit <- 1.628/(sqrt(mp) + 0.12 + 0.11/sqrt(mp))
else stop("critical value is not known")
}
D <- abs(cumsum(y)/sum(y) - 0:mp/mp)
if(max(D) < crit) test[k] <- 1
}
return(test)
}
portmanteau.test <- function(y, p = 0.05, type = "Box-Pierce")
{
K <- length(y)
test <- numeric(K)
for(k in 1:K) {
x <- y[[k]]
x <- x[!is.na(x)]
n <- length(x)
h <- trunc(n/2)
x.acf <- my.acf(x)[1:(h+1)]
x.acf <- x.acf / x.acf[1];
if(type == "Box-Pierce")
test[k] <- ifelse(n * sum((x.acf[-1])^2) > qchisq(1-p, h), 0, 1)
else
test[k] <- ifelse(n*(n+2) * sum((x.acf[-1])^2 / (n - h:1)) >
qchisq(1-p, h), 0, 1)
}
return(test)
}
|