1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#' Rotated Cumulative Variance
#'
#' Provides the normalized cumulative sums of squares from a sequence of
#' coefficients with the diagonal line removed.
#'
#' The rotated cumulative variance, when plotted, provides a qualitative way to
#' study the time dependence of the variance of a series. If the variance is
#' stationary over time, then only small deviations from zero should be
#' present. If on the other hand the variance is non-stationary, then large
#' departures may exist. Formal hypothesis testing may be performed based on
#' boundary crossings of Brownian bridge processes.
#'
#' @param x vector of coefficients to be cumulatively summed (missing values
#' excluded)
#' @return Vector of coefficients that are the sumulative sum of squared input
#' coefficients.
#' @author B. Whitcher
#' @references Gencay, R., F. Selcuk and B. Whitcher (2001) \emph{An
#' Introduction to Wavelets and Other Filtering Methods in Finance and
#' Economics}, Academic Press.
#'
#' Percival, D. B. and A. T. Walden (2000) \emph{Wavelet Methods for Time
#' Series Analysis}, Cambridge University Press.
#' @keywords ts
#' @export rotcumvar
rotcumvar <- function(x) {
x <- x[!is.na(x)]
n <- length(x)
plus <- 1:n/(n-1) - cumsum(x^2)/sum(x^2)
minus <- cumsum(x^2)/sum(x^2) - 0:(n-1)/(n-1)
pmax(abs(plus), abs(minus))
}
#' Testing for Homogeneity of Variance
#'
#' A recursive algorithm for detecting and locating multiple variance change
#' points in a sequence of random variables with long-range dependence.
#'
#' For details see Section 9.6 of Percival and Walden (2000) or Section 7.3 in
#' Gencay, Selcuk and Whitcher (2001).
#'
#' @param x Sequence of observations from a (long memory) time series.
#' @param wf Name of the wavelet filter to use in the decomposition.
#' @param J Specifies the depth of the decomposition. This must be a number
#' less than or equal to \eqn{\log(\mbox{length}(x),2)}{log(length(x),2)}.
#' @param min.coef Minimum number of wavelet coefficients for testing purposes.
#' Empirical results suggest that 128 is a reasonable number in order to apply
#' asymptotic critical values.
#' @param debug Boolean variable: if set to \code{TRUE}, actions taken by the
#' algorithm are printed to the screen.
#' @return Matrix whose columns include (1) the level of the wavelet transform
#' where the variance change occurs, (2) the value of the test statistic, (3)
#' the DWT coefficient where the change point is located, (4) the MODWT
#' coefficient where the change point is located. Note, there is currently no
#' checking that the MODWT is contained within the associated support of the
#' DWT coefficient. This could lead to incorrect estimates of the location of
#' the variance change.
#' @author B. Whitcher
#' @seealso \code{\link{dwt}}, \code{\link{modwt}}, \code{\link{rotcumvar}},
#' \code{\link{mult.loc}}.
#' @references Gencay, R., F. Selcuk and B. Whitcher (2001) \emph{An
#' Introduction to Wavelets and Other Filtering Methods in Finance and
#' Economics}, Academic Press.
#'
#' Percival, D. B. and A. T. Walden (2000) \emph{Wavelet Methods for Time
#' Series Analysis}, Cambridge University Press.
#' @keywords ts
#' @export testing.hov
testing.hov <- function(x, wf, J, min.coef=128, debug=FALSE) {
n <- length(x)
change.points <- NULL
x.dwt <- dwt(x, wf, J)
x.dwt.bw <- brick.wall(x.dwt, wf, method="dwt")
x.modwt <- modwt(x, wf, J)
x.modwt.bw <- brick.wall(x.modwt, wf)
for(j in 1:J) {
cat("##### Level ", j, " #####", fill=TRUE)
Nj <- n/2^j
dwt.list <- list(dwt = (x.dwt.bw[[j]])[!is.na(x.dwt.bw[[j]])],
left = min((1:Nj)[!is.na(x.dwt.bw[[j]])]) + 1,
right = sum(!is.na(x.dwt.bw[[j]])))
modwt.list <- list(modwt = (x.modwt.bw[[j]])[!is.na(x.modwt.bw[[j]])],
left = min((1:n)[!is.na(x.modwt.bw[[j]])]) + 1,
right = sum(!is.na(x.modwt.bw[[j]])))
if(debug) cat("Starting recursion; using", dwt.list$left,
"to", dwt.list$right - 1, "... ")
change.points <-
rbind(change.points,
mult.loc(dwt.list, modwt.list, wf, j, min.coef, debug))
}
dimnames(change.points) <-
list(NULL, c("level", "crit.value", "loc.dwt", "loc.modwt"))
return(change.points)
}
#' Wavelet-based Testing and Locating for Variance Change Points
#'
#' This is the major subroutine for \code{\link{testing.hov}}, providing the
#' workhorse algorithm to recursively test and locate multiple variance changes
#' in so-called long memory processes.
#'
#' For details see Section 9.6 of Percival and Walden (2000) or Section 7.3 in
#' Gencay, Selcuk and Whitcher (2001).
#'
#' @param dwt.list List of wavelet vector coefficients from the \code{dwt}.
#' @param modwt.list List of wavelet vector coefficients from the \code{modwt}.
#' @param wf Name of the wavelet filter to use in the decomposition.
#' @param level Specifies the depth of the decomposition.
#' @param min.coef Minimum number of wavelet coefficients for testing purposes.
#' @param debug Boolean variable: if set to \code{TRUE}, actions taken by the
#' algorithm are printed to the screen.
#' @return Matrix.
#' @author B. Whitcher
#' @seealso \code{\link{rotcumvar}}, \code{\link{testing.hov}}.
#' @references Gencay, R., F. Selcuk and B. Whitcher (2001) \emph{An
#' Introduction to Wavelets and Other Filtering Methods in Finance and
#' Economics}, Academic Press.
#'
#' Percival, D. B. and A. T. Walden (2000) \emph{Wavelet Methods for Time
#' Series Analysis}, Cambridge University Press.
#' @keywords ts
#' @export mult.loc
mult.loc <- function(dwt.list, modwt.list, wf, level, min.coef, debug)
{
Nj <- length(dwt.list$dwt)
N <- length(modwt.list$modwt)
crit <- 1.358
change.points <- NULL
if(Nj > min.coef) {
## test statistic using the DWT
P <- cumsum(dwt.list$dwt^2) / sum(dwt.list$dwt^2)
test.stat <- pmax((1:Nj) / (Nj-1) - P, P - (1:Nj - 1) / (Nj-1))
loc.dwt <- (1:Nj)[max(test.stat) == test.stat]
test.stat <- max(test.stat)
## location using the MODWT
P <- cumsum(modwt.list$modwt^2) / sum(modwt.list$modwt^2)
loc.stat <- pmax((1:N) / (N-1) - P, P - (1:N - 1) / (N-1))
loc.modwt <- (1:N)[max(loc.stat) == loc.stat]
if(test.stat > sqrt(2) * crit / sqrt(Nj)) {
if(debug) cat("Accepted!", fill=TRUE)
## Left
if(debug) cat("Going left; using", dwt.list$left,
"to", loc.dwt + dwt.list$left - 1, "... ")
temp.dwt.list <- list(dwt = dwt.list$dwt[1:(loc.dwt-1)],
left = dwt.list$left,
right = loc.dwt + dwt.list$left - 1)
temp.modwt.list <- list(modwt = modwt.list$modwt[1:(loc.modwt-1)],
left = modwt.list$left,
right = loc.modwt + modwt.list$left - 1)
change.points <-
rbind(c(level, test.stat, loc.dwt + dwt.list$left,
loc.modwt + modwt.list$left),
Recall(temp.dwt.list, temp.modwt.list, wf, level, min.coef, debug))
## Right
if(debug) cat("Going right; using", loc.dwt + dwt.list$left + 1,
"to", dwt.list$right, "... ")
temp.dwt.list <- list(dwt = dwt.list$dwt[(loc.dwt+1):Nj],
left = loc.dwt + dwt.list$left + 1,
right = dwt.list$right)
temp.modwt.list <- list(modwt = modwt.list$modwt[(loc.modwt+1):N],
left = loc.modwt + modwt.list$left + 1,
right = modwt.list$right)
change.points <-
rbind(change.points,
Recall(temp.dwt.list, temp.modwt.list, wf, level, min.coef, debug))
}
else
if(debug) cat("Rejected!", fill=TRUE)
}
else
if(debug) cat("Sample size does not exceed ", min.coef, "!",
sep="", fill=TRUE)
return(change.points)
}
|