1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#' Spectral Density Functions for Long-Memory Processes
#'
#' Draws the spectral density functions (SDFs) for standard long-memory
#' processes including fractional difference (FD), seasonal persistent (SP),
#' and seasonal fractional difference (SFD) processes.
#'
#'
#' @usage fdp.sdf(freq, d, sigma2 = 1)
#' @usage spp.sdf(freq, d, fG, sigma2 = 1)
#' @usage spp2.sdf(freq, d1, f1, d2, f2, sigma2 = 1)
#' @usage sfd.sdf(freq, s, d, sigma2 = 1)
#' @aliases fdp.sdf spp.sdf spp2.sdf sfd.sdf
#' @param freq vector of frequencies, normally from 0 to 0.5
#' @param d,d1,d2 fractional difference parameter
#' @param fG,f1,f2 Gegenbauer frequency
#' @param s seasonal parameter
#' @param sigma2 innovations variance
#' @return The power spectrum from an FD, SP or SFD process.
#' @author B. Whitcher
#' @seealso \code{\link{fdp.mle}}, \code{\link{spp.mle}}.
#' @keywords ts
#' @examples
#'
#' dB <- function(x) 10 * log10(x)
#'
#' fdp.main <- expression(paste("FD", group("(",d==0.4,")")))
#' sfd.main <- expression(paste("SFD", group("(",list(s==12, d==0.4),")")))
#' spp.main <- expression(paste("SPP",
#' group("(",list(delta==0.4, f[G]==1/12),")")))
#'
#' freq <- 0:512/1024
#'
#' par(mfrow=c(2,2), mar=c(5-1,4,4-1,2), col.main="darkred")
#' plot(freq, dB(fdp.sdf(freq, .4)), type="l", xlab="frequency",
#' ylab="spectrum (dB)", main=fdp.main)
#' plot(freq, dB(spp.sdf(freq, .4, 1/12)), type="l", xlab="frequency",
#' ylab="spectrum (dB)", font.main=1, main=spp.main)
#' plot(freq, dB(sfd.sdf(freq, 12, .4)), type="l", xlab="frequency",
#' ylab="spectrum (dB)", main=sfd.main)
fdp.sdf <- function(freq, d, sigma2 = 1)
sigma2 / ((2 * sin(pi * freq)) ^ 2) ^ d
bandpass.fdp <- function(a, b, d)
2 * integrate(fdp.sdf, lower = a, upper = b, d = d)$value
spp.sdf <- function(freq, d, fG, sigma2 = 1)
sigma2 * abs(2 * (cos(2 * pi * freq) - cos(2 * pi * fG))) ^ (-2 * d)
spp2.sdf <- function(freq, d1, f1, d2, f2, sigma2 = 1) {
sigma2 * abs(2 * (cos(2 * pi * freq) - cos(2 * pi * f1))) ^ (-2 * d1) *
abs(2 * (cos(2 * pi * freq) - cos(2 * pi * f2))) ^ (-2 * d2)
}
sfd.sdf <- function(freq, s, d, sigma2=1)
sigma2 / (2 * (1 - cos(s * 2 * pi * freq))) ^ d
bandpass.spp <- function(a, b, d, fG) {
if (fG > a && fG < b) {
result1 <- integrate(spp.sdf, lower=a, upper=fG, d=d, fG=fG)$value
result2 <- integrate(spp.sdf, lower=fG, upper=b, d=d, fG=fG)$value
}
else {
result1 <- integrate(spp.sdf, lower=a, upper=b, d=d, fG=fG)$value
result2 <- 0
}
return(2*(result1 + result2))
}
bandpass.spp2 <- function(a, b, d1, f1, d2, f2) {
a1 <- a
b1 <- b
if(a1 < f1 && b1 > f2) {
a2 <- f1
b2 <- f2
result1 <- integrate(spp2.sdf, a1, a2, d1=d1, f1=f1, d2=d2, f2=f2)$value
result2 <- integrate(spp2.sdf, a1, b2, d1=d1, f1=f1, d2=d2, f2=f2)$value
result3 <- integrate(spp2.sdf, b2, b1, d1=d1, f1=f1, d2=d2, f2=f2)$value
}
else {
if (a1 < f1 && b1 < f2) {
a2 <- f1
result1 <- integrate(spp2.sdf, a1, a2, d1=d1, f1=f1, d2=d2, f2=f2)$value
result2 <- integrate(spp2.sdf, a2, b1, d1=d1, f1=f1, d2=d2, f2=f2)$value
result3 <- 0
}
else {
if (a1 < f1 && b1 > f1 && b1 < f2) {
a2 <- f1
result1 <- integrate(spp2.sdf, a1, a2, d1=d1, f1=f1, d2=d2, f2=f2)$value
result2 <- integrate(spp2.sdf, a2, b1, d1=d1, f1=f1, d2=d2, f2=f2)$value
result3 <- 0
}
else {
if (a1 > f1 && a1 < f2 && b1 > f2) {
a2 <- f2
result1 <- integrate(spp2.sdf, a1, a2, d1=d1, f1=f1, d2=d2, f2=f2)$value
result2 <- integrate(spp2.sdf, a2, b1, d1=d1, f1=f1, d2=d2, f2=f2)$value
result3 <- 0
}
else {
result1 <- integrate(spp2.sdf, a1, b1, d1=d1, f1=f1, d2=d2, f2=f2)$value
result2 <- 0
result3 <- 0
}
}
}
}
return(2 * (result1 + result2 + result3))
}
#' Variance of a Seasonal Persistent Process
#'
#' Computes the variance of a seasonal persistent (SP) process using a
#' hypergeometric series expansion.
#'
#' See Lapsa (1997). The subroutine to compute a hypergeometric series was
#' taken from \emph{Numerical Recipes in C}.
#'
#' @usage spp.var(d, fG, sigma2 = 1)
#' @usage Hypergeometric(a, b, c, z)
#' @aliases spp.var Hypergeometric
#' @param d Fractional difference parameter.
#' @param fG Gegenbauer frequency.
#' @param sigma2 Innovations variance.
#' @param a,b,c,z Parameters for the hypergeometric series.
#' @return The variance of an SP process.
#' @author B. Whitcher
#' @references Lapsa, P.M. (1997) Determination of Gegenbauer-type random
#' process models. \emph{Signal Processing} \bold{63}, 73-90.
#'
#' Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992)
#' \emph{Numerical Recipes in C}, 2nd edition, Cambridge University Press.
#' @keywords ts
#' @export spp.var
spp.var <- function(d, fG, sigma2 = 1) {
## Hypergeometric series representation of the variance taken from
## Lapsa (1997)
omega <- 2 * pi * fG
A <- sigma2 / 2 / sqrt(pi) * gamma(1 - 2 * d) / gamma(3 / 2 - 2 * d) * sin(omega) ^(1 - 4 * d)
P1 <- Hypergeometric(1 - 2 * d, 1 - 2 * d, 3 / 2 - 2 * d, sin(omega / 2) ^ 2)
P2 <- Hypergeometric(1 - 2 * d, 1 - 2 * d, 3 / 2 - 2 * d, cos(omega / 2) ^ 2)
return(A * (P1 + P2))
}
Hypergeometric <- function(a, b, c, z) {
## Recursive implementation taken from Numerical Recipes in C (6.12)
## Press, Teukolsky, Vetterling and Flannery (1992)
fac <- 1
temp <- fac
aa <- a
bb <- b
cc <- c
for (n in 1:1000) {
fac <- fac * (aa * bb) / cc
fac <- fac * z / n
series <- temp + fac
if (series == temp)
return(series)
temp <- series
aa <- aa + 1
bb <- bb + 1
cc <- cc + 1
}
stop("convergence failure in Hypergeometric")
}
|