1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#' Wavelet-based Maximum Likelihood Estimation for Seasonal Persistent
#' Processes
#'
#' Parameter estimation for a seasonal persistent (seasonal long-memory)
#' process is performed via maximum likelihood on the wavelet coefficients.
#'
#' The variance-covariance matrix of the original time series is approximated
#' by its wavelet-based equivalent. A Whittle-type likelihood is then
#' constructed where the sums of squared wavelet coefficients are compared to
#' bandpass filtered version of the true spectral density function.
#' Minimization occurs for the fractional difference parameter \eqn{d} and the
#' Gegenbauer frequency \eqn{f_G}, while the innovations variance is
#' subsequently estimated.
#'
#' @usage spp.mle(y, wf, J = log(length(y), 2) - 1, p = 0.01, frac = 1)
#' @usage spp2.mle(y, wf, J = log(length(y), 2) - 1, p = 0.01, dyadic = TRUE, frac = 1)
#' @aliases spp.mle spp2.mle
#' @param y Not necessarily dyadic length time series.
#' @param wf Name of the wavelet filter to use in the decomposition. See
#' \code{\link{wave.filter}} for those wavelet filters available.
#' @param J Depth of the discrete wavelet packet transform.
#' @param p Level of significance for the white noise testing procedure.
#' @param dyadic Logical parameter indicating whether or not the original time
#' series is dyadic in length.
#' @param frac Fraction of the time series that should be used in constructing
#' the likelihood function.
#' @return List containing the maximum likelihood estimates (MLEs) of
#' \eqn{\delta}, \eqn{f_G} and \eqn{\sigma^2}, along with the value of the
#' likelihood for those estimates.
#' @author B. Whitcher
#' @seealso \code{\link{fdp.mle}}
#' @references Whitcher, B. (2004) Wavelet-based estimation for seasonal
#' long-memory processes, \emph{Technometrics}, \bold{46}, No. 2, 225-238.
#' @keywords ts
#' @export spp.mle
spp.mle <- function(y, wf, J=log(length(y),2)-1, p=0.01, frac=1)
{
sppLL <- function(x, y) {
delta <- x[1]
fG <- x[2]
## cat("Parameters are: d =", delta, ", and f =", fG, fill=TRUE)
y.dwpt <- y[[1]]
y.basis <- y[[2]]
n <- y[[3]]
J <- y[[4]]
## Establish the limits of integration for the band-pass variances
a <- unlist(apply(matrix(2^(1:J)-1), 1, seq, from=0, by=1)) /
2^(rep(1:J, 2^(1:J))) / 2
b <- unlist(apply(matrix(2^(1:J)), 1, seq, from=1, by=1)) /
2^(rep(1:J, 2^(1:J))) / 2
## Define some useful parameters for the wavelet packet tree
# n <- length(y)
length.jn <- n / rep(2^(1:J), 2^(1:J))
scale.jn <- rep(2^(1:J+1), 2^(1:J))
## Initialize various parameters for the reduced LL
Basis <- (1:length(y.basis))[y.basis]
bp.var <- numeric(length(Basis))
delta.n <- 100
## Compute the band-pass variances according to \delta and f_G
omega.diag <- NULL
for(i in 1:sum(y.basis)) {
jn <- Basis[i]
bp.var[i] <- bandpass.spp(a[jn], b[jn], delta, fG)
omega.diag <- c(omega.diag,
scale.jn[jn] * rep(bp.var[i], length.jn[jn]))
}
## Compute reduced log-likelihood
rLL <- n * log(1/n * sum(y.dwpt^2 / omega.diag, na.rm=TRUE)) +
sum(length.jn[y.basis] * log(scale.jn[y.basis] * bp.var))
rLL
}
n <- length(y)
x0 <- numeric(2)
## Perform discrete wavelet packet transform (DWPT) on Y
y.dwpt <- dwpt(y, wf, n.levels=J)
n <- length(y)
if(frac < 1) {
for(i in 1:length(y.dwpt)) {
vec <- y.dwpt[[i]]
ni <- length(vec)
j <- rep(1:J, 2^(1:J))[i]
vec[trunc(frac * n/2^j):ni] <- NA
y.dwpt[[i]] <- vec
}
}
y.basis <- as.logical(ortho.basis(portmanteau.test(y.dwpt, p)))
y.dwpt <- as.matrix(unlist(y.dwpt[y.basis]))
## Compute initial estimate of the Gegenbauer frequency
y.per <- per(y - mean(y))
x0[2] <- (0:(n/2)/n)[max(y.per) == y.per]
## Compute initial estimate of the fractional difference parameter
muJ <- (unlist(apply(matrix(2^(1:J)-1), 1, seq, from=0, by=1)) /
2^(rep(1:J, 2^(1:J))) +
unlist(apply(matrix(2^(1:J)), 1, seq, from=1, by=1)) /
2^(rep(1:J, 2^(1:J)))) / 4
y.modwpt <- modwpt(y, wf=wf, n.levels=J)
y.varJ <- rep(2^(1:J), 2^(1:J)) *
unlist(lapply(y.modwpt,
FUN=function(x)sum(x*x,na.rm=TRUE)/length(x[!is.na(x)])))
x0[1] <- min(-0.5 * lsfit(log(abs(muJ[y.basis] - x0[2])),
log(y.varJ[y.basis]))$coef[2], 0.49)
cat(paste("Initial parameters are: delta =", round(x0[1],4),
"freqG =", round(x0[2],4), "\n"))
result <- optim(par=x0, fn=sppLL, method="L-BFGS-B",
lower=c(0.001,0.001), upper=c(0.499,0.499),
control=list(trace=0, fnscale=2),
y=list(y.dwpt, y.basis, n, J))
return(result)
}
spp2.mle <- function(y, wf, J=log(length(y),2)-1, p=0.01,
dyadic=TRUE, frac=1)
{
spp2LL <- function(x, y) {
d1 <- x[1]
f1 <- x[2]
d2 <- x[3]
f2 <- x[4]
## cat("Parameters are: d1 =", round(d1,6), ", and f1 =", round(f1,6),
## ", d2 =", round(d2,6), ", and f2 =", round(f2,6), fill=TRUE)
y.dwpt <- y[[1]]
y.basis <- y[[2]]
n <- y[[3]]
J <- y[[4]]
## Establish the limits of integration for the band-pass variances
a <- unlist(apply(matrix(2^(1:J)-1), 1, seq, from=0, by=1)) /
2^(rep(1:J, 2^(1:J))) / 2
b <- unlist(apply(matrix(2^(1:J)), 1, seq, from=1, by=1)) /
2^(rep(1:J, 2^(1:J))) / 2
## Define some useful parameters for the wavelet packet tree
length.jn <- n / rep(2^(1:J), 2^(1:J))
scale.jn <- rep(2^(1:J+1), 2^(1:J))
## Initialize various parameters for the reduced LL
Basis <- (1:length(y.basis))[y.basis]
bp.var <- numeric(length(Basis))
delta.n <- 100
## Compute the band-pass variances according to \delta and f_G
omega.diag <- NULL
for(i in 1:sum(y.basis)) {
jn <- Basis[i]
bp.var[i] <- bandpass.spp2(a[jn], b[jn], d1, f1, d2, f2)
omega.diag <- c(omega.diag,
scale.jn[jn] * rep(bp.var[i], length.jn[jn]))
}
## Compute reduced log-likelihood
n * log(1/n * sum(y.dwpt^2 / omega.diag, na.rm=TRUE)) +
sum(length.jn[y.basis] * log(scale.jn[y.basis] * bp.var), na.rm=TRUE)
}
n <- length(y)
x0 <- numeric(4)
## Perform discrete wavelet packet transform (DWPT) on Y
y.dwpt <- dwpt(y, wf, n.levels=J)
if(!dyadic) {
for(i in 1:length(y.dwpt)) {
vec <- y.dwpt[[i]]
ni <- length(vec)
j <- rep(1:J, 2^(1:J))[i]
vec[trunc(frac * n/2^j):ni] <- NA
y.dwpt[[i]] <- vec
}
}
y.basis <- as.logical(ortho.basis(portmanteau.test(y.dwpt, p, type="other")))
y.dwpt <- as.vector(unlist(y.dwpt[y.basis]))
## Compute initial estimate of the Gegenbauer frequencies
if(dyadic)
y.per <- per(y - mean(y))
else
y.per <- per(y[1:(frac*n)] - mean(y[1:(frac*n)]))
freq.y <- (0:(frac*n %/% 2))/(frac*n)
x0[2] <- freq.y[max(y.per) == y.per]
x0[4] <- freq.y[max(y.per[freq.y > x0[2] + freq.y[10] |
freq.y < x0[2] - freq.y[10]]) == y.per]
if(x0[2] > x0[4]) {
xx <- x0[2]
x0[2] <- x0[4]
x0[4] <- xx
rm(xx)
}
## Compute initial estimate of the fractional difference parameters
muJ <- (unlist(apply(matrix(2^(1:J)-1), 1, seq, from=0, by=1)) /
2^(rep(1:J, 2^(1:J))) +
unlist(apply(matrix(2^(1:J)), 1, seq, from=1, by=1)) /
2^(rep(1:J, 2^(1:J)))) / 4
y.modwpt <- modwpt(y, wf=wf, n.levels=J)
y.varJ <- rep(2^(1:J), 2^(1:J)) *
unlist(lapply(y.modwpt,
FUN = function(x) sum(x*x,na.rm=TRUE)/length(x[!is.na(x)])))
x0.mid <- (x0[2] + x0[4]) / 2
muJ <- muJ[y.basis]
y.varJ <- y.varJ[y.basis]
x0[1] <- min(-0.5 * lsfit(log(abs(muJ[muJ < x0.mid] - x0[2])),
log(y.varJ[muJ < x0.mid]))$coef[2], 0.49)
x0[3] <- min(-0.5 * lsfit(log(abs(muJ[muJ > x0.mid] - x0[4])),
log(y.varJ[muJ > x0.mid]))$coef[2], 0.49)
cat(paste("Initial parameters: d1 = ", round(x0[1],4),
", f1 = ", round(x0[2],4), ", d2 = ", round(x0[3],4),
", f2 = ", round(x0[4],4), sep=""), fill=TRUE)
result <- optim(par=x0, fn=spp2LL, method="L-BFGS-B",
lower=rep(0.001,4), upper=rep(0.499,4),
control=list(trace=1, fnscale=2),
y=list(y.dwpt, y.basis, n, J))
return(result)
}
|