File: OtherPackagesGallery.Rnw

package info (click to toggle)
r-cran-xtable 1%3A1.8-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 992 kB
  • sloc: sh: 19; makefile: 2
file content (312 lines) | stat: -rw-r--r-- 8,873 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
%\VignetteIndexEntry{xtable Other Packages Gallery}
%\VignetteDepends{xtable}
%\VignetteKeywords{LaTeX, HTML, table}
%\VignettePackage{xtable}
% !Rnw weave = knitr
% \VignetteEngine{knitr::knitr}
%**************************************************************************
\documentclass{article}
\usepackage[a4paper, height=24cm]{geometry} % geometry first
\usepackage{array}
\usepackage{booktabs}
\usepackage{longtable}
\usepackage{parskip}
\usepackage{rotating}
\usepackage{tabularx}
\usepackage{titlesec}
\usepackage{hyperref} % hyperref last
\titleformat\subsubsection{\bfseries\itshape}{}{0pt}{}
\newcommand\p{\vspace{2ex}}
\newcommand\code[1]{\texttt{#1}}
\newcommand\pkg[1]{\textbf{#1}}
\setcounter{tocdepth}{2}
\begin{document}

\title{\bfseries\Large The Other Packages Gallery}
\author{\bfseries David J. Scott}
\maketitle

\tableofcontents

\newpage

\section{Introduction}
This document represents a test of the functions in \pkg{xtable} which
deal with other packages.

<<set, include=FALSE>>=
library(knitr)
opts_chunk$set(fig.path = 'Figures/other', debug = TRUE, echo = TRUE)
opts_chunk$set(out.width = '0.9\\textwidth')
@

The first step is to load the package and set some options for this document.
<<package, results='asis'>>=
library(xtable)
options(xtable.floating = FALSE)
options(xtable.timestamp = "")
options(width = 60)
set.seed(1234)
@

%% \section{The packages \pkg{spdep}, \pkg{splm}, and \pkg{sphet}}

%% Code for supporting these packages and most of the examples used in
%% this section was originally provided by Martin Gubri
%% (\url{martin.gubri@framasoft.org}).

%% \subsection{The package \pkg{spdep}}
%% \label{sec:package-pkgspdep}

%% First load the package and create some objects.
%% <<dataspdep>>=
%% library(spdep)
%% data("oldcol", package = "spdep")

%% data.in.sample <- COL.OLD[1:44,]
%% data.out.of.sample <- COL.OLD[45:49,]

%% listw.in.sample <- nb2listw(subset(COL.nb, !(1:49 %in% 45:49)))
%% listw.all.sample <- nb2listw(COL.nb)

%% COL.lag.eig <- lagsarlm(CRIME ~ INC + HOVAL, data = data.in.sample,
%%                         listw.in.sample)
%% class(COL.lag.eig)
%% COL.errW.GM <- GMerrorsar(CRIME ~ INC + HOVAL, data = data.in.sample,
%%                           listw.in.sample, returnHcov = TRUE)
%% class(COL.errW.GM)
%% COL.lag.stsls <- stsls(CRIME ~ INC + HOVAL, data = data.in.sample,
%%                        listw.in.sample)
%% class(COL.lag.stsls)

%% p1 <- predict(COL.lag.eig, newdata = data.out.of.sample,
%%               listw = listw.all.sample)
%% class(p1)
%% p2 <- predict(COL.lag.eig, newdata = data.out.of.sample,
%%               pred.type = "trend", type = "trend")
%% #type option for retrocompatibility with spdep 0.5-92
%% class(p2)

%% imp.exact <- impacts(COL.lag.eig, listw = listw.in.sample)
%% class(imp.exact)
%% imp.sim <- impacts(COL.lag.eig, listw = listw.in.sample, R = 200)
%% class(imp.sim)
%% @ %def


%% \subsubsection{\code{sarlm} objects}
%% \label{sec:codesarlm-objects}

%% There is an \code{xtable} method for objects of this type.
%% <<xtablesarlm, results = 'asis'>>=
%% xtable(COL.lag.eig)
%% @ %def

%% The method for \code{xtable} actually uses the summary of the object,
%% and an identical result is obtained when using the summary of the
%% object, even if the summary contains more additional information.

%% <<xtablesarlmsumm, results = 'asis'>>=
%% xtable(summary(COL.lag.eig, correlation = TRUE))
%% @ %def

%% This same pattern applies to the other objects from this group of packages.

%% Note that additional prettying of the resulting table is possible, as
%% for any table produced using \code{xtable}. For example using the
%% \pkg{booktabs} package we get:

%% <<xtablesarlmbooktabs, results = 'asis'>>=
%% print(xtable(COL.lag.eig), booktabs = TRUE)
%% @ %def

%% \subsubsection{\code{gmsar} objects}
%% \label{sec:codegmsar-objects}


%% <<xtablegmsar, results = 'asis'>>=
%% xtable(COL.errW.GM)
%% @ %def

%% \subsubsection{\code{stsls} objects}
%% \label{sec:codestsls-objects}


%% <<xtablestsls, results = 'asis'>>=
%% xtable(COL.lag.stsls)
%% @ %def

%% \subsubsection{\code{sarlm.pred} objects}
%% \label{sec:codesarlmpred-objects}

%% \code{xtable} has a method for predictions of \code{sarlm} models.

%% <<xtablesarlmpred, results = 'asis'>>=
%% xtable(p1)
%% @ %def

%% This method transforms the \code{sarlm.pred} objects into data frames,
%% allowing any number of attributes vectors which may vary according to
%% predictor types.

%% <<xtablesarlmpred2, results = 'asis'>>=
%% xtable(p2)
%% @ %def

%% \subsubsection{\code{lagImpact} objects}
%% \label{sec:codelagimpact-objects}

%% The \code{xtable} method returns the values of direct, indirect and
%% total impacts for all the variables in the model. The class
%% \code{lagImpact} has two different sets of attributes according to if
%% simulations are used. But the \code{xtable} method always returns the
%% three components of the non-simulation case.

%% <<xtablelagimpactexact, results = 'asis'>>=
%% xtable(imp.exact)
%% @ %def

%% \p
%% <<xtablelagimpactmcmc, results = 'asis'>>=
%% xtable(imp.sim)
%% @ %def


%% \subsubsection{\code{spautolm} objects}
%% \label{sec:codespautolm-objects}

%% The need for an \code{xtable} method for \code{spautolm} was expressed
%% by Guido Schulz (\url{schulzgu@student.hu-berlin.de}), who also
%% provided an example of an object of this type. The required code was
%% implemented by David Scott (\url{d.scott@auckland.ac.nz}).

%% First create an object of the required type.

%% <<minimalexample, results = 'hide'>>=
%% library(spdep)
%% example(NY_data)
%% spautolmOBJECT <- spautolm(Z ~ PEXPOSURE + PCTAGE65P,data = nydata,
%%                            listw = listw_NY, family = "SAR",
%%                            method = "eigen", verbose = TRUE)
%% summary(spautolmOBJECT, Nagelkerke = TRUE)
%% @ %def

%% \p
%% <<spautolmclass>>=
%% class(spautolmOBJECT)
%% @ %def


%% <<xtablespautolm, results = 'asis'>>=
%% xtable(spautolmOBJECT,
%%        display = c("s",rep("f", 3), "e"), digits = 4)
%% @ %def



%% \subsection{The package \pkg{splm}}
%% \label{sec:package-pkgsplm}

%% First load the package and create some objects.
%% <<datasplm>>=
%% library(splm)
%% data("Produc", package = "plm")
%% data("usaww",  package = "splm")
%% fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
%% respatlag <- spml(fm, data = Produc, listw = mat2listw(usaww),
%%                    model="random", spatial.error="none", lag=TRUE)
%% class(respatlag)
%% GM <- spgm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc,
%%            listw = usaww, moments = "fullweights", spatial.error = TRUE)
%% class(GM)

%% imp.spml <- impacts(respatlag, listw = mat2listw(usaww, style = "W"), time = 17)
%% class(imp.spml)
%% @ %def


%% \subsubsection{\code{splm} objects}
%% \label{sec:codesplm-objects}

%% <<xtablesplm, results = 'asis'>>=
%% xtable(respatlag)
%% @ %def


%% \p
%% <<xtablesplm1, results = 'asis'>>=
%% xtable(GM)
%% @ %def



%% The \code{xtable} method works the same on impacts of \code{splm} models.

%% <<xtablesplmimpacts, results = 'asis'>>=
%% xtable(imp.spml)
%% @ %def

%% \subsection{The package \pkg{sphet}}
%% \label{sec:package-pkgsphet}

%% First load the package and create some objects.
%% <<datasphet>>=
%% library(sphet)
%% data("columbus", package = "spdep")
%% listw <- nb2listw(col.gal.nb)
%% data("coldis", package = "sphet")
%% res.stsls <- stslshac(CRIME ~ HOVAL + INC, data = columbus, listw = listw,
%%                       distance = coldis, type = 'Triangular')
%% class(res.stsls)
%% @ %def


%% \subsubsection{\code{sphet} objects}
%% \label{sec:codesphet-objects}

%% <<xtablesphet, results = 'asis'>>=
%% xtable(res.stsls)
%% @ %def



\section{The \pkg{zoo} package}
\label{sec:pkgzoo-package}


<<zoo, results = 'asis'>>=
library(zoo)
xDate <- as.Date("2003-02-01") + c(1, 3, 7, 9, 14) - 1
as.ts(xDate)
x <- zoo(rnorm(5), xDate)
xtable(x)
@ %def


\p

<<zoots, results = 'asis'>>=
tempTs <- ts(cumsum(1 + round(rnorm(100), 0)),
              start = c(1954, 7), frequency = 12)
tempTable <- xtable(tempTs, digits = 0)
tempTable
tempZoo <- as.zoo(tempTs)
xtable(tempZoo, digits = 0)
@ %def


\section{The \pkg{survival} package}
\label{sec:pkgsurvival-package}


<<survival, results = 'asis'>>=
library(survival)
test1 <- list(time=c(4,3,1,1,2,2,3),
              status=c(1,1,1,0,1,1,0),
              x=c(0,2,1,1,1,0,0),
              sex=c(0,0,0,0,1,1,1))
coxFit <- coxph(Surv(time, status) ~ x + strata(sex), test1)
xtable(coxFit)
@ %def

\end{document}