File: family

package info (click to toggle)
r-pdl 0.2-2
  • links: PTS
  • area: main
  • in suites: slink
  • size: 10,848 kB
  • ctags: 5,599
  • sloc: ansic: 66,166; fortran: 3,810; sh: 2,561; perl: 1,930; yacc: 1,508; makefile: 623
file content (62 lines) | stat: -rw-r--r-- 2,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


   FFaammiillyy OObbjjeeccttss ffoorr MMooddeellss

        family(object)

        binomial(link=logit)
        gaussian()
        Gamma(link=inverse)
        inverse.gaussian()
        poisson(link=log)
        quasi(link=identity, variance=constant)

   AArrgguummeennttss::

       link: a specification for the model link function.  The
             `binomial' family admits the links; `logit', `pro-
             bit' and `cloglog' (complementary log-log), the
             `Gamma' family the links; `identity', `inverse'
             and `log', the `poisson' family the links; `iden-
             tity' `log' and `sqrt', and the `quasi' family the
             links; `logit', `probit', `cloglog',  `identity',
             `inverse', `log', `1/mu^2' and `sqrt'.  The other
             families have only a single permissible link func-
             tion.  These are the `identity' for the `gaussian'
             family and `1/mu^2' for the `inverse.gaussian'
             family.  The function `power' can also be used to
             create a power link function for the `quasi' fam-
             ily.

   variance: for all families, other than `quasi', the variance
             function is determined by the family.  The `quasi'
             family will accept the specifications `constant',
             `mu(1-mu)', `mu', `mu^2' and `mu^3' as variance
             function.

     object: the function `family' accesses the `family'
             objects which are stored within objects created by
             modelling functions (e.g. `glm').

   DDeessccrriippttiioonn::

        Family objects provide a convenient way to specify the
        details of the models used by functions such as `glm'.
        See the documentation for `glm' for the details on how
        such model fitting takes place.

   RReeffeerreenncceess::

        McCullagh P. and J. A. Nelder (1989).  Generalized Lin-
        ear Models.  London: Chapman and Hall.

        Dobson, A. J. (1983).  An Introduction to Statistical
        Modelling.  London: Chapman and Hall.

        Cox, D. R. and E. J. Snell (1981).  Applied Statistics;
        Principles and Examples.  London: Chapman and Hall.

   SSeeee AAllssoo::

        `glm', `power'.