1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
rbind.zoo <- function(..., deparse.level = 1)
{
args <- Filter(Negate(is.null), list(...))
indexes <- do.call("c", unname(lapply(args, index)))
my.table <- function(x) {
ix <- ORDER(x)
x <- x[ix]
table(MATCH(x,x))
}
if(max(my.table(indexes)) > 1L) stop("indexes overlap")
if(any(sapply(args, function(x) is.null(dim(x)) && length(x) == 0L && length(index(x)) > 0L)))
stop("zero-length vectors with non-zero-length index are not allowed")
ncols <- sapply(args, NCOL)
if(!all(ncols == ncols[1L])) stop("number of columns differ")
## process colnames() if any
nams <- lapply(args, colnames)
namsNULL <- sapply(nams, is.null)
if(all(namsNULL)) namsOK <- TRUE else {
if(sum(namsNULL) > 0L) namsOK <- FALSE else {
nam1 <- nams[[1L]]
namsID <- sapply(nams, function(x) identical(x, nam1))
if(all(namsID)) namsOK <- TRUE else {
namsSORT <- sapply(nams, function(x) identical(sort(x), sort(nam1)))
if(!all(namsSORT)) namsOK <- FALSE else {
namsOK <- TRUE
for(i in which(!namsID)) args[[i]] <- args[[i]][,nam1]
}
}
}
}
if(!namsOK) warning("column names differ")
## collect data
argsdata <- lapply(args, coredata)
## (special case: rbinding of vectors with one-column matrices)
nulldim <- sapply(argsdata, function(a) is.null(dim(a)))
if(ncols[1L] == 1L) {
if(nulldim[1] & any(!nulldim)) {
argsdata <- lapply(argsdata, function(a) if(is.null(dim(a))) a else a[,1, drop = TRUE])
nulldim <- rep(TRUE, length(nulldim))
}
if(!nulldim[1] & any(nulldim)) {
argsdata <- lapply(argsdata, function(a) if(is.null(dim(a))) as.matrix(a) else a)
nulldim <- rep(FALSE, length(nulldim))
}
}
if((ncols[1L] > 1L) | !all(nulldim))
rval <- zoo(do.call("rbind", argsdata), indexes)
else
rval <- zoo(do.call("c", argsdata), indexes)
freq <- if(!("zooreg" %in% unlist(sapply(args, class)))) NULL
else {
freq <- c(frequency(rval), unlist(sapply(args, frequency)))
if((length(freq) == (length(args)+1L)) &&
identical(all.equal(max(freq)/freq, round(max(freq)/freq)), TRUE))
max(freq) else NULL
}
if(!is.null(freq)) {
attr(rval, "frequency") <- freq
class(rval) <- c("zooreg", class(rval))
}
return(rval)
}
c.zoo <- function(...) {
rbind.zoo(...)
}
cbind.zoo <- function(..., all = TRUE, fill = NA, suffixes = NULL, drop = FALSE, sep = ".")
{
merge.zoo(..., all = all, fill = fill, suffixes = suffixes, retclass = "zoo", drop = drop, sep = sep)
}
merge.zoo <- function(..., all = TRUE, fill = NA, suffixes = NULL, check.names = FALSE, retclass = c("zoo", "list", "data.frame"), drop = TRUE, sep = ".")
{
if (!is.null(retclass)) retclass <- match.arg(retclass)
# cl are calls to the args and args is a list of the arguments
cl <- as.list(match.call())
cl[[1]] <- cl$all <- cl$fill <- cl$retclass <- cl$suffixes <- cl$check.names <- cl$drop <- cl$sep <- NULL
args <- list(...)
parent <- parent.frame()
is.plain <- function(x)
all(class(x) %in% c("array", "integer", "numeric", "factor", "matrix", "logical", "character"))
is.scalar <- function(x) is.plain(x) && length(x) == 1
# ensure all ... plain args are of length 1 or have same NROW as arg 1
stopifnot(all(sapply(args, function(x) is.zoo(x) || !is.plain(x) ||
(is.plain(x) && (NROW(x) == NROW(args[[1]]) || is.scalar(x))))))
scalars <- sapply(args, is.scalar)
if(!is.zoo(args[[1]])) args[[1]] <- as.zoo(args[[1]])
for(i in seq_along(args))
if (is.plain(args[[i]]))
args[[i]] <- zoo(args[[i]], index(args[[1]]), attr(args[[1]], "frequency"))
else if (!is.zoo(args[[i]]))
args[[i]] <- as.zoo(args[[i]])
## retain frequency if all series have integer multiples of the same frequency
## and at least one of the original objects is a "zooreg" object
freq <- if(!("zooreg" %in% unlist(sapply(args, class)))) NULL
else {
freq <- unlist(sapply(args, frequency))
if((length(freq) == length(args)) &&
identical(all.equal(max(freq)/freq, round(max(freq)/freq)), TRUE))
max(freq) else NULL
}
# use argument names if suffixes not specified
if (is.null(suffixes)) {
makeNames <- function(l) {
nm <- names(l)
fixup <- if (is.null(nm))
seq_along(l)
else nm == ""
dep <- sapply(l[fixup], function(x) deparse(x)[1])
if (is.null(nm))
return(dep)
if (any(fixup))
nm[fixup] <- dep
nm
}
suffixes <- makeNames(as.list(substitute(list(...)))[-1])
}
if (length(suffixes) != length(cl)) {
warning("length of suffixes and does not match number of merged objects")
suffixes <- rep(suffixes, length.out = length(cl))
}
# extend all to a length equal to the number of args
all <- rep(as.logical(all), length.out = length(cl))
## check indexes:
indexlist <- lapply(args, index)
## 1. for non-unique entries
index_duplicates <- function(x) length(unique(MATCH(x, x))) < length(x)
if(any(sapply(indexlist, index_duplicates)))
stop("series cannot be merged with non-unique index entries in a series")
## 2. for differing classes
indexclasses <- sapply(indexlist, function(x) class(x)[1])
if (!all(indexclasses == indexclasses[1L])) {
warning(paste("Index vectors are of different classes:",
paste(indexclasses, collapse = " ")))
if(all(indexclasses %in% c("numeric", "integer"))) {
indexlist <- lapply(indexlist, as.numeric)
} else if(all(vapply(indexlist, function(e) inherits(e, "Date") || is.numeric(e), NA))) {
indexlist <- lapply(indexlist, as.Date)
}
}
# fn to get the unique elements in x, in sorted order, using only
# [, match, length and order
sort.unique <- function(x) {
ix <- MATCH(x, x) == seq_len(length(x))
x <- x[ix]
ix <- ORDER(x)
x[ix]
}
# fn to get intersection of each element in list of lists
intersect.list <- function(list) {
my.table <- function(x) {
ix <- ORDER(x)
x <- x[ix]
table(MATCH(x, x))
}
union <- do.call("c", unname(list))
sort.unique(union)[which(my.table(union) == length(list))]
}
indexintersect <- intersect.list(indexlist)
# get the indexes of the final answer which is the union of
# all indexes of args corresponding to all=TRUE with the intersection
# of all indexes
indexunion <- do.call("c", unname(indexlist[all]))
indexes <- if(is.null(indexunion)) indexintersect
else sort.unique(c(indexunion, indexintersect))
# previously, we used to do:
# if (is.null(indexunion)) indexunion <- do.call("c", indexlist)[0]
# indexes <- sort.unique(c(indexunion, indexintersect))
## check whether resulting objects still got the same frequency
if(!is.null(freq)) {
freq <- c(frequency(zoo(,indexes)), freq)
freq <- if((length(freq) == 2) && identical(all.equal(max(freq)/freq, round(max(freq)/freq)), TRUE))
max(freq) else NULL
}
# the f function does the real work
# it takes a zoo object, a, and fills in a matrix corresponding to
# indexes with the values in a. ret.zoo is TRUE if it is to return
# a zoo object. If ret.zoo is FALSE it simply returns with the matrix
# just calculated.
# match0 is convenience wrapper for MATCH with nomatch=0 default
match0 <- function(a, b, nomatch = 0, ...) MATCH(a, b, nomatch = nomatch, ...)
f <- if (any(all)) {
function(a, ret.zoo = TRUE) {
if (length(a) == 0 && length(dim(a)) == 0)
return(if(ret.zoo) {
rval <- zoo(, indexes)
attr(rval, "frequency") <- freq
if(!is.null(freq)) class(rval) <- c("zooreg", class(rval))
rval
} else numeric())
z <- matrix(fill, length(indexes), NCOL(a))
if (length(dim(a)) > 0)
z[match0(index(a), indexes), ] <- a[match0(indexes, index(a)), , drop = FALSE]
else {
z[match0(index(a), indexes), ] <- a[match0(indexes, index(a))]
z <- z[, 1, drop=TRUE]
}
if (ret.zoo) {
z <- zoo(z, indexes)
attr(z, "oclass") <- attr(a, "oclass")
attr(z, "levels") <- attr(a, "levels")
attr(z, "frequency") <- freq
if(!is.null(freq)) class(z) <- c("zooreg", class(z))
}
return(z)
}
} else {
# if all contains only FALSE elements then the following f is used
# instead of the prior f for performance purposes. If all contains
# only FALSE then the resulting index is the intersection of the
# index of each argument so we can just return a[index] or a[index,].
# Also if we are not to return a zoo object then unclass it prior to return.
function(a, ret.zoo = TRUE) {
if (!ret.zoo) class(a) <- NULL
if (length(dim(a)) == 0) {
if (length(a) == 0) {
rval <- if(ret.zoo) zoo(, indexes) else numeric()
} else
rval <- as.zoo(a[match0(indexes, attr(a, "index"))])
} else
rval <- as.zoo(a[match0(indexes, attr(a, "index")), , drop=FALSE])
if(is.zoo(rval) && !is.null(freq)) {
attr(rval, "frequency") <- freq
class(rval) <- unique(c("zooreg", class(rval)))
}
return(rval)
}
}
# if retclass is NULL do not provide a return value but instead
# update each argument that is a variable, i.e. not an expression,
# in place.
if (is.null(retclass)) {
for(vn in cl) {
if (is.name(vn))
tryCatch(
eval(substitute(v <- f(v), list(f = f, v = vn)), parent),
condition = function(x) {}
)
}
invisible(return(NULL))
}
# apply f to each arg, put result of doing this on all args in list rval
# and then cbind that list together to produce the required matrix
rval <- lapply(args, f, ret.zoo = retclass %in% c("list", "data.frame"))
## have commented this next line out. Is it needed?
# for(i in which(scalars)) rval[[i]] <- rval[[i]][] <- zoo(coredata(rval[[i]])[1], index(rval[[1]]), freq)
names(rval) <- suffixes
if (retclass == "list") {
return(rval)
}
if (retclass == "data.frame") {
## transform list to data.frame
## this is simple if all list elements are vectors, but with
## matrices a bit more effort seems to be needed:
charindex <- index2char(index(rval[[1]]), frequency = freq)
nam1 <- names(rval)
rval <- lapply(rval, as.list)
todf <- function(x) {
class(x) <- "data.frame"
attr(x, "row.names") <- charindex
return(x)
}
rval <- lapply(rval, todf)
## name processing
nam2 <- sapply(rval, function(z) 1:NCOL(z))
for(i in 1:length(nam2)) nam2[[i]] <- paste(names(nam2)[i], nam2[[i]], sep = sep)
nam1 <- unlist(ifelse(sapply(rval, NCOL) > 1, nam2, nam1))
rval <- do.call("cbind", rval)
names(rval) <- nam1
## turn zoo factors into plain factors
is.zoofactor <- function(x) !is.null(attr(x, "oclass")) && attr(x, "oclass") == "factor"
for(i in 1:NCOL(rval)) if(is.zoofactor(rval[,i])) rval[,i] <- coredata(rval[,i])
return(rval)
}
# remove zero length arguments
rval <- rval[sapply(rval, function(x) length(x) > 0)]
# if there is more than one non-zero length argument then cbind them
# Note that cbind will create matrices, even when given a single vector,
# so - if drop=TRUE - we do not to use it in the single vector case.
rval <- if (length(rval) > 1L | (length(rval) == 1L & !drop))
do.call("cbind", rval)
else if (length(rval) > 0L)
rval[[1]]
# return if vector since remaining processing is only for column names
if (length(dim(rval)) == 0L) {
# fixed bug: coredata was missing
rval <- zoo(coredata(rval), indexes)
attr(rval, "frequency") <- freq
if(!is.null(freq)) class(rval) <- c("zooreg", class(rval))
return(rval)
}
# processing from here on is to compute nice column names
if (length(unlist(sapply(args, colnames))) > 0) {
fixcolnames <- function(a) {
# if (length(a) == 0)
# return(NULL)
if (length(dim(a)) ==0) {
if (length(a) == 0) return(NULL) else return("")
} else {
if (ncol(a) == 0) return(NULL)
rval <- colnames(a)
if (is.null(rval)) {
rval <- paste(1:NCOL(a), suffixes[i], sep = sep)
}
else {
rval[rval == ""] <- as.character(which(rval == ""))
}
return(rval)
}
}
zoocolnames <- lapply(args, fixcolnames)
zcn <- unlist(zoocolnames)
fixme <- lapply(zoocolnames, function(x) x %in% zcn[duplicated(zcn)])
f <- function(i) {
rval <- zoocolnames[[i]]
rval[rval == ""] <- suffixes[i]
rval
}
zoocolnames <- lapply(seq_along(args), f)
f <- function(i) ifelse(fixme[[i]], paste(zoocolnames[[i]],
suffixes[i], sep = sep), zoocolnames[[i]])
if (any(duplicated(unlist(zoocolnames))))
zoocolnames <- lapply(seq_along(args), f)
} else {
fixcolnames <- function(a) {
if (length(a) == 0)
return(NULL)
if (NCOL(a) < 2)
return("")
else return(paste(sep, 1:NCOL(a), sep = ""))
}
zoocolnames <- lapply(args, fixcolnames)
zoocolnames <- lapply(seq_along(args), function(i)
if (!is.null(zoocolnames[[i]])) # NULL returned if false
paste(suffixes[i], zoocolnames[[i]], sep = ""))
}
zoocolnames <- unlist(zoocolnames)
colnames(rval) <- if (check.names) make.names(make.unique(zoocolnames))
else if (ncol(rval) == length(zoocolnames)) zoocolnames else
colnames(rval)
# rval <- zoo(rval, indexes)
rval <- zoo(coredata(rval), indexes)
attr(rval, "frequency") <- freq
if(!is.null(freq)) class(rval) <- c("zooreg", class(rval))
return(rval)
}
|