File: vignette-zoo-quickref.Rout.save

package info (click to toggle)
r-zoo 1.8-14-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,760 kB
  • sloc: ansic: 373; makefile: 2
file content (441 lines) | stat: -rw-r--r-- 15,267 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

R version 3.5.3 (2019-03-11) -- "Great Truth"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###################################################
> ### chunk number 1: preliminaries
> ###################################################
> library("zoo")

Attaching package: 'zoo'

The following objects are masked from 'package:base':

    as.Date, as.Date.numeric

> library("tseries")
> online <- FALSE ## if set to FALSE the local copy of
>                 ## is used instead of get.hist.quote()
> options(prompt = "R> ")
R> Sys.setenv(TZ = "GMT")
R> suppressWarnings(RNGversion("3.5.0"))
R> 
R> 
R> ###################################################
R> ### chunk number 2: read.zoo
R> ###################################################
R> inrusd <- read.zoo(system.file("doc", "demo1.txt", package = "zoo"), sep = "|", format="%d %b %Y")
R> 
R> 
R> ###################################################
R> ### chunk number 3: read.table
R> ###################################################
R> tmp <- read.table(system.file("doc", "demo2.txt", package = "zoo"), sep = ",")
R> z <- zoo(tmp[, 3:4], as.Date(as.character(tmp[, 2]), format="%d %b %Y"))
R> colnames(z) <- c("Nifty", "Junior")
R> 
R> 
R> ###################################################
R> ### chunk number 4: extract dates
R> ###################################################
R> time(z)
 [1] "2005-02-10" "2005-02-11" "2005-02-14" "2005-02-15" "2005-02-17"
 [6] "2005-02-18" "2005-02-21" "2005-02-22" "2005-02-23" "2005-02-24"
[11] "2005-02-25" "2005-02-28" "2005-03-01" "2005-03-02" "2005-03-03"
[16] "2005-03-04" "2005-03-07" "2005-03-08" "2005-03-09" "2005-03-10"
R> 
R> 
R> ###################################################
R> ### chunk number 5: start and end
R> ###################################################
R> start(z)
[1] "2005-02-10"
R> end(inrusd)
[1] "2005-03-10"
R> 
R> 
R> ###################################################
R> ### chunk number 6: convert to plain matrix
R> ###################################################
R> plain <- coredata(z)
R> str(plain)
 num [1:20, 1:2] 2063 2082 2098 2090 2062 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:2] "Nifty" "Junior"
R> 
R> 
R> ###################################################
R> ### chunk number 7: intersection
R> ###################################################
R> m <- merge(inrusd, z, all = FALSE)
R> 
R> 
R> ###################################################
R> ### chunk number 8: union
R> ###################################################
R> m <- merge(inrusd, z)
R> 
R> 
R> ###################################################
R> ### chunk number 9: merge with lag
R> ###################################################
R> merge(inrusd, lag(inrusd, -1))
           inrusd lag(inrusd, -1)
2005-02-10  43.78              NA
2005-02-11  43.79           43.78
2005-02-14  43.72           43.79
2005-02-15  43.76           43.72
2005-02-16  43.82           43.76
2005-02-17  43.74           43.82
2005-02-18  43.84           43.74
2005-02-21  43.82           43.84
2005-02-22  43.72           43.82
2005-02-23  43.72           43.72
2005-02-24  43.70           43.72
2005-02-25  43.69           43.70
2005-02-28  43.64           43.69
2005-03-01  43.72           43.64
2005-03-02  43.70           43.72
2005-03-03  43.65           43.70
2005-03-04  43.71           43.65
2005-03-07  43.69           43.71
2005-03-09  43.67           43.69
2005-03-10  43.58           43.67
R> 
R> 
R> ###################################################
R> ### chunk number 10: plotting1
R> ###################################################
R> plot(m)
R> 
R> 
R> ###################################################
R> ### chunk number 11: plotting2
R> ###################################################
R> plot(m[, 2:3], plot.type = "single", col = c("red", "blue"), lwd = 2)
R> 
R> 
R> ###################################################
R> ### chunk number 12: select range of dates
R> ###################################################
R> window(z, start = as.Date("2005-02-15"), end = as.Date("2005-02-28"))
             Nifty  Junior
2005-02-15 2089.95 4367.25
2005-02-17 2061.90 4320.15
2005-02-18 2055.55 4318.15
2005-02-21 2043.20 4262.25
2005-02-22 2058.40 4326.10
2005-02-23 2057.10 4346.00
2005-02-24 2055.30 4337.00
2005-02-25 2060.90 4305.75
2005-02-28 2103.25 4388.20
R> 
R> 
R> ###################################################
R> ### chunk number 13: select one date
R> ###################################################
R> m[as.Date("2005-03-10")]
           inrusd  Nifty  Junior
2005-03-10  43.58 2167.4 4648.05
R> 
R> 
R> ###################################################
R> ### chunk number 14: impute NAs by interpolation
R> ###################################################
R> interpolated <- na.approx(m)
R> 
R> 
R> ###################################################
R> ### chunk number 15: impute NAs by LOCF
R> ###################################################
R> m <- na.locf(m)
R> m
           inrusd   Nifty  Junior
2005-02-10  43.78 2063.35 4379.20
2005-02-11  43.79 2082.05 4382.90
2005-02-14  43.72 2098.25 4391.15
2005-02-15  43.76 2089.95 4367.25
2005-02-16  43.82 2089.95 4367.25
2005-02-17  43.74 2061.90 4320.15
2005-02-18  43.84 2055.55 4318.15
2005-02-21  43.82 2043.20 4262.25
2005-02-22  43.72 2058.40 4326.10
2005-02-23  43.72 2057.10 4346.00
2005-02-24  43.70 2055.30 4337.00
2005-02-25  43.69 2060.90 4305.75
2005-02-28  43.64 2103.25 4388.20
2005-03-01  43.72 2084.40 4382.25
2005-03-02  43.70 2093.25 4470.00
2005-03-03  43.65 2128.85 4515.80
2005-03-04  43.71 2148.15 4549.55
2005-03-07  43.69 2160.10 4618.05
2005-03-08  43.69 2168.95 4666.70
2005-03-09  43.67 2160.80 4623.85
2005-03-10  43.58 2167.40 4648.05
R> 
R> 
R> ###################################################
R> ### chunk number 16: compute returns
R> ###################################################
R> prices2returns <- function(x) 100*diff(log(x))
R> 
R> 
R> ###################################################
R> ### chunk number 17: column-wise returns
R> ###################################################
R> r <- prices2returns(m)
R> 
R> 
R> ###################################################
R> ### chunk number 18: rolling standard deviations
R> ###################################################
R> rollapply(r, 10, sd)
               inrusd     Nifty    Junior
2005-02-17 0.14599121 0.6993355 0.7878843
2005-02-18 0.14527421 0.6300543 0.8083622
2005-02-21 0.14115862 0.8949318 1.0412806
2005-02-22 0.15166883 0.9345299 1.0256508
2005-02-23 0.14285470 0.9454103 1.1957959
2005-02-24 0.13607992 0.9453855 1.1210963
2005-02-25 0.11962991 0.9334899 1.1105966
2005-02-28 0.11963193 0.8585071 0.9388661
2005-03-01 0.09716262 0.8569891 0.9131822
2005-03-02 0.09787943 0.8860388 1.0566389
2005-03-03 0.11568119 0.8659890 1.0176645
R> 
R> 
R> ###################################################
R> ### chunk number 19: last day of month
R> ###################################################
R> prices2returns(aggregate(m, as.yearmon, tail, 1))
             inrusd    Nifty   Junior
Mar 2005 -0.1375831 3.004453 5.752866
R> 
R> 
R> ###################################################
R> ### chunk number 20: last day of week
R> ###################################################
R> nextfri <- function(x) 7 * ceiling(as.numeric(x-5+4) / 7) + as.Date(5-4)
R> prices2returns(aggregate(na.locf(m), nextfri, tail, 1))
                inrusd      Nifty     Junior
2005-02-18  0.11411618 -1.2809533 -1.4883536
2005-02-25 -0.34273997  0.2599329 -0.2875731
2005-03-04  0.04576659  4.1464226  5.5076988
2005-03-11 -0.29785794  0.8921286  2.1419450
R> 
R> 
R> ###################################################
R> ### chunk number 21: four second mark
R> ###################################################
R> zsec <- structure(1:10, index = structure(c(1234760403.968, 1234760403.969, 
+ 1234760403.969, 1234760405.029, 1234760405.029, 1234760405.03, 
+ 1234760405.03, 1234760405.072, 1234760405.073, 1234760405.073
+ ), class = c("POSIXt", "POSIXct"), tzone = ""), class = "zoo")
R> 
R> to4sec <- function(x) as.POSIXct(4*ceiling(as.numeric(x)/4), origin = "1970-01-01")
R> aggregate(zsec, to4sec, tail, 1)
2009-02-16 05:00:04 2009-02-16 05:00:08 
                  3                  10 
R> 
R> 
R> ###################################################
R> ### chunk number 22: one second grid
R> ###################################################
R> # tmp is zsec with time discretized into one second bins
R> tmp <- zsec
R> st <- start(tmp)
R> Epoch <- st - as.numeric(st)
R> time(tmp) <- as.integer(time(tmp) + 1e-7) + Epoch
R> 
R> # find index of last value in each one second interval
R> ix <- !duplicated(time(tmp), fromLast = TRUE)
R> 
R> # merge with grid 
R> merge(tmp[ix], zoo(, seq(start(tmp), end(tmp), "sec")))
2009-02-16 05:00:03 2009-02-16 05:00:04 2009-02-16 05:00:05 
                  3                  NA                  10 
R> 
R> # Here is a function which generalizes the above:
R> 
R> intraday.discretise <- function(b, Nsec) {
+  st <- start(b)
+  time(b) <- Nsec * as.integer(time(b)+1e-7) %/% Nsec + st -
+  as.numeric(st)
+  ix <- !duplicated(time(b), fromLast = TRUE)
+  merge(b[ix], zoo(, seq(start(b), end(b), paste(Nsec, "sec"))))
+ }
R> 
R> intraday.discretise(zsec, 1)
2009-02-16 05:00:03 2009-02-16 05:00:04 2009-02-16 05:00:05 
                  3                  NA                  10 
R> 
R> 
R> 
R> ###################################################
R> ### chunk number 23: tseries
R> ###################################################
R> library("tseries")
R> 
R> 
R> ###################################################
R> ### chunk number 24: data handling if offline
R> ###################################################
R> if(online) {
+   sunw <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31")
+   sunw2 <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31",
+     compression = "m", quote = "Close")
+   eur.usd <- get.hist.quote(instrument = "EUR/USD", provider = "oanda", start = "2004-01-01", end = "2004-12-31")
+   save(sunw, sunw2, eur.usd, file = "sunw.rda")
+ } else {
+   load(system.file("doc", "sunw.rda", package = "zoo"))
+ }
R> 
R> 
R> ###################################################
R> ### chunk number 25: get.hist.quote daily series eval=FALSE
R> ###################################################
R> ## sunw <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31")
R> 
R> 
R> ###################################################
R> ### chunk number 26: get.hist.quote monthly series eval=FALSE
R> ###################################################
R> ## sunw2 <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31",
R> ##   compression = "m", quote = "Close")
R> 
R> 
R> ###################################################
R> ### chunk number 27: change index to yearmon
R> ###################################################
R> time(sunw2) <- as.yearmon(time(sunw2))
R> 
R> 
R> ###################################################
R> ### chunk number 28: compute same series via aggregate
R> ###################################################
R> sunw3 <- aggregate(sunw[, "Close"], as.yearmon, tail, 1)
R> 
R> 
R> ###################################################
R> ### chunk number 29: compute returns
R> ###################################################
R> r <- prices2returns(sunw3)
R> 
R> 
R> ###################################################
R> ### chunk number 30: get.hist.quote oanda eval=FALSE
R> ###################################################
R> ## eur.usd <- get.hist.quote(instrument = "EUR/USD", provider = "oanda", start = "2004-01-01", end = "2004-12-31")
R> 
R> 
R> ###################################################
R> ### chunk number 31: is.weekend convenience function
R> ###################################################
R> is.weekend <- function(x) ((as.numeric(x)-2) %% 7) < 2
R> 
R> 
R> ###################################################
R> ### chunk number 32: omit weekends
R> ###################################################
R> eur.usd <- eur.usd[!is.weekend(time(eur.usd))]
R> 
R> 
R> ###################################################
R> ### chunk number 33: is.weekend based on POSIXlt
R> ###################################################
R> is.weekend <- function(x) {
+   x <- as.POSIXlt(x)
+   x$wday > 5 | x$wday < 1
+ }
R> 
R> 
R> ###################################################
R> ### chunk number 34: summaries
R> ###################################################
R> date1 <- seq(as.Date("2001-01-01"), as.Date("2002-12-1"), by = "day")
R> len1 <- length(date1)
R> set.seed(1) # to make it reproducible
R> data1 <- zoo(rnorm(len1), date1)
R> 
R> # quarterly summary
R> 
R> data1q.mean <- aggregate(data1, as.yearqtr, mean)
R> data1q.sd <- aggregate(data1, as.yearqtr, sd)
R> head(cbind(mean = data1q.mean, sd = data1q.sd), main = "Quarterly")
                mean        sd
2001 Q1  0.108503596 0.8861821
2001 Q2 -0.006836172 0.9800027
2001 Q3 -0.042260559 0.9954100
2001 Q4  0.096188411 1.0336234
2002 Q1 -0.092684201 1.0337850
2002 Q2  0.049217429 1.0860119
R> 
R> # weekly summary - week ends on tuesday
R> 
R> # Given a date find the next Tuesday.
R> # Based on formula in Prices and Returns section.
R> nexttue <- function(x) 7 * ceiling(as.numeric(x - 2 + 4)/7) + as.Date(2 - 4)
R> 
R> data1w <- cbind(
+        mean = aggregate(data1, nexttue, mean),
+        sd = aggregate(data1, nexttue, sd)
+ )
R> head(data1w)
                  mean        sd
2001-01-02 -0.22140524 0.5728252
2001-01-09  0.29574667 0.8686111
2001-01-16 -0.02281531 1.2305420
2001-01-23  0.58834959 0.3993624
2001-01-30 -0.44463015 0.9619139
2001-02-06 -0.08522653 0.8349544
R> 
R> ### ALTERNATIVE ###
R> 
R> # Create function ag like aggregate but takes vector of
R> # function names.
R> 
R> FUNs <- c(mean, sd)
R> ag <- function(z, by, FUNs) {
+        f <- function(f) aggregate(z, by, f)
+        do.call(cbind, sapply(FUNs, f, simplify = FALSE))
+ }
R> 
R> data1q <- ag(data1, as.yearqtr, c("mean", "sd"))
R> data1w <- ag(data1, nexttue, c("mean", "sd"))
R> 
R> head(data1q)
                mean        sd
2001 Q1  0.108503596 0.8861821
2001 Q2 -0.006836172 0.9800027
2001 Q3 -0.042260559 0.9954100
2001 Q4  0.096188411 1.0336234
2002 Q1 -0.092684201 1.0337850
2002 Q2  0.049217429 1.0860119
R> head(data1w)
                  mean        sd
2001-01-02 -0.22140524 0.5728252
2001-01-09  0.29574667 0.8686111
2001-01-16 -0.02281531 1.2305420
2001-01-23  0.58834959 0.3993624
2001-01-30 -0.44463015 0.9619139
2001-02-06 -0.08522653 0.8349544
R> 
R> 
R> 
> proc.time()
   user  system elapsed 
  0.503   0.034   0.524