1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
%% This file is a copy of exometer_slide.erl from https://github.com/Feuerlabs/exometer_core,
%% with the following modifications:
%%
%% 1) The elements are tuples of numbers
%%
%% 2) Only one element for each expected interval point is added, intermediate values
%% are discarded. Thus, if we have a window of 60s and interval of 5s, at max 12 elements
%% are stored.
%%
%% 3) Additions can be provided as increments to the last value stored
%%
%% 4) sum/1 implements the sum of several slides, generating a new timestamp sequence based
%% on the given intervals. Elements on each window are added to the closest interval point.
%%
%% Original commit: https://github.com/Feuerlabs/exometer_core/commit/2759edc804211b5245867b32c9a20c8fe1d93441
%%
%% -------------------------------------------------------------------
%%
%% Copyright (c) 2014 Basho Technologies, Inc. All Rights Reserved.
%%
%% This Source Code Form is subject to the terms of the Mozilla Public
%% License, v. 2.0. If a copy of the MPL was not distributed with this
%% file, You can obtain one at https://mozilla.org/MPL/2.0/.
%%
%% -------------------------------------------------------------------
%%
%% @author Tony Rogvall <tony@rogvall.se>
%% @author Ulf Wiger <ulf@feuerlabs.com>
%% @author Magnus Feuer <magnus@feuerlabs.com>
%%
%% @doc Efficient sliding-window buffer
%%
%% Initial implementation: 29 Sep 2009 by Tony Rogvall
%%
%% This module implements an efficient sliding window, maintaining
%% two lists - a primary and a secondary. Values are paired with a
%% timestamp (millisecond resolution, see `timestamp/0')
%% and prepended to the primary list. When the time span between the oldest
%% and the newest entry in the primary list exceeds the given window size,
%% the primary list is shifted into the secondary list position, and the
%% new entry is added to a new (empty) primary list.
%%
%% The window can be converted to a list using `to_list/1'.
%% @end
%%
%%
%% All modifications are (c) 2007-2023 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. All rights reserved.
%% The Initial Developer of the Original Code is Basho Technologies, Inc.
-module(exometer_slide).
-export([new/2, new/3,
reset/1,
add_element/3,
to_list/2,
to_list/3,
foldl/5,
map/2,
to_normalized_list/5]).
-export([timestamp/0,
last_two/1,
last/1]).
-export([sum/1,
sum/2,
sum/5,
optimize/1]).
%% For testing
-export([buffer/1]).
-compile(inline).
-compile(inline_list_funcs).
-type value() :: tuple().
-type internal_value() :: tuple() | drop.
-type timestamp() :: non_neg_integer().
-type fold_acc() :: any().
-type fold_fun() :: fun(({timestamp(), internal_value()}, fold_acc()) -> fold_acc()).
%% Fixed size event buffer
-record(slide, {size = 0 :: integer(), % ms window
n = 0 :: integer(), % number of elements in buf1
max_n :: infinity | integer(), % max no of elements
incremental = false :: boolean(),
interval :: integer(),
last = 0 :: integer(), % millisecond timestamp
first = undefined :: undefined | integer(), % millisecond timestamp
buf1 = [] :: [internal_value()],
buf2 = [] :: [internal_value()],
total :: undefined | value()}).
-opaque slide() :: #slide{}.
-export_type([slide/0, timestamp/0]).
-spec timestamp() -> timestamp().
%% @doc Generate a millisecond-resolution timestamp.
%%
%% This timestamp format is used e.g. by the `exometer_slide' and
%% `exometer_histogram' implementations.
%% @end
timestamp() ->
os:system_time(milli_seconds).
-spec new(_Size::integer(), _Options::list()) -> slide().
%% @doc Create a new sliding-window buffer.
%%
%% `Size' determines the size in milliseconds of the sliding window.
%% The implementation prepends values into a primary list until the oldest
%% element in the list is `Size' ms older than the current value. It then
%% swaps the primary list into a secondary list, and starts prepending to
%% a new primary list. This means that more data than fits inside the window
%% will be kept - upwards of twice as much. On the other hand, updating the
%% buffer is very cheap.
%% @end
new(Size, Opts) -> new(timestamp(), Size, Opts).
-spec new(Timestamp :: timestamp(), Size::integer(), Options::list()) -> slide().
new(TS, Size, Opts) ->
#slide{size = Size,
max_n = proplists:get_value(max_n, Opts, infinity),
interval = proplists:get_value(interval, Opts, infinity),
last = TS,
first = undefined,
incremental = proplists:get_value(incremental, Opts, false),
buf1 = [],
buf2 = []}.
-spec reset(slide()) -> slide().
%% @doc Empty the buffer
%%
reset(Slide) ->
Slide#slide{n = 0, buf1 = [], buf2 = [], last = 0, first = undefined}.
%% @doc Add an element to the buffer, tagged with the given timestamp.
%%
%% Apart from the specified timestamp, this function works just like
%% {@link add_element/2}.
%% @end
-spec add_element(timestamp(), value(), slide()) -> slide().
add_element(_TS, _Evt, Slide) when Slide#slide.size == 0 ->
Slide;
add_element(TS, Evt, #slide{last = Last, interval = Interval, total = Total0,
incremental = true} = Slide)
when (TS - Last) < Interval ->
Total = add_to_total(Evt, Total0),
Slide#slide{total = Total};
add_element(TS, Evt, #slide{last = Last, interval = Interval} = Slide)
when (TS - Last) < Interval ->
Slide#slide{total = Evt};
add_element(TS, Evt, #slide{last = Last, size = Sz, incremental = true,
n = N, max_n = MaxN, total = Total0,
buf1 = Buf1} = Slide) ->
N1 = N+1,
Total = add_to_total(Evt, Total0),
%% Total could be the same as the last sample, by adding and substracting
%% the same amout to the totals. That is not strictly a drop, but should
%% generate new samples.
%% I.e. 0, 0, -14, 14 (total = 0, samples = 14, -14, 0, drop)
case {is_zeros(Evt), Buf1} of
{_, []} ->
Slide#slide{n = N1, first = TS, buf1 = [{TS, Total} | Buf1],
last = TS, total = Total};
_ when TS - Last > Sz; N1 > MaxN ->
%% swap
Slide#slide{last = TS, n = 1, buf1 = [{TS, Total}],
buf2 = Buf1, total = Total};
{true, [{_, Total}, {_, drop} = Drop | Tail]} ->
%% Memory optimisation
Slide#slide{buf1 = [{TS, Total}, Drop | Tail],
n = N1, last = TS};
{true, [{DropTS, Total} | Tail]} ->
%% Memory optimisation
Slide#slide{buf1 = [{TS, Total}, {DropTS, drop} | Tail],
n = N1, last = TS};
_ ->
Slide#slide{n = N1, buf1 = [{TS, Total} | Buf1],
last = TS, total = Total}
end;
add_element(TS, Evt, #slide{last = Last, size = Sz, n = N, max_n = MaxN,
buf1 = Buf1} = Slide)
when TS - Last > Sz; N + 1 > MaxN ->
Slide#slide{last = TS, n = 1, buf1 = [{TS, Evt}],
buf2 = Buf1, total = Evt};
add_element(TS, Evt, #slide{buf1 = [{_, Evt}, {_, drop} = Drop | Tail],
n = N} = Slide) ->
%% Memory optimisation
Slide#slide{buf1 = [{TS, Evt}, Drop | Tail], n = N + 1, last = TS};
add_element(TS, Evt, #slide{buf1 = [{DropTS, Evt} | Tail], n = N} = Slide) ->
%% Memory optimisation
Slide#slide{buf1 = [{TS, Evt}, {DropTS, drop} | Tail],
n = N + 1, last = TS};
add_element(TS, Evt, #slide{n = N, buf1 = Buf1} = Slide) ->
N1 = N+1,
case Buf1 of
[] ->
Slide#slide{n = N1, buf1 = [{TS, Evt} | Buf1],
last = TS, first = TS, total = Evt};
_ ->
Slide#slide{n = N1, buf1 = [{TS, Evt} | Buf1],
last = TS, total = Evt}
end.
add_to_total(Evt, undefined) ->
Evt;
add_to_total({A0}, {B0}) ->
{B0 + A0};
add_to_total({A0, A1}, {B0, B1}) ->
{B0 + A0, B1 + A1};
add_to_total({A0, A1, A2}, {B0, B1, B2}) ->
{B0 + A0, B1 + A1, B2 + A2};
add_to_total({A0, A1, A2, A3}, {B0, B1, B2, B3}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3};
add_to_total({A0, A1, A2, A3, A4}, {B0, B1, B2, B3, B4}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3, B4 + A4};
add_to_total({A0, A1, A2, A3, A4, A5}, {B0, B1, B2, B3, B4, B5}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3, B4 + A4, B5 + A5};
add_to_total({A0, A1, A2, A3, A4, A5, A6}, {B0, B1, B2, B3, B4, B5, B6}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3, B4 + A4, B5 + A5, B6 + A6};
add_to_total({A0, A1, A2, A3, A4, A5, A6, A7}, {B0, B1, B2, B3, B4, B5, B6, B7}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3, B4 + A4, B5 + A5, B6 + A6, B7 + A7};
add_to_total({A0, A1, A2, A3, A4, A5, A6, A7, A8}, {B0, B1, B2, B3, B4, B5, B6, B7, B8}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3, B4 + A4, B5 + A5, B6 + A6, B7 + A7, B8 + A8};
add_to_total({A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14,
A15, A16, A17, A18, A19},
{B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14,
B15, B16, B17, B18, B19}) ->
{B0 + A0, B1 + A1, B2 + A2, B3 + A3, B4 + A4, B5 + A5, B6 + A6, B7 + A7, B8 + A8,
B9 + A9, B10 + A10, B11 + A11, B12 + A12, B13 + A13, B14 + A14, B15 + A15, B16 + A16,
B17 + A17, B18 + A18, B19 + A19}.
is_zeros({0}) ->
true;
is_zeros({0, 0}) ->
true;
is_zeros({0, 0, 0}) ->
true;
is_zeros({0, 0, 0, 0}) ->
true;
is_zeros({0, 0, 0, 0, 0}) ->
true;
is_zeros({0, 0, 0, 0, 0, 0}) ->
true;
is_zeros({0, 0, 0, 0, 0, 0, 0}) ->
true;
is_zeros({0, 0, 0, 0, 0, 0, 0, 0, 0}) ->
true;
is_zeros({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}) ->
true;
is_zeros(_) ->
false.
-spec optimize(slide()) -> slide().
optimize(#slide{buf2 = []} = Slide) ->
Slide;
optimize(#slide{buf1 = Buf1, buf2 = Buf2, max_n = MaxN, n = N} = Slide)
when is_integer(MaxN) andalso length(Buf1) < MaxN ->
Slide#slide{buf1 = Buf1,
buf2 = lists:sublist(Buf2, n_diff(MaxN, N) + 1)};
optimize(Slide) -> Slide.
snd(T) when is_tuple(T) ->
element(2, T).
-spec to_list(timestamp(), slide()) -> [{timestamp(), value()}].
%% @doc Convert the sliding window into a list of timestamped values.
%% @end
to_list(_Now, #slide{size = Sz}) when Sz == 0 ->
[];
to_list(Now, #slide{size = Sz} = Slide) ->
snd(to_list_from(Now, Now - Sz, Slide)).
to_list(Now, Start, Slide) ->
snd(to_list_from(Now, Start, Slide)).
to_list_from(Now, Start0, #slide{max_n = MaxN, buf2 = Buf2, first = FirstTS,
interval = Interval} = Slide) ->
{NewN, Buf1} = maybe_add_last_sample(Now, Slide),
Start = first_max(FirstTS, Start0),
{Prev0, Buf1_1} = take_since(Buf1, Now, Start, first_max(MaxN, NewN), [], Interval),
case take_since(Buf2, Now, Start, first_max(MaxN, NewN), Buf1_1, Interval) of
{undefined, Buf1_1} ->
{Prev0, Buf1_1};
{_Prev, Buf1_1} = Res ->
case Prev0 of
undefined ->
Res;
_ ->
%% If take_since returns the same buffer, that means we don't
%% need Buf2 at all. We might be returning a too old sample
%% in previous, so we must use the one from Buf1
{Prev0, Buf1_1}
end;
Res ->
Res
end.
first_max(F, X) when is_integer(F) -> max(F, X);
first_max(_, X) -> X.
-spec last_two(slide()) -> [{timestamp(), value()}].
%% @doc Returns the newest 2 elements on the sample
last_two(#slide{buf1 = [{TS, Evt} = H1, {_, drop} | _], interval = Interval}) ->
[H1, {TS - Interval, Evt}];
last_two(#slide{buf1 = [H1, H2_0 | _], interval = Interval}) ->
H2 = adjust_timestamp(H1, H2_0, Interval),
[H1, H2];
last_two(#slide{buf1 = [H1], buf2 = [H2_0 | _],
interval = Interval}) ->
H2 = adjust_timestamp(H1, H2_0, Interval),
[H1, H2];
last_two(#slide{buf1 = [H1], buf2 = []}) ->
[H1];
last_two(_) ->
[].
adjust_timestamp({TS1, _}, {TS2, V2}, Interval) ->
case TS1 - TS2 > Interval of
true -> {TS1 - Interval, V2};
false -> {TS2, V2}
end.
-spec last(slide()) -> value() | undefined.
last(#slide{total = T}) when T =/= undefined ->
T;
last(#slide{buf1 = [{_TS, T} | _]}) ->
T;
last(#slide{buf2 = [{_TS, T} | _]}) ->
T;
last(_) ->
undefined.
-spec foldl(timestamp(), timestamp(), fold_fun(), fold_acc(), slide()) -> fold_acc().
%% @doc Fold over the sliding window, starting from `Timestamp'.
%% Now provides a reference point to evaluate whether to include
%% partial, unrealised sample values in the sequence. Unrealised values will be
%% appended to the sequence when Now >= LastTS + Interval
%%
%% The fun should as `fun({Timestamp, Value}, Acc) -> NewAcc'.
%% The values are processed in order from oldest to newest.
%% @end
foldl(_Now, _Timestamp, _Fun, _Acc, #slide{size = Sz}) when Sz == 0 ->
[];
foldl(Now, Start0, Fun, Acc, #slide{max_n = _MaxN, buf2 = _Buf2,
interval = _Interval} = Slide) ->
lists:foldl(Fun, Acc, element(2, to_list_from(Now, Start0, Slide)) ++ [last]).
map(Fun, #slide{buf1 = Buf1, buf2 = Buf2, total = Total} = Slide) ->
BufFun = fun({Timestamp, Value}) ->
{Timestamp, Fun(Value)}
end,
MappedBuf1 = lists:map(BufFun, Buf1),
MappedBuf2 = lists:map(BufFun, Buf2),
MappedTotal = Fun(Total),
Slide#slide{buf1 = MappedBuf1, buf2 = MappedBuf2, total = MappedTotal}.
maybe_add_last_sample(_Now, #slide{total = T, n = N,
buf1 = [{_, T} | _] = Buf1}) ->
{N, Buf1};
maybe_add_last_sample(Now, #slide{total = T,
n = N,
last = Last,
interval = I,
buf1 = Buf1})
when T =/= undefined andalso Now >= Last + I ->
{N + 1, [{Last + I, T} | Buf1]};
maybe_add_last_sample(_Now, #slide{buf1 = Buf1, n = N}) ->
{N, Buf1}.
create_normalized_lookup(Start, Interval, RoundFun, Samples) ->
lists:foldl(fun({TS, Value}, Acc) when TS - Start >= 0 ->
NewTS = map_timestamp(TS, Start, Interval, RoundFun),
maps:update_with(NewTS,
fun({T, V}) when T > TS ->
{T, V};
(_) ->
{TS, Value}
end, {TS, Value}, Acc);
(_, Acc) ->
Acc
end, #{}, Samples).
-spec to_normalized_list(timestamp(), timestamp(), integer(), slide(),
no_pad | tuple()) -> [tuple()].
to_normalized_list(Now, Start, Interval, Slide, Empty) ->
to_normalized_list(Now, Start, Interval, Slide, Empty, fun ceil/1).
to_normalized_list(Now, Start, Interval, #slide{first = FirstTS0,
total = Total} = Slide,
Empty, RoundFun) ->
RoundTSFun = fun (TS) -> map_timestamp(TS, Start, Interval, RoundFun) end,
% add interval as we don't want to miss a sample due to rounding
{Prev, Samples} = to_list_from(Now + Interval, Start, Slide),
Lookup = create_normalized_lookup(Start, Interval, RoundFun, Samples),
NowRound = RoundTSFun(Now),
Pad = case Samples of
_ when Empty =:= no_pad ->
[];
[{TS, _} | _] when Prev =/= undefined, Start =< TS ->
[{T, snd(Prev)}
|| T <- lists:seq(RoundTSFun(TS) - Interval, Start,
-Interval)];
[{TS, _} | _] when is_number(FirstTS0) andalso Start < FirstTS0 ->
% only if we know there is nothing in the past can we
% generate a 0 pad
[{T, Empty} || T <- lists:seq(RoundTSFun(TS) - Interval, Start,
-Interval)];
_ when FirstTS0 =:= undefined andalso Total =:= undefined ->
[{T, Empty} || T <- lists:seq(NowRound, Start, -Interval)];
[] -> % samples have been seen, use the total to pad
[{T, Total} || T <- lists:seq(NowRound, Start, -Interval)];
_ -> []
end,
{_, Res1} = lists:foldl(
fun(T, {Last, Acc}) ->
case maps:find(T, Lookup) of
{ok, {_, V}} ->
{V, [{T, V} | Acc]};
error when Last =:= undefined ->
{Last, Acc};
error -> % this pads the last value into the future
{Last, [{T, Last} | Acc]}
end
end, {undefined, []},
lists:seq(Start, NowRound, Interval)),
Res1 ++ Pad.
%% @doc Sums a list of slides
%%
%% Takes the last known timestamp and creates an template version of the
%% sliding window. Timestamps are then truncated and summed with the value
%% in the template slide.
%% @end
-spec sum([slide()]) -> slide().
sum(Slides) -> sum(Slides, no_pad).
sum([#slide{size = Size, interval = Interval} | _] = Slides, Pad) ->
% take the freshest timestamp as reference point for summing operation
Now = lists:max([Last || #slide{last = Last} <- Slides]),
Start = Now - Size,
sum(Now, Start, Interval, Slides, Pad).
sum(Now, Start, Interval, [Slide | _ ] = All, Pad) ->
Fun = fun({TS, Value}, Acc) ->
maps:update_with(TS, fun(V) -> add_to_total(V, Value) end,
Value, Acc)
end,
{Total, Dict} =
lists:foldl(fun(#slide{total = T} = S, {Tot, Acc}) ->
Samples = to_normalized_list(Now, Start, Interval, S,
Pad, fun ceil/1),
Total = add_to_total(T, Tot),
Folded = lists:foldl(Fun, Acc, Samples),
{Total, Folded}
end, {undefined, #{}}, All),
{First, Buffer} = case lists:sort(maps:to_list(Dict)) of
[] ->
F = case [TS || #slide{first = TS} <- All,
is_integer(TS)] of
[] -> undefined;
FS -> lists:min(FS)
end,
{F, []};
[{F, _} | _ ] = B ->
{F, lists:reverse(B)}
end,
Slide#slide{buf1 = Buffer, buf2 = [], total = Total, n = length(Buffer),
first = First, last = Now}.
truncated_seq(_First, _Last, _Incr, 0) ->
[];
truncated_seq(TS, TS, _Incr, MaxN) when MaxN > 0 ->
[TS];
truncated_seq(First, Last, Incr, MaxN) when First =< Last andalso MaxN > 0 ->
End = min(Last, First + (MaxN * Incr) - Incr),
lists:seq(First, End, Incr);
truncated_seq(First, Last, Incr, MaxN) ->
End = max(Last, First + (MaxN * Incr) - Incr),
lists:seq(First, End, Incr).
take_since([{DropTS, drop} | T], Now, Start, N, [{TS, Evt} | _] = Acc,
Interval) ->
case T of
[] ->
Fill = [{TS0, Evt} || TS0 <- truncated_seq(TS - Interval,
max(DropTS, Start),
-Interval, N)],
{undefined, lists:reverse(Fill) ++ Acc};
[{TS0, _} = E | Rest] when TS0 >= Start, N > 0 ->
Fill = [{TS1, Evt} || TS1 <- truncated_seq(TS0 + Interval,
max(TS0 + Interval, TS - Interval),
Interval, N)],
take_since(Rest, Now, Start, decr(N), [E | Fill ++ Acc], Interval);
[Prev | _] -> % next sample is out of range so needs to be filled from Start
Fill = [{TS1, Evt} || TS1 <- truncated_seq(Start, max(Start, TS - Interval),
Interval, N)],
{Prev, Fill ++ Acc}
end;
take_since([{TS, V} = H | T], Now, Start, N, Acc, Interval) when TS >= Start,
N > 0,
TS =< Now,
is_tuple(V) ->
take_since(T, Now, Start, decr(N), [H|Acc], Interval);
take_since([{TS,_} | T], Now, Start, N, Acc, Interval) when TS >= Start, N > 0 ->
take_since(T, Now, Start, decr(N), Acc, Interval);
take_since([Prev | _], _, _, _, Acc, _) ->
{Prev, Acc};
take_since(_, _, _, _, Acc, _) ->
%% Don't reverse; already the wanted order.
{undefined, Acc}.
decr(N) when is_integer(N) ->
N-1;
decr(N) -> N.
n_diff(A, B) when is_integer(A) ->
A - B.
ceil(X) when X < 0 ->
trunc(X);
ceil(X) ->
T = trunc(X),
case X - T == 0 of
true -> T;
false -> T + 1
end.
map_timestamp(TS, Start, Interval, Round) ->
Factor = Round((TS - Start) / Interval),
Start + Interval * Factor.
buffer(#slide{buf1 = Buf1, buf2 = Buf2}) ->
Buf1 ++ Buf2.
|