File: core.scm

package info (click to toggle)
racket-mode 20250711~git.8a80578-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,024 kB
  • sloc: lisp: 17,215; makefile: 106
file content (3098 lines) | stat: -rw-r--r-- 148,691 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
;; This program and the accompanying materials are made available under the
;; terms of the MIT license (X11 license) which accompanies this distribution.

;; Author: C. Bürger

#!r6rs

(library
    (racr core)
  (export
   ;; Specification interface:
   (rename (make-racr-specification create-specification))
   ;; Specification query interface:
   specification->phase
   specification->start-symbol
   specification->ast-rules
   specification->find-ast-rule
   ast-rule->symbolic-representation
   ast-rule->supertype?
   ast-rule->production
   symbol->name
   symbol->non-terminal?
   symbol->kleene?
   symbol->context-name
   symbol->attributes
   attribute->name
   attribute->circular?
   attribute->synthesized?
   attribute->inherited?
   attribute->cached?
   ;; ASTs: Specification
   (rename (specify-ast-rule ast-rule))
   compile-ast-specifications
   ;; ASTs: Construction
   create-ast
   create-ast-list
   create-ast-bud
   create-ast-mockup
   ;; ASTs: Traversal
   ast-parent
   ast-child
   ast-sibling
   ast-children
   ast-for-each-child
   ast-find-child
   ast-find-child*
   ;; ASTs: Node Information
   ast-node?
   ast-specification
   ast-has-parent?
   ast-child-index
   ast-has-child?
   ast-num-children
   ast-has-sibling?
   ast-node-type
   ast-node-rule
   ast-list-node?
   ast-bud-node?
   ast-subtype?
   ;; Attribution: Specification
   specify-attribute
   specify-pattern
   (rename (specify-ag-rule ag-rule))
   compile-ag-specifications
   ;; Attribution: Querying
   att-value
   ;; Rewriting: Primitive Rewrite Functions
   rewrite-terminal
   rewrite-refine
   rewrite-abstract
   rewrite-subtree
   rewrite-add
   rewrite-insert
   rewrite-delete
   ;; Rewriting: Rewrite Strategies
   perform-rewrites
   create-transformer-for-pattern
   ;; Annotations: Attachment
   ast-annotation-set!
   ast-weave-annotations
   ast-annotation-remove!
   ;; Annotations: Querying
   ast-annotation?
   ast-annotation
   ;; Support
   with-specification
   with-bindings
   ;; Utility interface:
   racr-exception?
   make-atom)
  (import (rnrs) (rnrs mutable-pairs))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Internal Data Structures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define-record-type atom ; Unique key entities, each instance is only equal to itself.
    (nongenerative atom:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (sealed #t)(opaque #t)(fields (mutable dummy-value))
    (protocol
     (lambda (new)
       (lambda ()
         (new #t)))))

  (define racr-nil (make-atom)) ; Unique value indicating undefined RACR entities

  ;; Record type representing RACR compiler specifications. A compiler specification consists of arbitrary
  ;; many AST rule, attribute and rewrite specifications, all aggregated into a set of rules stored in a
  ;; non-terminal-symbol -> ast-rule hashtable, an actual compiler specification phase and a distinguished
  ;; start symbol. The specification phase is an internal flag indicating the RACR system the compiler's
  ;; specification progress. Possible phases are:
  ;; 1 : AST specification
  ;; 2 : AG specification
  ;; 3 : Rewrite specification
  ;; 4 : Specification finished
  (define-record-type racr-specification
    (nongenerative racr-specification:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields (mutable specification-phase) rules-table (mutable start-symbol))
    (opaque #t)(sealed #t)
    (protocol
     (lambda (new)
       (lambda ()
         (new 1 (make-eq-hashtable 50) racr-nil)))))

  ;; INTERNAL FUNCTION: Given a RACR specification and a non-terminal, return the
  ;; non-terminal's AST rule or #f if it is undefined.
  (define racr-specification-find-rule
    (lambda (spec non-terminal)
      (hashtable-ref (racr-specification-rules-table spec) non-terminal #f)))

  ;; INTERNAL FUNCTION: Given a RACR specification return a list of its AST rules.
  (define racr-specification-rules-list
    (lambda (spec)
      (call-with-values
       (lambda ()
         (hashtable-entries (racr-specification-rules-table spec)))
       (lambda (key-vector value-vector)
         (vector->list value-vector)))))

  ;; Record type for AST rules;; An AST rule has a reference to the RACR specification it belongs to and consist
  ;; of its symbolic encoding, a production (i.e., a list of production-symbols) and an optional supertype.
  (define-record-type ast-rule
    (nongenerative ast-rule:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields specification as-symbol (mutable production) (mutable supertype?))
    (opaque #t)(sealed #t))

  ;; INTERNAL FUNCTION: Given an AST rule find a certain child context by name. If the rule defines no such
  ;; context, return #f, otherwise the production symbol defining the respective context.
  (define ast-rule-find-child-context
    (lambda (r context-name)
      (find
       (lambda (symbol)
         (eq? (symbol-context-name symbol) context-name))
       (cdr (ast-rule-production r)))))

  ;; INTERNAL FUNCTION: Given two rules r1 and r2, return whether r1 is a subtype of r2 or not. The subtype
  ;; relationship is reflexive, i.e., every type is a subtype of itself.
  ;; BEWARE: Only works correct if supertypes are resolved, otherwise an exception can be thrown!
  (define ast-rule-subtype?
    (lambda (r1 r2)
      (and
       (eq? (ast-rule-specification r1) (ast-rule-specification r2))
       (let loop ((r1 r1))
         (cond
           ((eq? r1 r2) #t)
           ((ast-rule-supertype? r1) (loop (ast-rule-supertype? r1)))
           (else #f))))))

  ;; INTERNAL FUNCTION: Given a rule, return a list containing all its subtypes except the rule itself.
  ;; BEWARE: Only works correct if supertypes are resolved, otherwise an exception can be thrown!
  (define ast-rule-subtypes
    (lambda (rule1)
      (filter
       (lambda (rule2)
         (and (not (eq? rule2 rule1)) (ast-rule-subtype? rule2 rule1)))
       (racr-specification-rules-list (ast-rule-specification rule1)))))

  ;; Record type for production symbols; A production symbol is part of a certain ast rule and has name,
  ;; a flag indicating whether it is a non-terminal or not (later resolved to the actual AST rule representing
  ;; the respective non-terminal), a flag indicating whether it represents a Kleene closure (i.e., is a list
  ;; of certain type) or not, a context-name unambiguously referencing it within the production it is part of
  ;; and a list of attributes defined for it.
  (define-record-type (symbol make-production-symbol production-symbol?)
    (nongenerative symbol:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields name ast-rule (mutable non-terminal?) kleene? context-name (mutable attributes))
    (opaque #t)(sealed #t))

  ;; Record type for attribute definitions. An attribute definition has a certain name, a definition context
  ;; (i.e., a symbol of an AST rule), an equation and an optional circularity-definition used for fix-point
  ;; computations. Further, attribute definitions specify whether the value of instances of the defined
  ;; attribute are cached. Circularity-definitions are (bottom-value equivalence-function) pairs, whereby
  ;; bottom-value is the value fix-point computations start with and equivalence-functions are used to decide
  ;; whether a fix-point is reached or not (i.e., equivalence-functions are arbitrary functions of arity two
  ;; computing whether two given arguments are equal or not).
  (define-record-type attribute-definition
    (nongenerative attribute-definition:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields name context equation circularity-definition cached?)
    (opaque #t)(sealed #t))

  ;; INTERNAL FUNCTION: Given an attribute definition, check if instances can depend on
  ;; themself (i.e., be circular) or not.
  (define attribute-definition-circular?
    (lambda (att)
      (if (attribute-definition-circularity-definition att) #t #f)))

  ;; INTERNAL FUNCTION: Given an attribute definition, return whether it specifies
  ;; a synthesized attribute or not.
  (define attribute-definition-synthesized?
    (lambda (att-def)
      (let ((symbol (attribute-definition-context att-def)))
        (eq? (car (ast-rule-production (symbol-ast-rule symbol))) symbol))))

  ;; INTERNAL FUNCTION: Given an attribute definition, return whether it specifies
  ;; an inherited attribute or not.
  (define attribute-definition-inherited?
    (lambda (att-def)
      (not (attribute-definition-synthesized? att-def))))

  ;; Record type for AST nodes. AST nodes have a reference to the evaluator state used for evaluating their
  ;; attributes and rewrites, the AST rule they represent a context of, their parent, children, attribute
  ;; instances, attribute cache entries they influence and annotations.
  (define-record-type node
    (nongenerative node:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields
     (mutable evaluator-state)
     (mutable ast-rule)
     (mutable parent)
     (mutable children)
     (mutable attributes)
     (mutable cache-influences)
     (mutable annotations))
    (opaque #t)(sealed #t)
    (protocol
     (lambda (new)
       (lambda (ast-rule parent children)
         (new
          #f
          ast-rule
          parent
          children
          (list)
          (list)
          (list))))))

  ;; INTERNAL FUNCTION: Given a node, return whether it is a terminal or not.
  (define node-terminal?
    (lambda (n)
      (eq? (node-ast-rule n) 'terminal)))

  ;; INTERNAL FUNCTION: Given a node, return whether it is a non-terminal or not.
  (define node-non-terminal?
    (lambda (n)
      (not (node-terminal? n))))

  ;; INTERNAL FUNCTION: Given a node, return whether it is a list node or not.
  (define node-list-node?
    (lambda (n)
      (eq? (node-ast-rule n) 'list-node)))

  ;; INTERNAL FUNCTION: Given a node, return whether it is a bud node or not.
  (define node-bud-node?
    (lambda (n)
      (eq? (node-ast-rule n) 'bud-node)))

  ;; INTERNAL FUNCTION: Given a node, return its child-index if it has a parent, otherwise return #f.
  (define node-child-index?
    (lambda (n)
      (if (node-parent n)
          (let loop ((children (node-children (node-parent n)))
                     (pos 1))
            (if (eq? (car children) n)
                pos
                (loop (cdr children) (+ pos 1))))
          #f)))

  ;; INTERNAL FUNCTION: Given a node find a certain child by name. If the node has
  ;; no such child, return #f, otherwise the child.
  (define node-find-child
    (lambda (n context-name)
      (and (not (node-list-node? n))
           (not (node-bud-node? n))
           (not (node-terminal? n))
           (let loop ((contexts (cdr (ast-rule-production (node-ast-rule n))))
                      (children (node-children n)))
             (if (null? contexts)
                 #f
                 (if (eq? (symbol-context-name (car contexts)) context-name)
                     (car children)
                     (loop (cdr contexts) (cdr children))))))))

  ;; INTERNAL FUNCTION: Given a node find a certain attribute associated with it. If the node
  ;; has no such attribute, return #f, otherwise the attribute.
  (define node-find-attribute
    (lambda (n name)
      (find
       (lambda (att)
         (eq? (attribute-definition-name (attribute-instance-definition att)) name))
       (node-attributes n))))

  ;; INTERNAL FUNCTION: Given two nodes n1 and n2, return whether n1 is within the subtree spaned by n2 or not.
  (define node-inside-of?
    (lambda (n1 n2)
      (cond
        ((eq? n1 n2) #t)
        ((node-parent n1) (node-inside-of? (node-parent n1) n2))
        (else #f))))

  ;; Record type for attribute instances of a certain attribute definition, associated with
  ;; a certain node (context) and a cache.
  (define-record-type attribute-instance
    (nongenerative attribute-instance:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields (mutable definition) (mutable context) cache)
    (opaque #t)(sealed #t)
    (protocol
     (lambda (new)
       (lambda (definition context)
         (new definition context (make-hashtable equal-hash equal? 1))))))

  ;; Record type for attribute cache entries. Attribute cache entries represent the values of
  ;; and dependencies between attribute instances evaluated for certain arguments. The attribute
  ;; instance of which an entry represents a value is called its context. If an entry already
  ;; is evaluated, it caches the result of its context evaluated for its arguments. If an entry is
  ;; not evaluated but its context is circular it stores an intermediate result of its fixpoint
  ;; computation, called cycle value. Entries also track whether they are already in evaluation or
  ;; not, such that the attribute evaluator can detect unexpected cycles.
  (define-record-type attribute-cache-entry
    (nongenerative attribute-cache-entry:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields
     (mutable context)
     (mutable arguments)
     (mutable value)
     (mutable cycle-value)
     (mutable entered?)
     (mutable node-dependencies)
     (mutable cache-dependencies)
     (mutable cache-influences))
    (opaque #t)(sealed #t)
    (protocol
     (lambda (new)
       (lambda (att arguments) ; att: The attribute instance for which to construct a cache entry
         (new
          att
          arguments
          racr-nil
          (let ((circular? (attribute-definition-circularity-definition (attribute-instance-definition att))))
            (if circular?
                (car circular?)
                racr-nil))
          #f
          (list)
          (list)
          (list))))))

  ;; Record type representing the internal state of RACR systems throughout their execution, i.e., while
  ;; evaluating attributes and rewriting ASTs. An evaluator state consists of a flag indicating if the AG
  ;; currently performs a fix-point evaluation, a flag indicating if throughout a fix-point iteration the
  ;; value of an attribute changed and an attribute evaluation stack used for dependency tracking.
  (define-record-type evaluator-state
    (nongenerative evaluator-state:4eac95849d0fb73142c398c35979fa20a71b9d02)
    (fields (mutable ag-in-cycle?) (mutable ag-cycle-change?) (mutable evaluation-stack))
    (opaque #t)(sealed #t)
    (protocol
     (lambda (new)
       (lambda ()
         (new #f #f (list))))))

  ;; INTERNAL FUNCTION: Given an evaluator state, return whether it represents an evaluation in progress or
  ;; not; If it represents an evaluation in progress return the current attribute in evaluation, otherwise #f.
  (define evaluator-state-in-evaluation?
    (lambda (state)
      (and (not (null? (evaluator-state-evaluation-stack state))) (car (evaluator-state-evaluation-stack state)))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Support API ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  ;; INTERNAL FUNCTION: Given an arbitrary Scheme entity, construct a string
  ;; representation of it using display.
  (define object->string
    (lambda (x)
      (call-with-string-output-port
       (lambda (port)
         (display x port)))))

  (define-condition-type racr-exception &violation make-racr-exception racr-exception?)

  ;; INTERNAL FUNCTION: Given an arbitrary sequence of strings and other Scheme entities, concatenate them to
  ;; form an error message and throw a special RACR exception with the constructed message. Any entity that is
  ;; not a string is treated as error information embedded in the error message between [ and ] characters,
  ;; whereby the actual string representation of the entity is obtained using object->string.
  (define-syntax throw-exception
    (syntax-rules ()
      ((_ m-part ...)
       (raise-continuable
        (condition
         (make-racr-exception)
         (make-message-condition
          (string-append
           "RACR exception: "
           (let ((m-part* m-part))
             (if (string? m-part*)
                 m-part*
                 (string-append "[" (object->string m-part*) "]"))) ...)))))))

  ;; INTERNAL FUNCTION: Procedure sequentially applying a function on all the AST rules of a set of rules which
  ;; inherit, whereby supertypes are processed before their subtypes.
  (define apply-wrt-ast-inheritance
    (lambda (func rules)
      (let loop ((resolved ; The set of all AST rules that are already processed....
                  (filter ; ...Initially it consists of all the rules that have no supertypes.
                   (lambda (rule)
                     (not (ast-rule-supertype? rule)))
                   rules))
                 (to-check ; The set of all AST rules that still must be processed....
                  (filter ; ...Initially it consists of all the rules that have supertypes.
                   (lambda (rule)
                     (ast-rule-supertype? rule))
                   rules)))
        (let ((to-resolve ; ...Find a rule that still must be processed and...
               (find
                (lambda (rule)
                  (memq (ast-rule-supertype? rule) resolved)) ; ...whose supertype already has been processed....
                to-check)))
          (when to-resolve ; ...If such a rule exists,...
            (func to-resolve) ; ...process it and...
            (loop (cons to-resolve resolved) (remq to-resolve to-check))))))) ; ...recur.

  (define-syntax with-specification
    (lambda (x)
      (syntax-case x ()
        ((k spec body ...)
         #`(let* ((spec* spec)
                  (#,(datum->syntax #'k 'ast-rule)
                   (lambda (rule)
                     (specify-ast-rule spec* rule)))
                  (#,(datum->syntax #'k 'compile-ast-specifications)
                   (lambda (start-symbol)
                     (compile-ast-specifications spec* start-symbol)))
                  (#,(datum->syntax #'k 'compile-ag-specifications)
                   (lambda ()
                     (compile-ag-specifications spec*)))
                  (#,(datum->syntax #'k 'create-ast)
                   (lambda (rule children)
                     (create-ast spec* rule children)))
                  (#,(datum->syntax #'k 'specification->phase)
                   (lambda ()
                     (specification->phase spec*)))
                  (#,(datum->syntax #'k 'specify-attribute)
                   (lambda (att-name non-terminal index cached? equation circ-def)
                     (specify-attribute spec* att-name non-terminal index cached? equation circ-def)))
                  (#,(datum->syntax #'k 'specify-pattern)
                   (lambda (att-name distinguished-node fragments references condition)
                     (specify-pattern spec* att-name distinguished-node fragments references condition)))
                  (#,(datum->syntax #'k 'create-transformer-for-pattern)
                   (lambda (node-type pattern-attribute rewrite-function . pattern-arguments)
                     (apply create-transformer-for-pattern spec* node-type pattern-attribute rewrite-function pattern-arguments))))
             (let-syntax ((#,(datum->syntax #'k 'ag-rule)
                           (syntax-rules ()
                             ((_ attribute-name definition (... ...))
                              (specify-ag-rule spec* attribute-name definition (... ...))))))
               body ...))))))

  (define-syntax with-bindings
    (syntax-rules ()
      ((_ ((binding ...) (parameter ...)) body body* ...)
       (lambda (l parameter ...)
         (let ((binding (cdr (assq 'binding l))) ...)
           body
           body* ...)))
      ((_ (binding ...) body body* ...)
       (with-bindings ((binding ...) ()) body body* ...))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Annotations ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define ast-weave-annotations
    (lambda (node type name value)
      (when (evaluator-state-in-evaluation? (node-evaluator-state node))
        (throw-exception
         "Cannot weave " name " annotation; "
         "There are attributes in evaluation."))
      (when (not (ast-annotation? node name))
        (cond
          ((and (not (ast-list-node? node)) (not (ast-bud-node? node)) (ast-subtype? node type))
           (ast-annotation-set! node name value))
          ((and (ast-list-node? node) (eq? type 'list-node))
           (ast-annotation-set! node name value))
          ((and (ast-bud-node? node) (eq? type 'bud-node))
           (ast-annotation-set! node name value))))
      (for-each
       (lambda (child)
         (unless (node-terminal? child)
           (ast-weave-annotations child type name value)))
       (node-children node))))

  (define ast-annotation?
    (lambda (node name)
      (when (evaluator-state-in-evaluation? (node-evaluator-state node))
        (throw-exception
         "Cannot check for " name " annotation; "
         "There are attributes in evaluation."))
      (assq name (node-annotations node))))

  (define ast-annotation
    (lambda (node name)
      (when (evaluator-state-in-evaluation? (node-evaluator-state node))
        (throw-exception
         "Cannot access " name " annotation; "
         "There are attributes in evaluation."))
      (let ((annotation (ast-annotation? node name)))
        (if annotation
            (cdr annotation)
            (throw-exception
             "Cannot access " name " annotation; "
             "The given node has no such annotation.")))))

  (define ast-annotation-set!
    (lambda (node name value)
      (when (evaluator-state-in-evaluation? (node-evaluator-state node))
        (throw-exception
         "Cannot set " name " annotation; "
         "There are attributes in evaluation."))
      (when (not (symbol? name))
        (throw-exception
         "Cannot set " name " annotation; "
         "Annotation names must be Scheme symbols."))
      (let ((annotation (ast-annotation? node name))
            (value
             (if (procedure? value)
                 (lambda args
                   (apply value node args))
                 value)))
        (if annotation
            (set-cdr! annotation value)
            (node-annotations-set! node (cons (cons name value) (node-annotations node)))))))

  (define ast-annotation-remove!
    (lambda (node name)
      (when (evaluator-state-in-evaluation? (node-evaluator-state node))
        (throw-exception
         "Cannot remove " name " annotation; "
         "There are attributes in evaluation."))
      (node-annotations-set!
       node
       (remp
        (lambda (entry)
          (eq? (car entry) name))
        (node-annotations node)))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Specification ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define specify-ast-rule
    (lambda (spec rule)
      ;;; Ensure, that the RACR system is in the correct specification phase:
      (when (> (racr-specification-specification-phase spec) 1)
        (throw-exception
         "Unexpected AST rule " rule "; "
         "AST rules can only be defined in the AST specification phase."))
      (letrec* ((ast-rule ; The parsed AST rule that will be added to the given specification.
                 (make-ast-rule
                  spec
                  rule
                  racr-nil
                  racr-nil))
                (rule-string (symbol->string rule)) ; String representation of the encoded rule (used for parsing)
                (pos 0) ; The current parsing position
                ;; Support function returning, whether the end of the parsing string is reached or not:
                (eos?
                 (lambda ()
                   (= pos (string-length rule-string))))
                ;; Support function returning the current character to parse:
                (my-peek-char
                 (lambda ()
                   (string-ref rule-string pos)))
                ;; Support function returning the current character to parse and incrementing the parsing position:
                (my-read-char
                 (lambda ()
                   (let ((c (my-peek-char)))
                     (set! pos (+ pos 1))
                     c)))
                ;; Support function matching a certain character:
                (match-char!
                 (lambda (c)
                   (if (eos?)
                       (throw-exception
                        "Unexpected end of AST rule " rule ";"
                        "Expected " c " character.")
                       (if (char=? (my-peek-char) c)
                           (set! pos (+ pos 1))
                           (throw-exception
                            "Invalid AST rule " rule "; "
                            "Unexpected " (my-peek-char) " character.")))))
                ;; Support function parsing a symbol, i.e., retrieving its name, type, if it is a list and optional context name.
                (parse-symbol
                 (lambda (location) ; location: l-hand, r-hand
                   (let ((symbol-type (if (eq? location 'l-hand) "non-terminal" "terminal")))
                     (when (eos?)
                       (throw-exception
                        "Unexpected end of AST rule " rule "; "
                        "Expected " symbol-type "."))
                     (let* ((parse-name
                             (lambda (terminal?)
                               (let* ((character-part
                                       (let loop ((chars (list)))
                                         (if (and (not (eos?)) (char-alphabetic? (my-peek-char)))
                                             (begin
                                               (when (and terminal? (not (char-lower-case? (my-peek-char))))
                                                 (throw-exception
                                                  "Invalid AST rule " rule "; "
                                                  "Unexpected " (my-peek-char) " character."))
                                               (loop (cons (my-read-char) chars)))
                                             (reverse chars))))
                                      (numerical-part
                                       (let loop ((chars (list)))
                                         (if (and (not (eos?)) (char-numeric? (my-peek-char)))
                                             (loop (cons (my-read-char) chars))
                                             (reverse chars))))
                                      (name (append character-part numerical-part)))
                                 (when (null? name)
                                   (throw-exception
                                    "Unexpected " (my-peek-char) " character in AST rule " rule "; "
                                    "Expected " symbol-type "."))
                                 (unless (char-alphabetic? (car name))
                                   (throw-exception
                                    "Malformed name in AST rule " rule "; "
                                    "Names must start with a letter."))
                                 name)))
                            (terminal? (char-lower-case? (my-peek-char)))
                            (name (parse-name terminal?))
                            (kleene?
                             (and
                              (not terminal?)
                              (eq? location 'r-hand)
                              (not (eos?))
                              (char=? (my-peek-char) #\*)
                              (my-read-char)))
                            (context-name?
                             (and
                              (not terminal?)
                              (eq? location 'r-hand)
                              (not (eos?))
                              (char=? (my-peek-char) #\<)
                              (my-read-char)
                              (parse-name #f)))
                            (name-string (list->string name))
                            (name-symbol (string->symbol name-string)))
                       (when (and terminal? (eq? location 'l-hand))
                         (throw-exception
                          "Unexpected " name " terminal in AST rule " rule "; "
                          "Left hand side symbols must be non-terminals."))
                       (make-production-symbol
                        name-symbol
                        ast-rule
                        (not terminal?)
                        kleene?
                        (if context-name?
                            (string->symbol (list->string context-name?))
                            (if kleene?
                                (string->symbol (string-append name-string "*"))
                                name-symbol))
                        (list))))))
                (l-hand (parse-symbol 'l-hand)); The rule's l-hand
                (supertype ; The rule's super-type
                 (and (not (eos?)) (char=? (my-peek-char) #\:) (my-read-char) (symbol-name (parse-symbol 'l-hand)))))
               (match-char! #\-)
               (match-char! #\>)
               (ast-rule-production-set!
                ast-rule
                (append
                 (list l-hand)
                 (let loop ((r-hand
                             (if (not (eos?))
                                 (list (parse-symbol 'r-hand))
                                 (list))))
                   (if (eos?)
                       (reverse r-hand)
                       (begin
                         (match-char! #\-)
                         (loop (cons (parse-symbol 'r-hand) r-hand)))))))
               (ast-rule-supertype?-set!
                ast-rule
                supertype)
               ;; Check, that the rule's l-hand is not already defined:
               (when (racr-specification-find-rule spec (symbol-name l-hand))
                 (throw-exception
                  "Invalid AST rule " rule "; "
                  "Redefinition of " (symbol-name l-hand) "."))
               (hashtable-set! ; Add the rule to the RACR specification.
                (racr-specification-rules-table spec)
                (symbol-name l-hand)
                ast-rule))))

  (define compile-ast-specifications
    (lambda (spec start-symbol)
      ;;; Ensure, that the RACR system is in the correct specification phase and...
      (let ((current-phase (racr-specification-specification-phase spec)))
        (if (> current-phase 1)
            (throw-exception
             "Unexpected AST compilation; "
             "The AST specifications already have been compiled.")
            ;; ...iff so proceed to the next specification phase:
            (racr-specification-specification-phase-set! spec (+ current-phase 1))))

      (racr-specification-start-symbol-set! spec start-symbol)
      (let* ((rules-list (racr-specification-rules-list spec))
             ;; Support function, that given a rule R returns a list of all rules directly derivable from R:
             (derivable-rules
              (lambda (rule*)
                (fold-left
                 (lambda (result symb*)
                   (if (symbol-non-terminal? symb*)
                       (append result (list (symbol-non-terminal? symb*)) (ast-rule-subtypes (symbol-non-terminal? symb*)))
                       result))
                 (list)
                 (cdr (ast-rule-production rule*))))))

        ;;; Resolve supertypes and non-terminals occuring in productions and ensure all non-terminals are defined:
        (for-each
         (lambda (rule*)
           (when (ast-rule-supertype? rule*)
             (let ((supertype-entry (racr-specification-find-rule spec (ast-rule-supertype? rule*))))
               (if (not supertype-entry)
                   (throw-exception
                    "Invalid AST rule " (ast-rule-as-symbol rule*) "; "
                    "The supertype " (ast-rule-supertype? rule*) " is not defined.")
                   (ast-rule-supertype?-set! rule* supertype-entry))))
           (for-each
            (lambda (symb*)
              (when (symbol-non-terminal? symb*)
                (let ((symb-definition (racr-specification-find-rule spec (symbol-name symb*))))
                  (when (not symb-definition)
                    (throw-exception
                     "Invalid AST rule " (ast-rule-as-symbol rule*) "; "
                     "Non-terminal " (symbol-name symb*) " is not defined."))
                  (symbol-non-terminal?-set! symb* symb-definition))))
            (cdr (ast-rule-production rule*))))
         rules-list)

        ;;; Ensure, that inheritance is cycle-free:
        (for-each
         (lambda (rule*)
           (when (memq rule* (ast-rule-subtypes rule*))
             (throw-exception
              "Invalid AST grammar; "
              "The definition of " (ast-rule-as-symbol rule*) " depends on itself (cyclic inheritance).")))
         rules-list)

        ;;; Ensure, that the start symbol is defined:
        (unless (racr-specification-find-rule spec start-symbol)
          (throw-exception
           "Invalid AST grammar; "
           "The start symbol " start-symbol " is not defined."))

        ;;; Resolve inherited production symbols:
        (apply-wrt-ast-inheritance
         (lambda (rule)
           (ast-rule-production-set!
            rule
            (append
             (list (car (ast-rule-production rule)))
             (map
              (lambda (symbol)
                (make-production-symbol
                 (symbol-name symbol)
                 rule
                 (symbol-non-terminal? symbol)
                 (symbol-kleene? symbol)
                 (symbol-context-name symbol)
                 (list)))
              (cdr (ast-rule-production (ast-rule-supertype? rule))))
             (cdr (ast-rule-production rule)))))
         rules-list)

        ;;; Ensure context-names are unique:
        (for-each
         (lambda (ast-rule)
           (for-each
            (lambda (symbol)
              (unless (eq? (ast-rule-find-child-context ast-rule (symbol-context-name symbol)) symbol)
                (throw-exception
                 "Invalid AST grammar; "
                 "The context name " (symbol-context-name symbol) " is not unique for rule " (ast-rule-as-symbol ast-rule) ".")))
            (cdr (ast-rule-production ast-rule))))
         rules-list)

        ;;; Ensure, that all non-terminals can be derived from the start symbol:
        (let* ((start-rule (racr-specification-find-rule spec start-symbol))
               (to-check (cons start-rule (ast-rule-subtypes start-rule)))
               (checked (list)))
          (let loop ()
            (unless (null? to-check)
              (let ((rule* (car to-check)))
                (set! to-check (cdr to-check))
                (set! checked (cons rule* checked))
                (for-each
                 (lambda (derivable-rule)
                   (when (and
                          (not (memq derivable-rule checked))
                          (not (memq derivable-rule to-check)))
                     (set! to-check (cons derivable-rule to-check))))
                 (derivable-rules rule*))
                (loop))))
          (let ((non-derivable-rules
                 (filter
                  (lambda (rule*)
                    (not (memq rule* checked)))
                  rules-list)))
            (unless (null? non-derivable-rules)
              (throw-exception
               "Invalid AST grammar; "
               "The rules " (map ast-rule-as-symbol non-derivable-rules) " cannot be derived."))))

        ;;; Ensure, that all non-terminals are productive:
        (let* ((productive-rules (list))
               (to-check rules-list)
               (productive-rule?
                (lambda (rule*)
                  (not (find
                        (lambda (symb*)
                          (and
                           (symbol-non-terminal? symb*)
                           (not (symbol-kleene? symb*)) ; Unbounded repetitions are always productive because of the empty list.
                           (not (memq (symbol-non-terminal? symb*) productive-rules))))
                        (cdr (ast-rule-production rule*)))))))
          (let loop ()
            (let ((productive-rule
                   (find productive-rule? to-check)))
              (when productive-rule
                (set! to-check (remq productive-rule to-check))
                (set! productive-rules (cons productive-rule productive-rules))
                (loop))))
          (unless (null? to-check)
            (throw-exception
             "Invalid AST grammar; "
             "The rules " (map ast-rule-as-symbol to-check) " are not productive."))))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Attribute Specification ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define-syntax specify-ag-rule
    (lambda (x)
      (syntax-case x ()
        ((_ spec att-name definition ...)
         (and (identifier? #'att-name) (not (null? #'(definition ...))))
         #'(let ((spec* spec)
                 (att-name* 'att-name))
             (let-syntax
                 ((specify-attribute*
                   (syntax-rules ()
                     ((_ spec* att-name* ((non-terminal index) equation))
                      (specify-attribute spec* att-name* 'non-terminal 'index #t equation #f))
                     ((_ spec* att-name* ((non-terminal index) cached? equation))
                      (specify-attribute spec* att-name* 'non-terminal 'index cached? equation #f))
                     ((_ spec* att-name* ((non-terminal index) equation bottom equivalence-function))
                      (specify-attribute spec* att-name* 'non-terminal 'index #t equation (cons bottom equivalence-function)))
                     ((_ spec* att-name* ((non-terminal index) cached? equation bottom equivalence-function))
                      (specify-attribute spec* att-name* 'non-terminal 'index cached? equation (cons bottom equivalence-function)))
                     ((_ spec* att-name* (non-terminal equation))
                      (specify-attribute spec* att-name* 'non-terminal 0 #t equation #f))
                     ((_ spec* att-name* (non-terminal cached? equation))
                      (specify-attribute spec* att-name* 'non-terminal 0 cached? equation #f))
                     ((_ spec* att-name* (non-terminal equation bottom equivalence-function))
                      (specify-attribute spec* att-name* 'non-terminal 0 #t equation (cons bottom equivalence-function)))
                     ((_ spec* att-name* (non-terminal cached? equation bottom equivalence-function))
                      (specify-attribute spec* att-name* 'non-terminal 0 cached? equation (cons bottom equivalence-function))))))
               (specify-attribute* spec* att-name* definition) ...))))))

  (define specify-attribute
    (lambda (spec attribute-name non-terminal context-name-or-position cached? equation circularity-definition)
      ;;; Before adding the attribute definition, ensure...
      (let ((wrong-argument-type ; ...correct argument types,...
             (or
              (and (not (symbol? attribute-name))
                   "Attribute name : symbol")
              (and (not (symbol? non-terminal))
                   "AST rule : non-terminal")
              (and (not (symbol? context-name-or-position))
                   (or (not (integer? context-name-or-position)) (< context-name-or-position 0))
                   "Production position : index or context-name")
              (and (not (procedure? equation))
                   "Attribute equation : function")
              (and circularity-definition
                   (not (pair? circularity-definition))
                   (not (procedure? (cdr circularity-definition)))
                   "Circularity definition : #f or (bottom-value equivalence-function) pair"))))
        (when wrong-argument-type
          (throw-exception
           "Invalid attribute definition; "
           "Wrong argument type (" wrong-argument-type ").")))
      (unless (= (racr-specification-specification-phase spec) 2) ; ...that the RACR system is in the correct specification phase,...
        (throw-exception
         "Unexpected " attribute-name " attribute definition; "
         "Attributes can only be defined in the AG specification phase."))
      (let ((ast-rule (racr-specification-find-rule spec non-terminal)))
        (unless ast-rule ; ...the given AST rule is defined,...
          (throw-exception
           "Invalid attribute definition; "
           "The non-terminal " non-terminal " is not defined."))
        (let* ((context? ; ...the given context exists,...
                (if (symbol? context-name-or-position)
                    (if (eq? context-name-or-position '*)
                        (car (ast-rule-production ast-rule))
                        (ast-rule-find-child-context ast-rule context-name-or-position))
                    (if (>= context-name-or-position (length (ast-rule-production ast-rule)))
                        (throw-exception
                         "Invalid attribute definition; "
                         "There exists no " context-name-or-position "'th position in the context of " non-terminal ".")
                        (list-ref (ast-rule-production ast-rule) context-name-or-position)))))
          (unless context?
            (throw-exception
             "Invalid attribute definition; "
             "The non-terminal " non-terminal " has no " context-name-or-position " context."))
          (unless (symbol-non-terminal? context?) ; ...it is a non-terminal and...
            (throw-exception
             "Invalid attribute definition; "
             non-terminal context-name-or-position " is a terminal."))
          ; ...the attribute is not already defined for it:
          (when (memq attribute-name (map attribute-definition-name (symbol-attributes context?)))
            (throw-exception
             "Invalid attribute definition; "
             "Redefinition of " attribute-name " for " non-terminal context-name-or-position "."))
          ;;; Everything is fine. Thus, add the definition to the AST rule's respective symbol:
          (symbol-attributes-set!
           context?
           (cons
            (make-attribute-definition
             attribute-name
             context?
             equation
             circularity-definition
             cached?)
            (symbol-attributes context?)))))))

  (define compile-ag-specifications
    (lambda (spec)
      ;;; Ensure, that the RACR system is in the correct specification phase and...
      (let ((current-phase (racr-specification-specification-phase spec)))
        (when (< current-phase 2)
          (throw-exception
           "Unexpected AG compilation; "
           "The AST specifications are not yet compiled."))
        (if (> current-phase 2)
            (throw-exception
             "Unexpected AG compilation; "
             "The AG specifications already have been compiled.")
            (racr-specification-specification-phase-set! spec (+ current-phase 1)))) ; ...if so proceed to the next specification phase.

      ;;; Resolve attribute definitions inherited from a supertype. Thus,...
      (apply-wrt-ast-inheritance ; ...for every AST rule R which has a supertype...
       (lambda (rule)
         (let loop ((super-prod (ast-rule-production (ast-rule-supertype? rule)))
                    (sub-prod (ast-rule-production rule)))
           (unless (null? super-prod)
             (for-each ; ...check for every attribute definition of R's supertype...
              (lambda (super-att-def)
                (unless (find ; ...if it is shadowed by an attribute definition of R....
                         (lambda (sub-att-def)
                           (eq? (attribute-definition-name sub-att-def) (attribute-definition-name super-att-def)))
                         (symbol-attributes (car sub-prod)))
                  (symbol-attributes-set! ; ...If not, add...
                   (car sub-prod)
                   (cons
                    (make-attribute-definition ; ...a copy of the attribute definition inherited...
                     (attribute-definition-name super-att-def)
                     (car sub-prod) ; ...to R.
                     (attribute-definition-equation super-att-def)
                     (attribute-definition-circularity-definition super-att-def)
                     (attribute-definition-cached? super-att-def))
                    (symbol-attributes (car sub-prod))))))
              (symbol-attributes (car super-prod)))
             (loop (cdr super-prod) (cdr sub-prod)))))
       (racr-specification-rules-list spec))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Attribute Evaluation ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  ;; INTERNAL FUNCTION: Given a node n find a certain attribute associated with it, whereas in case no proper
  ;; attribute is associated with n itself the search is extended to find a broadcast solution. If the
  ;; extended search finds a solution, appropriate copy propergation attributes (i.e., broadcasters) are added.
  ;; If no attribute instance can be found or n is a bud node, an exception is thrown. Otherwise, the
  ;; attribute or its respective last broadcaster is returned.
  (define lookup-attribute
    (lambda (name n)
      (when (node-bud-node? n)
        (throw-exception
         "AG evaluator exception; "
         "Cannot access " name " attribute - the given node is a bud."))
      (let loop ((n n)) ; Recursively...
        (let ((att (node-find-attribute n name))) ; ...check if the current node has a proper attribute instance....
          (if att
              att ; ...If it has, return the found defining attribute instance.
              (let ((parent (node-parent n))) ; ...If no defining attribute instance can be found...
                (if (not parent) ; ...check if there exists a parent node that may provide a definition....
                    (throw-exception ; ...If not, throw an exception,...
                     "AG evaluator exception; "
                     "Cannot access unknown " name " attribute.")
                    (let* ((att (loop parent)) ; ...otherwise proceed the search at the parent node. If it succeeds...
                           (broadcaster ; ...construct a broadcasting attribute instance...
                            (make-attribute-instance
                             (make-attribute-definition ; ...whose definition context depends...
                              name
                              (if (eq? (node-ast-rule parent) 'list-node) ; ...if the parent node is a list node or not....
                                  (list-ref ; ...If it is a list node the broadcaster's context is...
                                   (ast-rule-production (node-ast-rule (node-parent parent))) ; ...the list node's parent node and...
                                   (node-child-index? parent)) ; ...child position.
                                  (list-ref ; ...If the parent node is not a list node the broadcaster's context is...
                                   (ast-rule-production (node-ast-rule parent)) ; ...the parent node and...
                                   (node-child-index? n))) ; ...the current node's child position. Further,...
                              (lambda (n . args) ; ...the broadcaster's equation just calls the parent node's counterpart. Finally,...
                                (apply att-value name (ast-parent n) args))
                              (attribute-definition-circularity-definition (attribute-instance-definition att))
                              #f)
                             n)))
                      (node-attributes-set! n (cons broadcaster (node-attributes n))) ; ...add the constructed broadcaster and...
                      broadcaster)))))))) ; ...return it as the current node's look-up result.

  (define att-value
    (lambda (name n . args)
      (let*-values (; The evaluator state used and changed throughout evaluation:
                    ((evaluator-state) (values (node-evaluator-state n)))
                    ;; The attribute instance to evaluate:
                    ((att) (values (lookup-attribute name n)))
                    ;; The attribute's definition:
                    ((att-def) (values (attribute-instance-definition att)))
                    ;; The attribute cache entries used for evaluation and dependency tracking:
                    ((evaluation-att-cache dependency-att-cache)
                     (if (attribute-definition-cached? att-def)
                         ;; If the attribute instance is cached, no special action is required, except...
                         (let ((att-cache
                                (or
                                 ;; ...finding the attribute cache entry to use...
                                 (hashtable-ref (attribute-instance-cache att) args #f)
                                 ;; ...or construct a respective one.
                                 (let ((new-entry (make-attribute-cache-entry att args)))
                                   (hashtable-set! (attribute-instance-cache att) args new-entry)
                                   new-entry))))
                           (values att-cache att-cache))
                         ;; If the attribute is not cached, special attention must be paid to avoid the permament storing
                         ;; of fixpoint results and attribute arguments on the one hand but still retaining correct
                         ;; evaluation which requires these information on the other hand. To do so we introduce two
                         ;; different types of attribute cache entries:
                         ;; (1) A parameter approximating entry for tracking dependencies and influences of the uncached
                         ;;     attribute instance.
                         ;; (2) A set of temporary cycle entries for correct cycle detection and fixpoint computation.
                         ;; The "cycle-value" field of the parameter approximating entry is misused to store the hashtable
                         ;; containing the temporary cycle entries and must be deleted when evaluation finished.
                         (let* ((dependency-att-cache
                                 (or
                                  (hashtable-ref (attribute-instance-cache att) racr-nil #f)
                                  (let ((new-entry (make-attribute-cache-entry att racr-nil)))
                                    (hashtable-set! (attribute-instance-cache att) racr-nil new-entry)
                                    (attribute-cache-entry-cycle-value-set!
                                     new-entry
                                     (make-hashtable equal-hash equal? 1))
                                    new-entry)))
                                (evaluation-att-cache
                                 (or
                                  (hashtable-ref (attribute-cache-entry-cycle-value dependency-att-cache) args #f)
                                  (let ((new-entry (make-attribute-cache-entry att args)))
                                    (hashtable-set!
                                     (attribute-cache-entry-cycle-value dependency-att-cache)
                                     args
                                     new-entry)
                                    new-entry))))
                           (values evaluation-att-cache dependency-att-cache))))
                    ;; Support function that given an intermediate fixpoint result checks if it is different from the
                    ;; current cycle value and updates the cycle value and evaluator state accordingly:
                    ((update-cycle-cache)
                     (values
                      (lambda (new-result)
                        (unless ((cdr (attribute-definition-circularity-definition att-def))
                                 new-result
                                 (attribute-cache-entry-cycle-value evaluation-att-cache))
                          (attribute-cache-entry-cycle-value-set! evaluation-att-cache new-result)
                          (evaluator-state-ag-cycle-change?-set! evaluator-state #t))))))
        ;; Decide how to evaluate the attribute dependening on whether its value already is cached or its respective
        ;; cache entry is circular, already in evaluation or starting point of a fix-point computation:
        (cond
          ;; CASE (0): Attribute already evaluated for given arguments:
          ((not (eq? (attribute-cache-entry-value evaluation-att-cache) racr-nil))
           ;; Maintaine attribute cache entry dependencies, i.e., if this entry is evaluated throughout the
           ;; evaluation of another entry, the other entry depends on this one. Afterwards,...
           (add-dependency:cache->cache dependency-att-cache)
           (attribute-cache-entry-value evaluation-att-cache)) ; ...return the cached value.

          ;; CASE (1): Circular attribute that is starting point of a fixpoint computation:
          ((and (attribute-definition-circular? att-def) (not (evaluator-state-ag-in-cycle? evaluator-state)))
           (dynamic-wind
             (lambda ()
               ;; Maintaine attribute cache entry dependencies, i.e., if this entry is evaluated throughout the
               ;; evaluation of another entry, the other depends on this one. Further this entry depends
               ;; on any other entry that will be evaluated through its own evaluation. Further,..
               (add-dependency:cache->cache dependency-att-cache)
               (evaluator-state-evaluation-stack-set!
                evaluator-state
                (cons dependency-att-cache (evaluator-state-evaluation-stack evaluator-state)))
               ;; ...mark, that the entry is in evaluation and...
               (attribute-cache-entry-entered?-set! evaluation-att-cache #t)
               ;; ...update the evaluator's state that we are about to start a fix-point computation.
               (evaluator-state-ag-in-cycle?-set! evaluator-state #t))
             (lambda ()
               (let loop () ; Start fix-point computation. Thus, as long as...
                 (evaluator-state-ag-cycle-change?-set! evaluator-state #f) ; ...an entry's value changes...
                 (update-cycle-cache (apply (attribute-definition-equation att-def) n args)) ; ...evaluate this entry.
                 (when (evaluator-state-ag-cycle-change? evaluator-state)
                   (loop)))
               (let ((result (attribute-cache-entry-cycle-value evaluation-att-cache)))
                 ;; When fixpoint computation finished update the caches of all circular entries evaluated. To do so,...
                 (let loop ((att-cache
                             (if (attribute-definition-cached? att-def)
                                 evaluation-att-cache
                                 dependency-att-cache)))
                   (let ((att-def (attribute-instance-definition (attribute-cache-entry-context att-cache))))
                     (if (not (attribute-definition-circular? att-def))
                         ;; ...ignore non-circular entries and just proceed with the entries they depend on (to
                         ;; ensure all strongly connected components within a weakly connected one are updated)....
                         (for-each
                          loop
                          (attribute-cache-entry-cache-dependencies att-cache))
                         ;; ...In case of circular entries...
                         (if (attribute-definition-cached? att-def) ; ...check if they have to be cached and...
                             (when (eq? (attribute-cache-entry-value att-cache) racr-nil) ; ...are not already processed....
                               ;; ...If so cache them,...
                               (attribute-cache-entry-value-set!
                                att-cache
                                (attribute-cache-entry-cycle-value att-cache))
                               (attribute-cache-entry-cycle-value-set! ; ...reset their cycle values to the bottom value and...
                                att-cache
                                (car (attribute-definition-circularity-definition att-def)))
                               (for-each ; ...proceed with the entries they depend on.
                                loop
                                (attribute-cache-entry-cache-dependencies att-cache)))
                             ;; ...If a circular entry is not cached, check if it already is processed....
                             (when (> (hashtable-size (attribute-cache-entry-cycle-value att-cache)) 0)
                               ; ...If not, delete its temporary cycle cache and...
                               (hashtable-clear! (attribute-cache-entry-cycle-value att-cache))
                               (for-each ; ...proceed with the entries it depends on.
                                loop
                                (attribute-cache-entry-cache-dependencies att-cache)))))))
                 result))
             (lambda ()
               ;; Mark that fixpoint computation finished,...
               (evaluator-state-ag-in-cycle?-set! evaluator-state #f)
               ;; the evaluation of the attribute cache entry finished and...
               (attribute-cache-entry-entered?-set! evaluation-att-cache #f)
               ;; ...pop the entry from the evaluation stack.
               (evaluator-state-evaluation-stack-set!
                evaluator-state
                (cdr (evaluator-state-evaluation-stack evaluator-state))))))

          ;; CASE (2): Circular attribute already in evaluation for the given arguments:
          ((and (attribute-definition-circular? att-def) (attribute-cache-entry-entered? evaluation-att-cache))
           ;; Maintaine attribute cache entry dependencies, i.e., if this entry is evaluated throughout the
           ;; evaluation of another entry, the other entry depends on this one. Finally,...
           (add-dependency:cache->cache dependency-att-cache)
           ;; ...the intermediate fixpoint result is the attribute cache entry's cycle value.
           (attribute-cache-entry-cycle-value evaluation-att-cache))

          ;; CASE (3): Circular attribute not in evaluation and entered throughout a fixpoint computation:
          ((attribute-definition-circular? att-def)
           (dynamic-wind
             (lambda ()
               ;; Maintaine attribute cache entry dependencies, i.e., if this entry is evaluated throughout the
               ;; evaluation of another entry, the other depends on this one. Further this entry depends
               ;; on any other entry that will be evaluated through its own evaluation. Further,..
               (add-dependency:cache->cache dependency-att-cache)
               (evaluator-state-evaluation-stack-set!
                evaluator-state
                (cons dependency-att-cache (evaluator-state-evaluation-stack evaluator-state)))
               ;; ...mark, that the entry is in evaluation.
               (attribute-cache-entry-entered?-set! evaluation-att-cache #t))
             (lambda ()
               (let ((result (apply (attribute-definition-equation att-def) n args))) ; Evaluate the entry and...
                 (update-cycle-cache result) ; ...update its cycle value.
                 result))
             (lambda ()
               ;; Mark that the evaluation of the attribute cache entry finished and...
               (attribute-cache-entry-entered?-set! evaluation-att-cache #f)
               ;; ...pop it from the evaluation stack.
               (evaluator-state-evaluation-stack-set!
                evaluator-state
                (cdr (evaluator-state-evaluation-stack evaluator-state))))))

          ;; CASE (4): Non-circular attribute already in evaluation, i.e., unexpected cycle:
          ((attribute-cache-entry-entered? evaluation-att-cache)
           ;; Maintaine attribute cache entry dependencies, i.e., if this entry is evaluated throughout the
           ;; evaluation of another entry, the other entry depends on this one. Then,...
           (add-dependency:cache->cache dependency-att-cache)
           (throw-exception ; ...thrown an exception because we encountered an unexpected dependency cycle.
            "AG evaluator exception; "
            "Unexpected " name " cycle."))

          (else ; CASE (5): Non-circular attribute not in evaluation:
           (dynamic-wind
             (lambda ()
               ;; Maintaine attribute cache entry dependencies, i.e., if this entry is evaluated throughout the
               ;; evaluation of another entry, the other depends on this one. Further this entry depends
               ;; on any other entry that will be evaluated through its own evaluation. Further,...
               (add-dependency:cache->cache dependency-att-cache)
               (evaluator-state-evaluation-stack-set!
                evaluator-state
                (cons dependency-att-cache (evaluator-state-evaluation-stack evaluator-state)))
               ;; ...mark, that the entry is in evaluation.
               (attribute-cache-entry-entered?-set! evaluation-att-cache #t))
             (lambda ()
               (let ((result (apply (attribute-definition-equation att-def) n args))) ; Evaluate the entry and,...
                 (when (attribute-definition-cached? att-def) ; ...if caching is enabled,...
                   (attribute-cache-entry-value-set! evaluation-att-cache result)) ; ...cache its value.
                 result))
             (lambda ()
               ;; Mark that the evaluation of the attribute cache entry finished and...
               (if (attribute-definition-cached? att-def)
                   (attribute-cache-entry-entered?-set! evaluation-att-cache #f)
                   (hashtable-delete! (attribute-cache-entry-cycle-value dependency-att-cache) args))
               ;; ...pop it from the evaluation stack.
               (evaluator-state-evaluation-stack-set!
                evaluator-state
                (cdr (evaluator-state-evaluation-stack evaluator-state))))))))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Specification Queries ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  ;; General Note: Because RACR specifications never change after compilation, there is no need to add and
  ;;   maintain dependencies when attributes query specifications. The specification query API therefore just
  ;;   forwards to the respective internal functions. Lists must be copied before they are returned however.

  ;; Specification Queries:

  (define specification->phase
    (lambda (spec)
      (racr-specification-specification-phase spec)))

  (define specification->start-symbol
    (lambda (spec)
      (racr-specification-start-symbol spec)))

  (define specification->ast-rules
    (lambda (spec)
      (racr-specification-rules-list spec))) ; Already creates copy!

  (define specification->find-ast-rule
    (lambda (spec node-type)
      (racr-specification-find-rule spec node-type)))

  ;; AST Rule Queries:

  (define ast-rule->symbolic-representation
    (lambda (ast-rule)
      (ast-rule-as-symbol ast-rule)))

  (define ast-rule->supertype?
    (lambda (ast-rule)
      (ast-rule-supertype? ast-rule)))

  (define ast-rule->production
    (lambda (rule)
      (append (ast-rule-production rule) (list)))) ; Create copy!

  ;; Production Symbol Queries:

  (define symbol->name
    (lambda (symb)
      (symbol-name symb)))

  (define symbol->non-terminal?
    (lambda (symb)
      (symbol-non-terminal? symb)))

  (define symbol->kleene?
    (lambda (symb)
      (symbol-kleene? symb)))

  (define symbol->context-name
    (lambda (symb)
      (symbol-context-name symb)))

  (define symbol->attributes
    (lambda (symbol)
      (append (symbol-attributes symbol) (list)))) ; Create copy!

  ;; Attribute Definition Queries:

  (define attribute->name
    (lambda (att-def)
      (attribute-definition-name att-def)))

  (define attribute->circular?
    (lambda (att-def)
      (attribute-definition-circular? att-def)))

  (define attribute->synthesized?
    (lambda (att-def)
      (attribute-definition-synthesized? att-def)))

  (define attribute->inherited?
    (lambda (att-def)
      (attribute-definition-inherited? att-def)))

  (define attribute->cached?
    (lambda (att-def)
      (attribute-definition-cached? att-def)))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Queries ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define ast-node? ; Scheme entities are either allocated as AST nodes or never will be => No need to add dependencies!
    (lambda (n)
      (node? n)))

  (define ast-specification
    (lambda (n)
      (when (or (ast-list-node? n) (ast-bud-node? n)) ; Remember: Terminal nodes as such are never exposed to users.
        (throw-exception
         "Cannot query specification; "
         "List and bud nodes are not part of any specification."))
      ;; The specification of a node can never change => No need to add dependencies!
      (ast-rule-specification (node-ast-rule n))))

  (define ast-list-node? ; No dependency tracking needed!
    (lambda (n)
      (node-list-node? n)))

  (define ast-bud-node? ; No dependency tracking needed!
    (lambda (n)
      (node-bud-node? n)))

  (define ast-node-rule
    (lambda (n)
      (when (or (ast-list-node? n) (ast-bud-node? n)) ; Remember: Terminal nodes as such are never exposed to users.
        (throw-exception
         "Cannot query type; "
         "List and bud nodes have no type."))
      (add-dependency:cache->node-type n)
      (node-ast-rule n)))

  (define ast-node-type
    (lambda (n)
      (symbol-name (car (ast-rule-production (ast-node-rule n))))))

  (define ast-subtype?
    (lambda (a1 a2)
      (when (or
             (and (ast-node? a1) (or (ast-list-node? a1) (ast-bud-node? a1)))
             (and (ast-node? a2) (or (ast-list-node? a2) (ast-bud-node? a2))))
        (throw-exception
         "Cannot perform subtype check; "
         "List and bud nodes cannot be tested for subtyping."))
      (when (and (not (ast-node? a1)) (not (ast-node? a2)))
        (throw-exception
         "Cannot perform subtype check; "
         "At least one argument must be an AST node."))
      ((lambda (t1/t2)
         (and
          (car t1/t2)
          (cdr t1/t2)
          (ast-rule-subtype? (car t1/t2) (cdr t1/t2))))
       (if (symbol? a1)
           (let* ((t2 (node-ast-rule a2))
                  (t1 (racr-specification-find-rule (ast-rule-specification t2) a1)))
             (unless t1
               (throw-exception
                "Cannot perform subtype check; "
                a1 " is no valid non-terminal (first argument undefined non-terminal)."))
             (add-dependency:cache->node-super-type a2 t1)
             (cons t1 t2))
           (if (symbol? a2)
               (let* ((t1 (node-ast-rule a1))
                      (t2 (racr-specification-find-rule (ast-rule-specification t1) a2)))
                 (unless t1
                   (throw-exception
                    "Cannot perform subtype check; "
                    a2 " is no valid non-terminal (second argument undefined non-terminal)."))
                 (add-dependency:cache->node-sub-type a1 t2)
                 (cons t1 t2))
               (begin
                 (add-dependency:cache->node-sub-type a1 (node-ast-rule a2))
                 (add-dependency:cache->node-super-type a2 (node-ast-rule a1))
                 (cons (node-ast-rule a1) (node-ast-rule a2))))))))

  (define ast-has-parent?
    (lambda (n)
      (let ((parent (node-parent n)))
        (if parent
            (begin
              (add-dependency:cache->node-upwards parent)
              parent)
            (begin
              (add-dependency:cache->node-is-root n)
              #f)))))

  (define ast-parent
    (lambda (n)
      (let ((parent (node-parent n)))
        (unless parent
          (throw-exception "Cannot query parent of roots."))
        (add-dependency:cache->node-upwards parent)
        parent)))

  (define ast-has-child?
    (lambda (context-name n)
      (add-dependency:cache->node-defines-context n context-name)
      (if (node-find-child n context-name) #t #f))) ; BEWARE: Never return the child if it exists, but instead just #t!

  (define ast-child
    (lambda (i n)
      (let ((child
             (if (symbol? i)
                 (node-find-child n i)
                 (and (>= i 1) (<= i (length (node-children n))) (list-ref (node-children n) (- i 1))))))
        (unless child
          (throw-exception "Cannot query non-existent " i (if (symbol? i) "" "'th") " child."))
        (add-dependency:cache->node-downwards child)
        (if (node-terminal? child)
            (node-children child)
            child))))

  (define ast-has-sibling?
    (lambda (context-name n)
      (let ((parent? (ast-has-parent? n)))
        (and parent? (ast-has-child? context-name parent?)))))

  (define ast-sibling
    (lambda (i n)
      (ast-child i (ast-parent n))))

  (define ast-child-index
    (lambda (n)
      (ast-find-child*
       (lambda (i child)
         (if (eq? child n) i #f))
       (ast-parent n))))

  (define ast-num-children
    (lambda (n)
      (add-dependency:cache->node-num-children n)
      (length (node-children n))))

  (define ast-children
    (lambda (n . b)
      (reverse
       (let ((result (list)))
         (apply
          ast-for-each-child
          (lambda (i child)
            (set! result (cons child result)))
          n
          b)
         result))))

  (define ast-for-each-child
    (lambda (f n . b)
      (let ((b (if (null? b) (list (cons 1 '*)) b)))
        (for-each
         (lambda (b)
           (if (eq? (cdr b) '*)
               (let ((pos (car b))
                     (ub (length (node-children n))))
                 (dynamic-wind
                   (lambda () #f)
                   (lambda ()
                     (let loop ()
                       (when (<= pos ub)
                         (f pos (ast-child pos n))
                         (set! pos (+ pos 1))
                         (loop))))
                   (lambda ()
                     (when (> pos ub)
                       (ast-num-children n))))) ; BEWARE: Access to number of children ensures proper dependency tracking!
               (let loop ((pos (car b)))
                 (when (<= pos (cdr b))
                   (f pos (ast-child pos n))
                   (loop (+ pos 1))))))
         b))))

  (define ast-find-child
    (lambda (f n . b)
      (call/cc
       (lambda (c)
         (apply
          ast-for-each-child
          (lambda (i child)
            (when (f i child)
              (c child)))
          n
          b)
         #f))))

  (define ast-find-child*
    (lambda (f n . b)
      (call/cc
       (lambda (c)
         (apply
          ast-for-each-child
          (lambda (i child)
            (let ((res (f i child)))
              (when res
                (c res))))
          n
          b)
         #f))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Construction ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define create-ast
    (lambda (spec rule children)
      ;;; Before constructing the node ensure, that...
      (when (< (racr-specification-specification-phase spec) 3) ; ...the RACR system is completely specified,...
        (throw-exception
         "Cannot construct " rule " fragment; "
         "The RACR specification still must be compiled."))
      (let* ((ast-rule (racr-specification-find-rule spec rule))
             (new-fragment
              (make-node
               ast-rule
               #f
               (list))))
        (unless ast-rule ; ...the given AST rule is defined,...
          (throw-exception
           "Cannot construct " rule " fragment; "
           "Unknown non-terminal/rule."))
        (unless (satisfies-contexts? children (cdr (ast-rule-production ast-rule))) ; ...and the children fit.
          (throw-exception
           "Cannot construct " rule " fragment; "
           "The given children do not fit."))
        ;;; When all constraints are satisfied, construct the new fragment,...
        (node-children-set! ; ...add its children,...
         new-fragment
         (map ; ...set it as parent of each child,...
          (lambda (symbol child)
            (if (symbol-non-terminal? symbol)
                (begin
                  (for-each ; ...flush all attribute cache entries depending on any added child being a root,...
                   (lambda (influence)
                     (flush-attribute-cache-entry (car influence)))
                   (filter
                    (lambda (influence)
                      (vector-ref (cdr influence) 1))
                    (node-cache-influences child)))
                  (node-parent-set! child new-fragment)
                  child)
                (make-node 'terminal new-fragment child)))
          (cdr (ast-rule-production ast-rule))
          children))
        (distribute-evaluator-state (make-evaluator-state) new-fragment) ; ...distribute the new fragment's evaluator state and...
        (update-synthesized-attribution new-fragment) ; ...initialize its synthesized and...
        (for-each ; ...each child's inherited attributes.
         update-inherited-attribution
         (node-children new-fragment))
        new-fragment))) ; Finally, return the newly constructed fragment.

  (define create-ast-list
    (lambda (children)
      ;;; Before constructing the list node ensure, that...
      (let ((new-list
             (make-node
              'list-node
              #f
              (append children (list))))) ; BEWARE: create copy of children!
        (unless
            (for-all ; ...all children fit.
             (lambda (child)
               (valid-list-element-candidate? new-list child))
             children)
          (throw-exception
           "Cannot construct list node; "
           "The given children do not fit."))
        ;;; When all constraints are satisfied,...
        (for-each ; ...flush all attribute cache entries depending on the children being roots,...
         (lambda (child)
           (for-each
            (lambda (influence)
              (flush-attribute-cache-entry (car influence)))
            (filter
             (lambda (influence)
               (vector-ref (cdr influence) 1))
             (node-cache-influences child))))
         children)
        (for-each ; ...set the new list node as parent of every child,...
         (lambda (child)
           (node-parent-set! child new-list))
         children)
        (distribute-evaluator-state (make-evaluator-state) new-list) ; ...construct and distribute its evaluator state and...
        new-list))) ; ...return it.

  (define create-ast-bud
    (lambda ()
      (let ((bud-node (make-node 'bud-node #f (list))))
        (distribute-evaluator-state (make-evaluator-state) bud-node)
        bud-node)))

  (define create-ast-mockup
    (lambda (rule)
      (create-ast
       (ast-rule-specification rule)
       (symbol-name (car (ast-rule-production rule)))
       (map
        (lambda (symbol)
          (cond
            ((not (symbol-non-terminal? symbol))
             racr-nil)
            ((symbol-kleene? symbol)
             (create-ast-list (list)))
            (else (create-ast-bud))))
        (cdr (ast-rule-production rule))))))

  ;; INTERNAL FUNCTION: Given two non-terminal nodes, return if the second can replace the first regarding its context.
  (define valid-replacement-candidate?
    (lambda (node candidate)
      (if (node-list-node? (node-parent node))
          (valid-list-element-candidate? (node-parent node) candidate)
          (and
           (satisfies-context?
            candidate
            (list-ref (ast-rule-production (node-ast-rule (node-parent node))) (node-child-index? node)))
           (not (node-inside-of? node candidate))))))

  ;; INTERNAL FUNCTION: Given a list node and another node, return if the other node can become element of
  ;; the list node regarding its context.
  (define valid-list-element-candidate?
    (lambda (list-node candidate)
      (let ((expected-type? ; If the list node has a parent, its parent induces a type for the list's elements.
             (if (node-parent list-node)
                 (symbol-non-terminal?
                  (list-ref
                   (ast-rule-production (node-ast-rule (node-parent list-node)))
                   (node-child-index? list-node)))
                 #f)))
        (and ; The given candidate can be element of the list, if (1)...
         (if expected-type? ; ...either,...
             (satisfies-context? candidate expected-type? #f) ; ...the candidate fits regarding the context in which the list is, or,...
             (and ; ...in case no type is induced for the list's elements,...
              (ast-node? candidate) ; ...the candiate is a non-terminal node,...
              (not (node-list-node? candidate)) ; ...not a list node,...
              (not (node-parent candidate)) ; ...not already part of another AST and...
              (not (evaluator-state-in-evaluation? (node-evaluator-state candidate))))) ; ...non of its attributes are in evaluation,...
         (not (node-inside-of? list-node candidate)))))) ; ...and (2) its spaned AST does not contain the list node.

  ;; INTERNAL FUNCTION: Given a node or terminal value and a context, return if the
  ;; node/terminal value can become a child of the given context.
  (define satisfies-context?
    (case-lambda
      ((child context)
       (satisfies-context? child (symbol-non-terminal? context) (symbol-kleene? context)))
      ((child non-terminal? kleene?)
       (or ; The given child is valid if either,...
        (not non-terminal?) ; ...a terminal is expected or,...
        (and ; ...in case a non-terminal is expected,...
         (ast-node? child) ; ...the given child is an AST node,...
         (not (node-parent child)) ; ...does not already belong to another AST,...
         (not (evaluator-state-in-evaluation? (node-evaluator-state child))) ; ...non of its attributes are in evaluation and...
         (or
          (node-bud-node? child) ; ...the child either is a bud node or,...
          (if kleene?
              (and ; ...in case a list node is expected,...
               (node-list-node? child) ; ...is a list...
               (for-all ; ...whose children are...
                (lambda (child)
                  (or ; ...either bud nodes or nodes of the expected type, or,...
                   (node-bud-node? child)
                   (ast-rule-subtype? (node-ast-rule child) non-terminal?)))
                (node-children child)))
              (and ; ...in case a non-list node is expected,...
               (not (node-list-node? child)) ; ...is a non-list node of...
               (ast-rule-subtype? (node-ast-rule child) non-terminal?))))))))) ; ...the expected type.

  ;; INTERNAL FUNCTION: Given list of nodes or terminal values and a list of contexts, return if the
  ;; nodes/terminal values can become children of the given contexts.
  (define satisfies-contexts?
    (lambda (children contexts)
      (and
       (= (length children) (length contexts))
       (for-all satisfies-context? children contexts))))

  ;; INTERNAL FUNCTION: Given an AST node update its synthesized attribution (i.e., add missing synthesized
  ;; attributes, delete superfluous ones, shadow equally named inherited attributes and update the
  ;; definitions of existing synthesized attributes.
  (define update-synthesized-attribution
    (lambda (n)
      (when (and (not (node-terminal? n)) (not (node-list-node? n)) (not (node-bud-node? n)))
        (for-each
         (lambda (att-def)
           (let ((att (node-find-attribute n (attribute-definition-name att-def))))
             (cond
               ((not att)
                (node-attributes-set! n (cons (make-attribute-instance att-def n) (node-attributes n))))
               ((eq? (attribute-definition-equation (attribute-instance-definition att)) (attribute-definition-equation att-def))
                (attribute-instance-definition-set! att att-def))
               (else
                (flush-attribute-instance att)
                (node-attributes-set!
                 n
                 (cons (make-attribute-instance att-def n) (remq att (node-attributes n))))))))
         (symbol-attributes (car (ast-rule-production (node-ast-rule n)))))
        (node-attributes-set! ; Delete all synthesized attribute instances not defined anymore:
         n
         (remp
          (lambda (att)
            (let ((remove?
                   (and
                    (attribute-definition-synthesized? (attribute-instance-definition att))
                    (not
                     (eq?
                      (symbol-ast-rule (attribute-definition-context (attribute-instance-definition att)))
                      (node-ast-rule n))))))
              (when remove?
                (flush-attribute-instance att))
              remove?))
          (node-attributes n))))))

  ;; INTERNAL FUNCTION: Given an AST node update its inherited attribution (i.e., add missing inherited
  ;; attributes, delete superfluous ones and update the definitions of existing inherited attributes.
  ;; If the given node is a list-node the inherited attributes of its elements are updated.
  (define update-inherited-attribution
    (lambda (n)
      ;;; Support function updating n's inherited attribution w.r.t. a list of inherited attribute definitions:
      (define update-by-defs
        (lambda (n att-defs)
          (for-each ;; Add new and update existing inherited attribute instances:
           (lambda (att-def)
             (let ((att (node-find-attribute n (attribute-definition-name att-def))))
               (cond
                 ((not att)
                  (node-attributes-set! n (cons (make-attribute-instance att-def n) (node-attributes n))))
                 ((not (attribute-definition-synthesized? (attribute-instance-definition att)))
                  (if (eq?
                       (attribute-definition-equation (attribute-instance-definition att))
                       (attribute-definition-equation att-def))
                      (attribute-instance-definition-set! att att-def)
                      (begin
                        (flush-attribute-instance att)
                        (node-attributes-set!
                         n
                         (cons (make-attribute-instance att-def n) (remq att (node-attributes n))))))))))
           att-defs)
          (node-attributes-set! ; Delete all inherited attribute instances not defined anymore:
           n
           (remp
            (lambda (att)
              (let ((remove?
                     (and
                      (attribute-definition-inherited? (attribute-instance-definition att))
                      (not (memq (attribute-instance-definition att) att-defs)))))
                (when remove?
                  (flush-attribute-instance att))
                remove?))
            (node-attributes n)))))
      ;;; Perform the update:
      (let* ((parent (node-parent n))
             (att-defs
              (cond
                ((not parent)
                 (list))
                ((not (node-list-node? parent))
                 (symbol-attributes
                  (list-ref
                   (ast-rule-production (node-ast-rule parent))
                   (node-child-index? n))))
                ((node-parent parent)
                 (symbol-attributes
                  (list-ref
                   (ast-rule-production (node-ast-rule (node-parent parent)))
                   (node-child-index? parent))))
                (else (list)))))
        (if (node-list-node? n)
            (for-each
             (lambda (n)
               (unless (node-bud-node? n)
                 (update-by-defs n att-defs)))
             (node-children n))
            (unless (node-bud-node? n)
              (update-by-defs n att-defs))))))

  ;; INTERNAL FUNCTION: Given an AST node delete its inherited attribute instances. Iff the given node
  ;; is a list node, the inherited attributes of its elements are deleted.
  (define detach-inherited-attributes
    (lambda (n)
      (cond
        ((node-list-node? n)
         (for-each
          detach-inherited-attributes
          (node-children n)))
        ((node-non-terminal? n)
         (node-attributes-set!
          n
          (remp
           (lambda (att)
             (let ((remove? (attribute-definition-inherited? (attribute-instance-definition att))))
               (when remove?
                 (flush-attribute-instance att))
               remove?))
           (node-attributes n)))))))

  ;; INTERNAL FUNCTION: Given an evaluator state and an AST fragment, change the
  ;; fragment's evaluator state to the given one.
  (define distribute-evaluator-state
    (lambda (evaluator-state n)
      (node-evaluator-state-set! n evaluator-state)
      (unless (node-terminal? n)
        (for-each
         (lambda (n)
           (distribute-evaluator-state evaluator-state n))
         (node-children n)))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Dependency Tracking ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-upwards
    (lambda (influencing-node)
      (add-dependency:cache->node-characteristic influencing-node (cons 0 'up))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-downwards
    (lambda (influencing-node)
      (add-dependency:cache->node-characteristic influencing-node (cons 0 'down))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-is-root
    (lambda (influencing-node)
      (add-dependency:cache->node-characteristic influencing-node (cons 1 racr-nil))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-num-children
    (lambda (influencing-node)
      (add-dependency:cache->node-characteristic influencing-node (cons 2 racr-nil))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-type
    (lambda (influencing-node)
      (add-dependency:cache->node-characteristic influencing-node (cons 3 racr-nil))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-super-type
    (lambda (influencing-node comparision-type)
      (add-dependency:cache->node-characteristic influencing-node (cons 4 comparision-type))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-sub-type
    (lambda (influencing-node comparision-type)
      (add-dependency:cache->node-characteristic influencing-node (cons 5 comparision-type))))

  ;; INTERNAL FUNCTION: See "add-dependency:cache->node-characteristic".
  (define add-dependency:cache->node-defines-context
    (lambda (influencing-node context-name)
      (add-dependency:cache->node-characteristic influencing-node (cons 6 context-name))))

  ;; INTERNAL FUNCTION: Given a node N and a correlation C add an dependency-edge marked with C from
  ;; the attribute cache entry currently in evaluation (considering the evaluator state of the AST N
  ;; is part of) to N and an influence-edge vice versa. If no attribute cache entry is in evaluation
  ;; no edges are added. The following seven correlations exist:
  ;;  0) Dependency on the existence of the node w.r.t. a query from a certain direction encoded in C (i.e.,
  ;;     existence of a node at the same location queried from the same direction (upwards or downwards the AST))
  ;;  1) Dependency on the node being a root (i.e., the node has no parent)
  ;;  2) Dependency on the node's number of children (i.e., existence of a node at the same location and with
  ;;     the same number of children)
  ;;  3) Dependency on the node's type (i.e., existence of a node at the same location and with the same type)
  ;;  4) Dependency on whether the node's type is a supertype w.r.t. a certain type encoded in C or not
  ;;  5) Dependency on whether the node's type is a subtype w.r.t. a certain type encoded in C or not
  ;;  6) Dependency on whether the node defines a certain context (i.e., has child with a certain name) or not
  (define add-dependency:cache->node-characteristic
    (lambda (influencing-node correlation)
      (let ((dependent-cache (evaluator-state-in-evaluation? (node-evaluator-state influencing-node))))
        (when dependent-cache
          (let ((dependency-vector
                 (let ((dc-hit (assq influencing-node (attribute-cache-entry-node-dependencies dependent-cache))))
                   (and dc-hit (cdr dc-hit)))))
            (unless dependency-vector
              (set! dependency-vector (vector #f #f #f #f (list) (list) (list)))
              (attribute-cache-entry-node-dependencies-set!
               dependent-cache
               (cons
                (cons influencing-node dependency-vector)
                (attribute-cache-entry-node-dependencies dependent-cache)))
              (node-cache-influences-set!
               influencing-node
               (cons
                (cons dependent-cache dependency-vector)
                (node-cache-influences influencing-node))))
            (let ((correlation-type (car correlation))
                  (correlation-arg (cdr correlation)))
              (vector-set!
               dependency-vector
               correlation-type
               (case correlation-type
                 ((0)
                  (let ((known-direction (vector-ref dependency-vector correlation-type)))
                    (cond
                      ((not known-direction) correlation-arg)
                      ((eq? known-direction correlation-arg) known-direction)
                      (else 'up/down))))
                 ((1 2 3)
                  #t)
                 ((4 5 6)
                  (let ((known-args (vector-ref dependency-vector correlation-type)))
                    (if (memq correlation-arg known-args)
                        known-args
                        (cons correlation-arg known-args))))))))))))

  ;; INTERNAL FUNCTION: Given an attribute cache entry C, add an dependency-edge from C to the entry currently
  ;; in evaluation (considering the evaluator state of the AST C is part of) and an influence-edge vice-versa.
  ;; If no attribute cache entry is in evaluation no edges are added.
  (define add-dependency:cache->cache
    (lambda (influencing-cache)
      (let ((dependent-cache
             (evaluator-state-in-evaluation?
              (node-evaluator-state
               (attribute-instance-context
                (attribute-cache-entry-context influencing-cache))))))
        (when (and dependent-cache (not (memq influencing-cache (attribute-cache-entry-cache-dependencies dependent-cache))))
          (attribute-cache-entry-cache-dependencies-set!
           dependent-cache
           (cons
            influencing-cache
            (attribute-cache-entry-cache-dependencies dependent-cache)))
          (attribute-cache-entry-cache-influences-set!
           influencing-cache
           (cons
            dependent-cache
            (attribute-cache-entry-cache-influences influencing-cache)))))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Abstract Syntax Tree Rewriting ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  ;; INTERNAL FUNCTION: Given an attribute instance, flush all its cache entries.
  (define flush-attribute-instance
    (lambda (att)
      (call-with-values
       (lambda ()
         (hashtable-entries (attribute-instance-cache att)))
       (lambda (keys values)
         (vector-for-each
          flush-attribute-cache-entry
          values)))))

  ;; INTERNAL FUNCTION: Given an attribute cache entry, delete it and all depending entries.
  (define flush-attribute-cache-entry
    (lambda (att-cache)
      (let ((influenced-caches (attribute-cache-entry-cache-influences att-cache))) ; Save all influenced attribute cache entries.
        ;; Delete foreign influences:
        (for-each ; For every cache entry I the entry depends on,...
         (lambda (influencing-cache)
           (attribute-cache-entry-cache-influences-set! ; ...remove the influence edge from I to the entry.
            influencing-cache
            (remq att-cache (attribute-cache-entry-cache-influences influencing-cache))))
         (attribute-cache-entry-cache-dependencies att-cache))
        (for-each ; For every node N the attribute cache entry depends on...
         (lambda (node-dependency)
           (node-cache-influences-set!
            (car node-dependency)
            (remp ; ...remove the influence edge from N to the entry.
             (lambda (cache-influence)
               (eq? (car cache-influence) att-cache))
             (node-cache-influences (car node-dependency)))))
         (attribute-cache-entry-node-dependencies att-cache))
        ;; Delete the attribute cache entry:
        (hashtable-delete!
         (attribute-instance-cache (attribute-cache-entry-context att-cache))
         (attribute-cache-entry-arguments att-cache))
        (attribute-cache-entry-cache-dependencies-set! att-cache (list))
        (attribute-cache-entry-node-dependencies-set! att-cache (list))
        (attribute-cache-entry-cache-influences-set! att-cache (list))
        ;; Proceed flushing, i.e., for every attribute cache entry D the entry originally influenced,...
        (for-each
         (lambda (dependent-cache)
           (flush-attribute-cache-entry dependent-cache)) ; ...flush D.
         influenced-caches))))

  ;; INTERNAL FUNCTION: Given an AST node n, flush all attribute cache entries that depend on
  ;; information of the subtree spaned by n but are outside of it and, if requested, all attribute
  ;; cache entries within the subtree spaned by n that depend on information outside of it.
  (define flush-inter-fragment-dependent-attribute-cache-entries
    (lambda (n flush-outgoing?)
      (let loop ((n* n))
        (for-each
         (lambda (influence)
           (unless (node-inside-of? (attribute-instance-context (attribute-cache-entry-context (car influence))) n)
             (flush-attribute-cache-entry (car influence))))
         (node-cache-influences n*))
        (for-each
         (lambda (att)
           (vector-for-each
            (lambda (att-cache)
              (let ((flush-att-cache?
                     (and
                      flush-outgoing?
                      (or
                       (find
                        (lambda (dependency)
                          (not (node-inside-of? (car dependency) n)))
                        (attribute-cache-entry-node-dependencies att-cache))
                       (find
                        (lambda (influencing-cache)
                          (not (node-inside-of? (attribute-instance-context (attribute-cache-entry-context influencing-cache)) n)))
                        (attribute-cache-entry-cache-dependencies att-cache))))))
                (if flush-att-cache?
                    (flush-attribute-cache-entry att-cache)
                    (for-each
                     (lambda (dependent-cache)
                       (unless (node-inside-of? (attribute-instance-context (attribute-cache-entry-context dependent-cache)) n)
                         (flush-attribute-cache-entry dependent-cache)))
                     (attribute-cache-entry-cache-influences att-cache)))))
            (call-with-values
             (lambda ()
               (hashtable-entries (attribute-instance-cache att)))
             (lambda (key-vector value-vector)
               value-vector))))
         (node-attributes n*))
        (unless (node-terminal? n*)
          (for-each
           loop
           (node-children n*))))))

  (define rewrite-terminal
    (lambda (i n new-value)
      ;;; Before changing the value of the terminal ensure, that...
      (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...no attributes are in evaluation and...
        (throw-exception
         "Cannot change terminal value; "
         "There are attributes in evaluation."))
      (let ((n
             (if (symbol? i)
                 (node-find-child n i)
                 (and (>= i 1) (<= i (length (node-children n))) (list-ref (node-children n) (- i 1))))))
        (unless (and n (node-terminal? n)) ; ...the given context is a terminal.
          (throw-exception
           "Cannot change terminal value; "
           "The given context does not exist or is no terminal."))
        ;;; Everything is fine. Thus,...
        (let ((old-value (node-children n)))
          (for-each ; ...flush all attribute cache entries influenced by the terminal,...
           (lambda (influence)
             (flush-attribute-cache-entry (car influence)))
           (node-cache-influences n))
          (node-children-set! n new-value) ; ...rewrite its value and...
          old-value)))) ; ...return its old value.

  (define rewrite-refine
    (lambda (n t . c)
      ;;; Before refining the non-terminal node ensure, that...
      (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...non of its attributes are in evaluation,...
        (throw-exception
         "Cannot refine node; "
         "There are attributes in evaluation."))
      (when (or (node-list-node? n) (node-bud-node? n)) ; ...it is not a list or bud node,...
        (throw-exception
         "Cannot refine node; "
         "The node is a " (if (node-list-node? n) "list" "bud") " node."))
      (let* ((old-rule (node-ast-rule n))
             (new-rule (racr-specification-find-rule (ast-rule-specification old-rule) t)))
        (unless (and new-rule (ast-rule-subtype? new-rule old-rule)) ; ...the given type is a subtype and...
          (throw-exception
           "Cannot refine node; "
           t " is not a subtype of " (symbol-name (car (ast-rule-production old-rule))) "."))
        (let ((additional-children (list-tail (ast-rule-production new-rule) (length (ast-rule-production old-rule)))))
          (unless (satisfies-contexts? c additional-children) ; ...all additional children fit.
            (throw-exception
             "Cannot refine node; "
             "The given additional children do not fit."))
          ;;; Everything is fine. Thus,...
          (for-each ; ...flush the influenced attribute cache entries, i.e., all entries influenced by the node's...
           (lambda (influence)
             (flush-attribute-cache-entry (car influence)))
           (filter
            (lambda (influence)
              (or
               (and (vector-ref (cdr influence) 2) (not (null? c))) ; ...number of children,...
               (and (vector-ref (cdr influence) 3) (not (eq? old-rule new-rule))) ; ...type,...
               (find ; ...supertype,...
                (lambda (t2)
                  (not (eq? (ast-rule-subtype? t2 old-rule) (ast-rule-subtype? t2 new-rule))))
                (vector-ref (cdr influence) 4))
               (find ; ...subtype or...
                (lambda (t2)
                  (not (eq? (ast-rule-subtype? old-rule t2) (ast-rule-subtype? new-rule t2))))
                (vector-ref (cdr influence) 5))
               (find ; ...defined contexts and...
                (lambda (context-name)
                  (let ((old-defines-context? (ast-rule-find-child-context old-rule context-name))
                        (new-defines-context? (ast-rule-find-child-context new-rule context-name)))
                    (if old-defines-context? (not new-defines-context?) new-defines-context?)))
                (vector-ref (cdr influence) 6))))
            (node-cache-influences n)))
          (for-each ; ...all entries depending on the new children being roots. Afterwards,...
           (lambda (child context)
             (when (symbol-non-terminal? context)
               (for-each
                (lambda (influence)
                  (flush-attribute-cache-entry (car influence)))
                (filter
                 (lambda (influence)
                   (vector-ref (cdr influence) 1))
                 (node-cache-influences child)))))
           c
           additional-children)
          (node-ast-rule-set! n new-rule) ; ...update the node's type,...
          (update-synthesized-attribution n) ; ...synthesized attribution,...
          (node-children-set! ; ...insert the new children and...
           n
           (append
            (node-children n)
            (map
             (lambda (child context)
               (let ((child
                      (if (symbol-non-terminal? context)
                          child
                          (make-node 'terminal n child))))
                 (node-parent-set! child n)
                 (distribute-evaluator-state (node-evaluator-state n) child) ; ...update their evaluator state and...
                 child))
             c
             additional-children)))
          (for-each
           update-inherited-attribution ; ...inherited attribution.
           (node-children n))))))

  (define rewrite-abstract
    (lambda (n t)
      ;;; Before abstracting the node ensure, that...
      (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...no attributes are in evaluation,...
        (throw-exception
         "Cannot abstract node; "
         "There are attributes in evaluation."))
      (when (or (node-list-node? n) (node-bud-node? n)) ; ...the node is not a list or bud node,...
        (throw-exception
         "Cannot abstract node; "
         "The node is a " (if (node-list-node? n) "list" "bud") " node."))
      (let* ((old-rule (node-ast-rule n))
             (new-rule (racr-specification-find-rule (ast-rule-specification old-rule) t)))
        (unless (and new-rule (ast-rule-subtype? old-rule new-rule)) ; ...the new type is a supertype and...
          (throw-exception
           "Cannot abstract node; "
           t " is not a supertype of " (symbol-name (car (ast-rule-production old-rule))) "."))
        ; ...permitted in the context in which the node is:
        (unless (or (not (node-parent n)) (valid-replacement-candidate? n (create-ast-mockup new-rule)))
          (throw-exception
           "Cannot abstract node; "
           "Abstraction to type " t " not permitted by context."))
        ;;; Everything is fine. Thus,...
        (let* ((num-new-children (length (cdr (ast-rule-production new-rule))))
               (children-to-remove (list-tail (node-children n) num-new-children)))
          (for-each ; ...flush all influenced attribute cache entries, i.e., all entries influenced by the node's...
           (lambda (influence)
             (flush-attribute-cache-entry (car influence)))
           (filter
            (lambda (influence)
              (or
               (and (vector-ref (cdr influence) 2) (not (null? children-to-remove))) ; ...number of children,...
               (and (vector-ref (cdr influence) 3) (not (eq? old-rule new-rule))) ; ...type...
               (find ; ...supertype,...
                (lambda (t2)
                  (not (eq? (ast-rule-subtype? t2 old-rule) (ast-rule-subtype? t2 new-rule))))
                (vector-ref (cdr influence) 4))
               (find ; ...subtype or...
                (lambda (t2)
                  (not (eq? (ast-rule-subtype? old-rule t2) (ast-rule-subtype? new-rule t2))))
                (vector-ref (cdr influence) 5))
               (find ; ...defined contexts and...
                (lambda (context-name)
                  (let ((old-defines-context? (ast-rule-find-child-context old-rule context-name))
                        (new-defines-context? (ast-rule-find-child-context new-rule context-name)))
                    (if old-defines-context? (not new-defines-context?) new-defines-context?)))
                (vector-ref (cdr influence) 6))))
            (node-cache-influences n)))
          (for-each ; ...all entries cross-depending the removed ASTs. Afterwards,...
           (lambda (child-to-remove)
             (flush-inter-fragment-dependent-attribute-cache-entries child-to-remove #t))
           children-to-remove)
          (node-ast-rule-set! n new-rule) ; ...update the node's type and its...
          (update-synthesized-attribution n) ; ...synthesized (because of possibly less) and...
          (update-inherited-attribution n) ; ...inherited (because of unshadowed) attributes. Further,...
          (for-each ; ...for every child to remove,...
           (lambda (child)
             (detach-inherited-attributes child) ; ...delete its inherited attributes,...
             (node-parent-set! child #f) ; ...detach it from the AST and...
             (distribute-evaluator-state (make-evaluator-state) child)) ; ...update its evaluator state. Then,...
           children-to-remove)
          (unless (null? children-to-remove)
            (if (> num-new-children 0)
                (set-cdr! (list-tail (node-children n) (- num-new-children 1)) (list))
                (node-children-set! n (list))))
          (for-each ; ...update the inherited attribution of all remaining children. Finally,...
           update-inherited-attribution
           (node-children n))
          (map ; ...return the removed children.
           (lambda (child) (if (node-terminal? child) (node-children child) child))
           children-to-remove)))))

  (define rewrite-subtree
    (lambda (old-fragment new-fragment)
      ;;; Before replacing the subtree ensure, that no attributes of the old fragment are in evaluation and...
      (when (evaluator-state-in-evaluation? (node-evaluator-state old-fragment))
        (throw-exception
         "Cannot replace subtree; "
         "There are attributes in evaluation."))
      (unless (valid-replacement-candidate? old-fragment new-fragment) ; ...the new fragment fits in its context.
        (throw-exception
         "Cannot replace subtree; "
         "The replacement does not fit."))
      ;;; When all rewrite constraints are satisfied,...
      (detach-inherited-attributes old-fragment) ; ...delete the old fragment's inherited attribution. Then,...
      ; ...flush all attribute cache entries cross-depending the old fragment and...
      (flush-inter-fragment-dependent-attribute-cache-entries old-fragment #t)
      (for-each ; ...all entries depending on the new fragment being a root. Afterwards,...
       (lambda (influence)
         (flush-attribute-cache-entry (car influence)))
       (filter
        (lambda (influence)
          (vector-ref (cdr influence) 1))
        (node-cache-influences new-fragment)))
      (distribute-evaluator-state (node-evaluator-state old-fragment) new-fragment) ; ...update both fragments' evaluator state,...
      (distribute-evaluator-state (make-evaluator-state) old-fragment)
      (set-car! ; ...replace the old fragment by the new one and...
       (list-tail (node-children (node-parent old-fragment)) (- (node-child-index? old-fragment) 1))
       new-fragment)
      (node-parent-set! new-fragment (node-parent old-fragment))
      (node-parent-set! old-fragment #f)
      (update-inherited-attribution new-fragment) ; ...update the new fragment's inherited attribution. Finally,...
      old-fragment)) ; ...return the removed old fragment.

  (define rewrite-add
    (lambda (l e)
      ;;; Before adding the element ensure, that...
      (when (evaluator-state-in-evaluation? (node-evaluator-state l)) ; ...no attributes of the list are in evaluation,...
        (throw-exception
         "Cannot add list element; "
         "There are attributes in evaluation."))
      (unless (node-list-node? l) ; ...indeed a list is given as context and...
        (throw-exception
         "Cannot add list element; "
         "The given context is no list-node."))
      (unless (valid-list-element-candidate? l e) ; ...the new element fits.
        (throw-exception
         "Cannot add list element; "
         "The new element does not fit."))
      ;;; When all rewrite constraints are satisfied,...
      (for-each ; ...flush all attribute cache entries influenced by the list-node's number of children and...
       (lambda (influence)
         (flush-attribute-cache-entry (car influence)))
       (filter
        (lambda (influence)
          (vector-ref (cdr influence) 2))
        (node-cache-influences l)))
      (for-each ; ...all entries depending on the new element being a root. Afterwards,...
       (lambda (influence)
         (flush-attribute-cache-entry (car influence)))
       (filter
        (lambda (influence)
          (vector-ref (cdr influence) 1))
        (node-cache-influences e)))
      (node-children-set! l (append (node-children l) (list e))) ; ...add the new element,...
      (node-parent-set! e l)
      (distribute-evaluator-state (node-evaluator-state l) e) ; ...initialize its evaluator state and...
      (when (node-parent l)
        (update-inherited-attribution e)))) ; ...any inherited attributes defined for its new context.

  (define rewrite-insert
    (lambda (l i e)
      ;;; Before inserting the new element ensure, that...
      (when (evaluator-state-in-evaluation? (node-evaluator-state l)) ; ...no attributes of the list are in evaluation,...
        (throw-exception
         "Cannot insert list element; "
         "There are attributes in evaluation."))
      (unless (node-list-node? l) ; ...indeed a list is given as context,...
        (throw-exception
         "Cannot insert list element; "
         "The given context is no list-node."))
      (when (or (< i 1) (> i (+ (length (node-children l)) 1))) ; ...the list has enough elements and...
        (throw-exception
         "Cannot insert list element; "
         "The given index is out of range."))
      (unless (valid-list-element-candidate? l e) ; ...the new element fits.
        (throw-exception
         "Cannot add list element; "
         "The new element does not fit."))
      ;;; When all rewrite constraints are satisfied...
      (for-each ; ...flush all attribute cache entries influenced by the list's number of children. Further,...
       (lambda (influence)
         (flush-attribute-cache-entry (car influence)))
       (filter
        (lambda (influence)
          (vector-ref (cdr influence) 2))
        (node-cache-influences l)))
      (for-each ; ...for each successor element after insertion,...
       (lambda (successor)
         (for-each ; ...flush all attribute cache entries depending on the respective element...
          (lambda (influence)
            (define query-direction? (vector-ref (cdr influence) 0)) ; ...via a downwards query. Then,...
            (when (or (eq? query-direction? 'down) (eq? query-direction? 'up/down))
              (flush-attribute-cache-entry (car influence))))
          (node-cache-influences successor)))
       (list-tail (node-children l) (- i 1)))
      (for-each ; ...flush all attribute cache entries depending on the new element being a root. Afterwards,...
       (lambda (influence)
         (flush-attribute-cache-entry (car influence)))
       (filter
        (lambda (influence)
          (vector-ref (cdr influence) 1))
        (node-cache-influences e)))
      (cond ; ...insert the new element,...
        ((null? (node-children l))
         (node-children-set! l (list e)))
        ((= (length (node-children l)) (- i 1))
         (node-children-set! l (append (node-children l) (list e))))
        (else
         (let ((insert-head (list-tail (node-children l) (- i 1))))
           (set-cdr! insert-head (cons (car insert-head) (cdr insert-head)))
           (set-car! insert-head e))))
      (node-parent-set! e l)
      (distribute-evaluator-state (node-evaluator-state l) e) ; ...initialize its evaluator state and...
      (when (node-parent l)
        (update-inherited-attribution e)))) ; ...any inherited attributes defined for its new context.

  (define rewrite-delete
    (lambda (n)
      ;;; Before deleting the element ensure, that...
      (when (evaluator-state-in-evaluation? (node-evaluator-state n)) ; ...no attributes are in evaluation and...
        (throw-exception
         "Cannot delete list element; "
         "There are attributes in evaluation."))
      (unless (and (node-parent n) (node-list-node? (node-parent n))) ; ...the given node is element of a list.
        (throw-exception
         "Cannot delete list element; "
         "The given node is not element of a list."))
      ;;; When all rewrite constraints are satisfied,...
      (detach-inherited-attributes n) ; ...delete the element's inherited attributes and...
      (for-each ;  ...flush all attribute cache entries influenced by...
       (lambda (influence)
         (flush-attribute-cache-entry (car influence)))
       (filter
        (lambda (influence)
          (or (vector-ref (cdr influence) 2) ; ...the number of children of the list node the element is part of or...
              (let ((query-direction? (vector-ref (cdr influence) 0))) ; ...that query the list node via...
                (and (or (eq? query-direction? 'up) (eq? query-direction? 'up/down)) ; ...an upwards query and...
                     (node-inside-of? ; ...are within the element's subtree. Also flush,...
                      (attribute-instance-context (attribute-cache-entry-context (car influence)))
                      n)))))
        (node-cache-influences (node-parent n))))
      (for-each ; ...for the element itself and each successor element,...
       (lambda (successor)
         (for-each ; ...all attribute cache entries depending on the respective element...
          (lambda (influence)
            (define query-direction? (vector-ref (cdr influence) 0)) ; ...via a downwards query. Finally,...
            (when (or (eq? query-direction? 'down) (eq? query-direction? 'up/down))
              (flush-attribute-cache-entry (car influence))))
          (node-cache-influences successor)))
       (list-tail (node-children (node-parent n)) (- (node-child-index? n) 1)))
      (node-children-set! (node-parent n) (remq n (node-children (node-parent n)))) ; ...remove the element from the list,...
      (node-parent-set! n #f)
      (distribute-evaluator-state (make-evaluator-state) n) ; ...reset its evaluator state and...
      n)) ; ...return it.

  (define perform-rewrites
    (lambda (n strategy . transformers)
      (define root
        (let loop ((n n))
          (if (ast-has-parent? n)
              (loop (ast-parent n))
              n)))
      (define root-deleted/inserted?
        (let ((evaluator-state (node-evaluator-state root)))
          (lambda ()
            (not (eq? evaluator-state (node-evaluator-state root))))))
      (define find-and-apply
        (case strategy
          ((top-down)
           (lambda (n)
             (and
              (not (node-terminal? n))
              (or
               (find (lambda (transformer) (transformer n)) transformers)
               (find find-and-apply (node-children n))))))
          ((bottom-up)
           (lambda (n)
             (and
              (not (node-terminal? n))
              (or
               (find find-and-apply (node-children n))
               (find (lambda (transformer) (transformer n)) transformers)))))
          (else (throw-exception
                 "Cannot perform rewrites; "
                 "Unknown " strategy " strategy."))))
      (let loop ()
        (when (root-deleted/inserted?)
          (throw-exception
           "Cannot perform rewrites; "
           "A given transformer manipulated the root of the AST."))
        (let ((match (find-and-apply root)))
          (if match
              (cons match (loop))
              (list))))))

  (define create-transformer-for-pattern
    (lambda (spec node-type pattern-attribute rewrite-function . pattern-arguments)
      (let ((ast-rule (specification->find-ast-rule spec node-type)))
        (unless ast-rule
          (throw-exception
           "Cannot construct transformer; "
           "Undefined " node-type " node type."))
        (unless (find
                 (lambda (attribute-definition)
                   (eq? (attribute->name attribute-definition) pattern-attribute))
                 (symbol->attributes (car (ast-rule->production ast-rule))))
          (throw-exception
           "Cannot construct transformer; "
           "No " pattern-attribute " attribute defined in the context of " node-type " nodes.")))
      (lambda (n)
        (when (and (not (or (ast-bud-node? n) (ast-list-node? n))) (ast-subtype? n node-type))
          (let ((match? (apply att-value pattern-attribute n pattern-arguments)))
            (if match?
                (or
                 (apply rewrite-function match? pattern-arguments)
                 #t)
                #f))))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Pattern Matching ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (define pattern-language (make-racr-specification))

  ;;; Pattern Specification:

  (define specify-pattern
    (lambda (spec att-name distinguished-node fragments references condition?)
      (define process-fragment
        (lambda (context type binding children)
          (unless (and
                   (or (symbol? context) (integer? context))
                   (or (not type) (symbol? type))
                   (or (not binding) (symbol? binding)))
            (throw-exception
             "Invalid pattern definition; "
             "Wrong argument type (context, type or binding of fragment)."))
          (create-ast
           pattern-language
           'Node
           (list
            context
            type
            binding
            (create-ast-list
             (map
              (lambda (child)
                (apply process-fragment child))
              children))))))
      (define process-reference
        (lambda (name source target)
          (unless (and (symbol? name) (symbol? source) (symbol? target))
            (throw-exception
             "Invalid pattern definition; "
             "Wrong argument type (name, source and target of references must be symbols)."))
          (create-ast pattern-language 'Ref (list name source target))))
      (let ((ast
             (create-ast
              pattern-language
              'Pattern
              (list
               (create-ast-list (map (lambda (frag) (apply process-fragment (cons 'racr-nil frag))) fragments))
               (create-ast-list (map (lambda (ref) (apply process-reference ref)) references))
               #f
               spec))))
        ;; Resolve symbolic node references (i.e., perform name analysis):
        (rewrite-terminal 'dnode ast (att-value 'lookup-node ast distinguished-node))
        (for-each
         (lambda (ref)
           (let ((source? (att-value 'lookup-node ast (ast-child 'source ref)))
                 (target? (att-value 'lookup-node ast (ast-child 'target ref))))
             (if source?
                 (rewrite-terminal 'source ref source?)
                 (throw-exception
                  "Invalid pattern definition; "
                  "Undefined reference source " (ast-child 'source ref) "."))
             (if target?
                 (rewrite-terminal 'target ref target?)
                 (throw-exception
                  "Invalid pattern definition; "
                  "Undefined reference target " (ast-child 'target ref) "."))))
         (ast-children (ast-child 'Ref* ast)))
        ;; Ensure well-formedness of the pattern (valid distinguished node, reachability, typing, unique node naming):
        (unless (att-value 'well-formed? ast)
          (throw-exception
           "Invalid pattern definition; "
           "The pattern is not well-formed."))
        ; Every thing is fine. Thus, add a respective matching attribute to the given specification:
        (specify-attribute
         spec
         att-name
         (ast-child 'type (ast-child 'dnode ast))
         '*
         #t
         (let ((pmm (att-value 'pmm-code ast))) ; Precompute the PMM => The pattern AST is not in the equation's closure
           (if condition?
               (lambda (n . args)
                 (let ((bindings (pmm n)))
                   (if (and bindings (apply condition? bindings args))
                       bindings
                       #f)))
               pmm))
         #f))))

  ;;; Pattern Matching Machine:

  (define pmmi-load-node ; Make already stored node the new current one.
    (lambda (next-instruction index)
      (lambda (current-node node-memory)
        (next-instruction (vector-ref node-memory index) node-memory))))

  (define pmmi-store-node ; Store current node for later reference.
    (lambda (next-instruction index)
      (lambda (current-node node-memory)
        (vector-set! node-memory index current-node)
        (next-instruction current-node node-memory))))

  (define pmmi-ensure-context-by-name ; Ensure, the current node is certain child & make its parent the new current node.
    (lambda (next-instruction context-name)
      (lambda (current-node node-memory)
        (let ((parent? (ast-has-parent? current-node)))
          (if (and parent? (ast-has-child? context-name parent?) (eq? (ast-child context-name parent?) current-node))
              (next-instruction parent? node-memory)
              #f)))))

  (define pmmi-ensure-context-by-index ; Ensure, the current node is certain child & make its parent the new current node.
    (lambda (next-instruction index)
      (lambda (current-node node-memory)
        (let ((parent? (ast-has-parent? current-node)))
          (if (and parent? (>= (ast-num-children parent?) index) (eq? (ast-child index parent?) current-node))
              (next-instruction parent? node-memory)
              #f)))))

  (define pmmi-ensure-subtype ; Ensure, the current node is of a certain type or a subtype.
    (lambda (next-instruction super-type)
      (lambda (current-node node-memory)
        (if (and
             (not (ast-list-node? current-node))
             (not (ast-bud-node? current-node))
             (ast-subtype? current-node super-type))
            (next-instruction current-node node-memory)
            #f))))

  (define pmmi-ensure-list ; Ensure, the current node is a list node.
    (lambda (next-instruction)
      (lambda (current-node node-memory)
        (if (ast-list-node? current-node)
            (next-instruction current-node node-memory)
            #f))))

  (define pmmi-ensure-child-by-name ; Ensure, the current node has a certain child & make the child the new current node.
    (lambda (next-instruction context-name)
      (lambda (current-node node-memory)
        (if (ast-has-child? context-name current-node)
            (next-instruction (ast-child context-name current-node) node-memory)
            #f))))

  (define pmmi-ensure-child-by-index ; Ensure, the current node has a certain child & make the child the new current node.
    (lambda (next-instruction index)
      (lambda (current-node node-memory)
        (if (>= (ast-num-children current-node) index)
            (next-instruction (ast-child index current-node) node-memory)
            #f))))

  (define pmmi-ensure-node ; Ensure, the current node is a certain, already stored node.
    (lambda (next-instruction index)
      (lambda (current-node node-memory)
        (if (eq? current-node (vector-ref node-memory index))
            (next-instruction current-node node-memory)
            #f))))

  (define pmmi-traverse-reference ; Evaluate attribute of current node, ensure value is a node & make it the new current one.
    (lambda (next-instruction reference-name)
      (lambda (current-node node-memory)
        (if (and (not (ast-bud-node? current-node)) (ast-node? (att-value reference-name current-node)))
            (next-instruction (att-value reference-name current-node) node-memory)
            #f))))

  (define pmmi-terminate ; Construct association list of all binded nodes.
    (lambda (bindings)
      (let ((bindings ; Precompute list of (key, index) pairs => The pattern AST is not in the instruction's closure
             (map
              (lambda (n)
                (cons (ast-child 'binding n) (att-value 'node-memory-index n)))
              bindings)))
        (lambda (current-node node-memory)
          (map
           (lambda (binding)
             (cons (car binding) (vector-ref node-memory (cdr binding))))
           bindings)))))

  (define pmmi-initialize ; First instruction of any PMM program. Allocates memory used to store nodes throughout matching.
    (lambda (next-instruction node-memory-size)
      (lambda (current-node)
        (next-instruction current-node (make-vector node-memory-size)))))

  ;;; Pattern Language:

  (define load-pattern-language
    (lambda ()
      (with-specification
        pattern-language

        (ast-rule 'Pattern->Node*-Ref*-dnode-spec)
        (ast-rule 'Node->context-type-binding-Node*)
        (ast-rule 'Ref->name-source-target)
        (compile-ast-specifications 'Pattern)

        ;;; Name Analysis:

        (ag-rule ; Given a binding name, find its respective binded node.
         lookup-node
         (Pattern
          (lambda (n name)
            (ast-find-child*
             (lambda (i n)
               (att-value 'local-lookup-node n name))
             (ast-child 'Node* n)))))

        (ag-rule
         local-lookup-node
         (Node
          (lambda (n name)
            (if (eq? (ast-child 'binding n) name)
                n
                (ast-find-child*
                 (lambda (i n)
                   (att-value 'local-lookup-node n name))
                 (ast-child 'Node* n))))))

        (ag-rule ; Given a non-terminal, find its respective RACR AST rule.
         lookup-type
         (Pattern
          (lambda (n type)
            (specification->find-ast-rule (ast-child 'spec n) type))))

        ;;; Abstract Syntax Tree Query Support:

        (ag-rule ; Root of the AST fragment a node is part of.
         fragment-root
         ((Pattern Node*)
          (lambda (n)
            n)))

        (ag-rule ; Is the node a fragment root?
         fragment-root?
         ((Pattern Node*)
          (lambda (n) #t))
         ((Node Node*)
          (lambda (n) #f)))

        (ag-rule ; List of all references of the pattern.
         references
         (Pattern
          (lambda (n)
            (ast-children (ast-child 'Ref* n)))))

        (ag-rule ; List of all named nodes of the pattern.
         bindings
         (Pattern
          (lambda (n)
            (fold-left
             (lambda (result n)
               (append result (att-value 'bindings n)))
             (list)
             (ast-children (ast-child 'Node* n)))))
         (Node
          (lambda (n)
            (fold-left
             (lambda (result n)
               (append result (att-value 'bindings n)))
             (if (ast-child 'binding n) (list n) (list))
             (ast-children (ast-child 'Node* n))))))

        (ag-rule ; Number of pattern nodes of the pattern/the subtree spaned by a node (including the node itself).
         nodes-count
         (Pattern
          (lambda (n)
            (fold-left
             (lambda (result n)
               (+ result (att-value 'nodes-count n)))
             0
             (ast-children (ast-child 'Node* n)))))
         (Node
          (lambda (n)
            (fold-left
             (lambda (result n)
               (+ result (att-value 'nodes-count n)))
             1
             (ast-children (ast-child 'Node* n))))))

        ;;; Type Analysis:

        (ag-rule ; Must the node be a list?
         must-be-list?
         (Node ; A node must be a list if:
          (lambda (n)
            (or
             (eq? (ast-child 'type n) '*) ; (1) the pattern developer defines so,
             (ast-find-child ; (2) any of its children is referenced by index.
              (lambda (i n)
                (integer? (ast-child 'context n)))
              (ast-child 'Node* n))))))

        (ag-rule ; Must the node not be a list?
         must-not-be-list?
         (Node ; A node must not be a list if:
          (lambda (n)
            (or
             (and ; (1) the pattern developer defines so,
              (ast-child 'type n)
              (not (eq? (ast-child 'type n) '*)))
             (and ; (2) it is child of a list,
              (not (att-value 'fragment-root? n))
              (att-value 'must-be-list? (ast-parent n)))
             (ast-find-child ; (3) any of its children is referenced by name or must be a list.
              (lambda (i n)
                (or
                 (symbol? (ast-child 'context n))
                 (att-value 'must-be-list? n)))
              (ast-child 'Node* n))))))

        (ag-rule ; List of all types being subject of a Kleene closure, i.e., all list types.
         most-general-list-types
         (Pattern
          (lambda (n)
            (let ((list-types
                   (fold-left
                    (lambda (result ast-rule)
                      (fold-left
                       (lambda (result symbol)
                         (if (and (symbol->kleene? symbol) (not (memq (symbol->non-terminal? symbol) result)))
                             (cons (symbol->non-terminal? symbol) result)
                             result))
                       result
                       (cdr (ast-rule->production ast-rule))))
                    (list)
                    (att-value 'most-concrete-types n))))
              (filter
               (lambda (type1)
                 (not
                  (find
                   (lambda (type2)
                     (and
                      (not (eq? type1 type2))
                      (ast-rule-subtype? type1 type2)))
                   list-types)))
               list-types)))))

        (ag-rule ; List of all types (of a certain type) no other type inherits from.
         most-concrete-types
         (Pattern
          (case-lambda
            ((n)
             (filter
              (lambda (type)
                (null? (ast-rule-subtypes type)))
              (specification->ast-rules (ast-child 'spec n))))
            ((n type)
             (filter
              (lambda (type)
                (null? (ast-rule-subtypes type)))
              (cons type (ast-rule-subtypes type)))))))

        (ag-rule ; Satisfies a certain type a node's user defined type constraints?
         valid-user-induced-type?
         (Node
          (lambda (n type kleene?)
            (or
             (not (ast-child 'type n))
             (if (eq? (ast-child 'type n) '*)
                 kleene?
                 (let ((user-induced-type (att-value 'lookup-type n (ast-child 'type n))))
                   (and
                    user-induced-type
                    (ast-rule-subtype? type user-induced-type))))))))

        (ag-rule ; Satisfies a certain type all type constraint of a node and its subtree?
         valid-type?
         (Node
          (lambda (n type kleene?)
            (and
             (not (and (att-value 'must-be-list? n) (not kleene?)))
             (not (and (att-value 'must-not-be-list? n) kleene?))
             (att-value 'valid-user-induced-type? n type kleene?)
             (if kleene?
                 (not
                  (ast-find-child
                   (lambda (i child)
                     (not
                      (find
                       (lambda (child-type)
                         (att-value 'valid-type? child child-type #f))
                       (att-value 'most-concrete-types n type))))
                   (ast-child 'Node* n)))
                 (not
                  (ast-find-child
                   (lambda (i child)
                     (let* ((context? (ast-rule-find-child-context type (ast-child 'context child)))
                            (context-types?
                             (cond
                               ((not (and context? (symbol->non-terminal? context?))) (list))
                               ((symbol->kleene? context?) (list (symbol->non-terminal? context?)))
                               (else (att-value 'most-concrete-types n (symbol->non-terminal? context?))))))
                       (not
                        (find
                         (lambda (type)
                           (att-value 'valid-type? child type (symbol->kleene? context?)))
                         context-types?))))
                   (ast-child 'Node* n))))))))

        (ag-rule ; Is the pattern satisfiable (a matching AST exists regarding fragment syntax & type constraints)?
         well-typed?
         ((Pattern Node*)
          (lambda (n)
            (or
             (find
              (lambda (type)
                (att-value 'valid-type? n type #f))
              (att-value 'most-concrete-types n))
             (find
              (lambda (type)
                (att-value 'valid-type? n type #t))
              (att-value 'most-general-list-types n))))))

        ;;; Reachability:

        (ag-rule ; Is the reference connecting two different fragments?
         inter-fragment-reference?
         (Ref
          (lambda (n)
            (not
             (eq?
              (att-value 'fragment-root (ast-child 'source n))
              (att-value 'fragment-root (ast-child 'target n)))))))

        (ag-rule ; List of the child contexts to follow to reach the root.
         fragment-root-path

         ((Pattern Node*)
          (lambda (n)
            (list)))

         ((Node Node*)
          (lambda (n)
            (cons (ast-child 'context n) (att-value 'fragment-root-path (ast-parent n))))))

        (ag-rule ; List of the cheapest inter fragment references of a fragment and their respective costs.
         inter-fragment-references
         ((Pattern Node*)
          (lambda (n)
            (define walk-costs ; Sum of distances of a reference's source & target to their roots.
              (lambda (ref)
                (+
                 (length (att-value 'fragment-root-path (ast-child 'source ref)))
                 (length (att-value 'fragment-root-path (ast-child 'target ref))))))
            (reverse
             (fold-left ; Filter for each target the cheapest inter fragment reference:
              (lambda (result ref)
                (if
                 (memp
                  (lambda (weighted-ref)
                    (eq?
                     (att-value 'fragment-root (ast-child 'target ref))
                     (att-value 'fragment-root (ast-child 'target (car weighted-ref)))))
                  result)
                 result
                 (cons (cons ref (walk-costs ref)) result)))
              (list)
              (list-sort ; Sort the inter fragment references according to their costs:
               (lambda (ref1 ref2)
                 (< (walk-costs ref1) (walk-costs ref2)))
               (filter ; Find all inter fragment references of the fragment:
                (lambda (ref)
                  (and
                   (eq? (att-value 'fragment-root (ast-child 'source ref)) n)
                   (att-value 'inter-fragment-reference? ref)))
                (att-value 'references n))))))))

        (ag-rule ; List of references best suited to reach other fragments from the distinguished node.
         fragment-walk
         (Pattern
          (lambda (n)
            (let ((dummy-walk
                   (cons
                    (create-ast 'Ref (list #f (ast-child 'dnode n) (ast-child 'dnode n)))
                    0)))
              (let loop ((walked ; List of pairs of already followed references and their total costs.
                          (list dummy-walk))
                         (to-visit ; Fragment roots still to visit.
                          (remq
                           (att-value 'fragment-root (ast-child 'dnode n))
                           (ast-children (ast-child 'Node* n)))))
                (let ((next-walk? ; Find the next inter fragment reference to follow if there is any,...
                       (fold-left ; ...i.e., for every already walked inter fragment reference R,...
                        (lambda (best-next-walk performed-walk)
                          (let ((possible-next-walk ; ...find the best walk reaching a new fragment from its target....
                                 (find
                                  (lambda (weighted-ref)
                                    (memq
                                     (att-value 'fragment-root (ast-child 'target (car weighted-ref)))
                                     to-visit))
                                  (att-value 'inter-fragment-references (ast-child 'target (car performed-walk))))))
                            (cond
                              ((not possible-next-walk) ; ...If no new fragment is reachable from the target of R,...
                               best-next-walk) ; ...keep the currently best walk. Otherwise,...
                              ((not best-next-walk) ; ...if no next best walk has been selected yet,...
                               possible-next-walk) ; ...make the found one the best....
                              (else ; Otherwise,...
                               (let ((costs-possible-next-walk (+ (cdr possible-next-walk) (cdr performed-walk))))
                                 (if (< costs-possible-next-walk (cdr best-next-walk)) ; ...select the better one.
                                     (cons (car possible-next-walk) costs-possible-next-walk)
                                     best-next-walk))))))
                        #f
                        walked)))
                  (if next-walk? ; If a new fragment can be reached,...
                      (loop ; ...try to find another reachable one. Otherwise,...
                       (append walked (list next-walk?))
                       (remq
                        (att-value 'fragment-root (ast-child 'target (car next-walk?)))
                        to-visit))
                      (map car (cdr walked))))))))) ; ...return the references defining all reachable fragments.

        ;;; Well-formedness:

        (ag-rule ; Is the pattern specification valid, such that PMM code can be generated?
         well-formed?

         (Pattern
          (lambda (n)
            (and
             (att-value 'local-correct? n)
             (not
              (ast-find-child
               (lambda (i n)
                 (not (att-value 'well-formed? n)))
               (ast-child 'Node* n))))))

         (Node
          (lambda (n)
            (and
             (att-value 'local-correct? n)
             (not
              (ast-find-child
               (lambda (i n)
                 (not (att-value 'well-formed? n)))
               (ast-child 'Node* n)))))))

        (ag-rule ; Is a certain part of the pattern AST valid?
         local-correct?

         (Pattern
          (lambda (n)
            (and
             (ast-node? (ast-child 'dnode n)) ; A distinguished node must be defined, whose...
             (ast-child 'type (ast-child 'dnode n)) ; ...type is user specified and...
             (not (att-value 'must-be-list? (ast-child 'dnode n))) ; ...not a list.
             (= ; All fragments must be reachable from the distinguished node:
              (+ (length (att-value 'fragment-walk n)) 1)
              (ast-num-children (ast-child 'Node* n)))
             (not ; All fragments must be well typed, i.e., there exists an AST where they match:
              (ast-find-child
               (lambda (i n)
                 (not (att-value 'well-typed? n)))
               (ast-child 'Node* n))))))

         (Node
          (lambda (n)
            (and
             (or ; Binded names must be unique:
              (not (ast-child 'binding n))
              (eq? (att-value 'lookup-node n (ast-child 'binding n)) n))
             (let loop ((children (ast-children (ast-child 'Node* n)))) ; Contexts must be unique:
               (cond
                 ((null? children) #t)
                 ((find
                   (lambda (child)
                     (eqv? (ast-child 'context (car children)) (ast-child 'context child)))
                   (cdr children))
                  #f)
                 (else (loop (cdr children)))))))))

        ;;; Code generation:

        (ag-rule ; Index within node memory. Used during pattern matching to store and later load matched nodes.
         node-memory-index

         ((Pattern Node*)
          (lambda (n)
            (if (> (ast-child-index n) 1)
                (+
                 (att-value 'node-memory-index (ast-sibling (- (ast-child-index n) 1) n))
                 (att-value 'nodes-count (ast-sibling (- (ast-child-index n) 1) n)))
                0)))

         ((Node Node*)
          (lambda (n)
            (if (> (ast-child-index n) 1)
                (+
                 (att-value 'node-memory-index (ast-sibling (- (ast-child-index n) 1) n))
                 (att-value 'nodes-count (ast-sibling (- (ast-child-index n) 1) n)))
                (+ (att-value 'node-memory-index (ast-parent n)) 1)))))

        (ag-rule ; Function encoding pattern matching machine (PMM) specialised to match the pattern.
         pmm-code
         (Pattern
          (lambda (n)
            (pmmi-initialize
             (att-value
              'pmm-code:match-fragment
              (ast-child 'dnode n)
              (fold-right
               (lambda (reference result)
                 (pmmi-load-node
                  (pmmi-traverse-reference
                   (att-value 'pmm-code:match-fragment (ast-child 'target reference) result)
                   (ast-child 'name reference))
                  (att-value 'node-memory-index (ast-child 'source reference))))
               (att-value
                'pmm-code:check-references
                n
                (pmmi-terminate (att-value 'bindings n)))
               (att-value 'fragment-walk n)))
             (+ (att-value 'nodes-count n) 1)))))

        (ag-rule ; Function encoding PMM specialised to match the fragment the pattern node is part of.
         pmm-code:match-fragment
         (Node
          (lambda (n continuation-code)
            (fold-right
             (lambda (context result)
               (if (integer? context)
                   (pmmi-ensure-context-by-index result context)
                   (pmmi-ensure-context-by-name result context)))
             (att-value 'pmm-code:match-subtree (att-value 'fragment-root n) continuation-code)
             (att-value 'fragment-root-path n)))))

        (ag-rule ; Function encoding PMM specialised to match the subtree the pattern node spans.
         pmm-code:match-subtree
         (Node
          (lambda (n continuation-code)
            (let ((store-instruction
                   (pmmi-store-node
                    (fold-right
                     (lambda (child result)
                       (pmmi-load-node
                        (if (integer? (ast-child 'context child))
                            (pmmi-ensure-child-by-index
                             (att-value 'pmm-code:match-subtree child result)
                             (ast-child 'context child))
                            (pmmi-ensure-child-by-name
                             (att-value 'pmm-code:match-subtree child result)
                             (ast-child 'context child)))
                        (att-value 'node-memory-index n)))
                     continuation-code
                     (ast-children (ast-child 'Node* n)))
                    (att-value 'node-memory-index n))))
              (cond
                ((att-value 'must-be-list? n)
                 (pmmi-ensure-list store-instruction))
                ((ast-child 'type n)
                 (pmmi-ensure-subtype store-instruction (ast-child 'type n)))
                (else store-instruction))))))

        (ag-rule ; Function encoding PMM specialised to match the reference integrity of the pattern.
         pmm-code:check-references
         (Pattern
          (lambda (n continuation-code)
            (fold-left
             (lambda (result reference)
               (pmmi-load-node
                (pmmi-traverse-reference
                 (pmmi-ensure-node
                  result
                  (att-value 'node-memory-index (ast-child 'target reference)))
                 (ast-child 'name reference))
                (att-value 'node-memory-index (ast-child 'source reference))))
             continuation-code
             (filter
              (lambda (reference)
                (not (memq reference (att-value 'fragment-walk n))))
              (ast-children (ast-child 'Ref* n)))))))

        (compile-ag-specifications))))

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Initialisation ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  (when (= (specification->phase pattern-language) 1)
    (load-pattern-language)))