1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
#lang scribble/manual
@(require "common.rkt")
@title[#:tag "utils"]{Plot Utilities}
@declare-exporting[plot/utils]
@defmodule*/no-declare[(plot/utils)]
@;====================================================================================================
@section{Formatting}
@defproc[(digits-for-range [x-min real?] [x-max real?]
[base (and/c exact-integer? (>=/c 2)) 10]
[extra-digits exact-integer? 3])
exact-integer?]{
Given a range, returns the number of decimal places necessary to distinguish numbers in the range.
This may return negative numbers for large ranges.
@examples[#:eval plot-eval
(digits-for-range 0.01 0.02)
(digits-for-range 0 100000)]
}
@defproc[(real->plot-label [x real?] [digits exact-integer?] [scientific? boolean? #t]) string?]{
Converts a real number to a plot label.
Used to format axis tick labels, @(racket point-label)s, and numbers in legend entries.
@examples[#:eval plot-eval
(let ([d (digits-for-range 0.01 0.03)])
(real->plot-label 0.02555555 d))
(real->plot-label 2352343 -2)
(real->plot-label 1000000000. 4)
(real->plot-label 1000000000.1234 4)]
}
@defproc[(ivl->plot-label [i ivl?] [extra-digits exact-integer? 3]) string?]{
Converts an interval to a plot label.
If @racket[i] = @racket[(ivl x-min x-max)], the number of digits used is @racket[(digits-for-range x-min x-max 10 extra-digits)] when both endpoints are @racket[rational?].
Otherwise, it is unspecified---but will probably remain @racket[15].
@examples[#:eval plot-eval
(ivl->plot-label (ivl -10.52312 10.99232))
(ivl->plot-label (ivl -inf.0 pi))]
}
@defproc[(->plot-label [a any/c] [digits exact-integer? 7]) string?]{
Converts a Racket value to a label. Used by @(racket discrete-histogram) and @(racket discrete-histogram3d).
}
@defproc[(real->string/trunc [x real?] [e exact-integer?]) string?]{
Like @(racket real->decimal-string), but removes any trailing zeros and any trailing decimal point.
}
@defproc[(real->decimal-string* [x real?]
[min-digits exact-nonnegative-integer?]
[max-digits exact-nonnegative-integer? min-digits])
string?]{
Like @racket[real->decimal-string], but accepts both a maximum and minimum number of digits.
@examples[#:eval plot-eval
(real->decimal-string* 1 5 10)
(real->decimal-string* 1.123456 5 10)
(real->decimal-string* 1.123456789123456 5 10)]
Applying @racket[(real->decimal-string* x min-digits)] yields the same value as @racket[(real->decimal-string x min-digits)].
}
@defproc[(integer->superscript [x exact-integer?]) string?]{
Converts an integer into a string of superscript Unicode characters.
@examples[#:eval plot-eval
(integer->superscript -1234567890)]
Systems running some out-of-date versions of Windows XP have difficulty with Unicode superscripts for 4 and up.
Because @racket[integer->superscript] is used by every number formatting function to format exponents, if you have such a system, @(plot-name) will apparently not format all numbers with exponents correctly (until you update it).
}
@;{
format-tick-labels
}
@;====================================================================================================
@section{Sampling}
@defproc[(linear-seq [start real?] [end real?] [num exact-nonnegative-integer?]
[#:start? start? boolean? #t]
[#:end? end? boolean? #t])
(listof real?)]{
Returns a list of uniformly spaced real numbers between @(racket start) and @(racket end).
If @(racket start?) is @(racket #t), the list includes @(racket start).
If @(racket end?) is @(racket #t), the list includes @(racket end).
This function is used internally to generate sample points.
@examples[#:eval plot-eval
(linear-seq 0 1 5)
(linear-seq 0 1 5 #:start? #f)
(linear-seq 0 1 5 #:end? #f)
(linear-seq 0 1 5 #:start? #f #:end? #f)
(define xs (linear-seq -1 1 11))
(plot (lines (map vector xs (map sqr xs))))]
}
@defproc[(linear-seq* [points (listof real?)] [num exact-nonnegative-integer?]
[#:start? start? boolean? #t]
[#:end? end? boolean? #t])
(listof real?)]{
Like @(racket linear-seq), but accepts a list of reals instead of a start and end.
The @(racket #:start?) and @(racket #:end?) keyword arguments work as in @(racket linear-seq).
This function does not guarantee that each inner value will be in the returned list.
@examples[#:eval plot-eval
(linear-seq* '(0 1 2) 5)
(linear-seq* '(0 1 2) 6)
(linear-seq* '(0 1 0) 5)]
}
@defproc[(nonlinear-seq [start real?] [end real?] [num exact-nonnegative-integer?]
[transform axis-transform/c]
[#:start? start? boolean? #t]
[#:end? end? boolean? #t])
(listof real?)]{
Generates a list of reals that, if transformed using @(racket transform), would be uniformly spaced.
This is used to generate samples for transformed axes.
@examples[#:eval plot-eval
(linear-seq 1 10 4)
(nonlinear-seq 1 10 4 log-transform)
(parameterize ([plot-x-transform log-transform])
(plot (area-histogram sqr (nonlinear-seq 1 10 4 log-transform))))]
}
@;{
build-linear-seq
make-function->sampler
make-2d-function->sampler
make-3d-function->sampler
sample-exact->inexact
2d-sample-exact->inexact
3d-sample-exact->inexact
}
@defproc[(kde [xs (listof real?)]
[h (>/c 0)]
[ws (or/c (listof (>=/c 0)) #f) #f])
(values (-> real? real?)
(or/c rational? #f)
(or/c rational? #f))]{
Given optionally weighted samples and a kernel bandwidth, returns a function representing a kernel density estimate, and bounds, outside of which the density estimate is zero.
Used by @(racket density).
}
@;====================================================================================================
@section{Plot Colors and Styles}
@defproc[(color-seq [c1 color/c] [c2 color/c] [num exact-nonnegative-integer?]
[#:start? start? boolean? #t]
[#:end? end? boolean? #t])
(listof (list/c real? real? real?))]{
Interpolates between colors---red, green and blue components separately---using @(racket linear-seq).
The @(racket #:start?) and @(racket #:end?) keyword arguments work as in @(racket linear-seq).
@examples[#:eval plot-eval (plot (contour-intervals (λ (x y) (+ x y)) -2 2 -2 2
#:levels 4 #:contour-styles '(transparent)
#:colors (color-seq "red" "blue" 5)))]
}
@defproc[(color-seq* [colors (listof color/c)] [num exact-nonnegative-integer?]
[#:start? start? boolean? #t]
[#:end? end? boolean? #t])
(listof (list/c real? real? real?))]{
Interpolates between colors---red, green and blue components separately---using @(racket linear-seq*).
The @(racket #:start?) and @(racket #:end?) keyword arguments work as in @(racket linear-seq).
@examples[#:eval plot-eval (plot (contour-intervals (λ (x y) (+ x y)) -2 2 -2 2
#:levels 4 #:contour-styles '(transparent)
#:colors (color-seq* '(red white blue) 5)))]
}
@defproc[(->color [c color/c]) (list/c real? real? real?)]{
Converts a non-integer plot color to an RGB triplet.
Symbols are converted to strings, and strings are looked up in a @(racket color-database<%>).
Lists are unchanged, and @(racket color%) objects are converted straightforwardly.
@examples[#:eval plot-eval
(->color 'navy)
(->color "navy")
(->color '(36 36 140))
(->color (make-object color% 36 36 140))]
This function does not convert integers to RGB triplets, because there is no way for it to know whether the color will be used for a pen or for a brush.
Use @(racket ->pen-color) and @(racket ->brush-color) to convert integers.
}
@defproc[(->pen-color [c plot-color/c]) (list/c real? real? real?)]{
Converts a @italic{line} color to an RGB triplet. This function interprets integer colors as darker and more saturated than @(racket ->brush-color) does.
Non-integer colors are converted using @(racket ->color).
Integer colors are chosen for good pairwise contrast, especially between neighbors.
Integer colors repeat starting with @(racket 128).
@examples[#:eval plot-eval
(equal? (->pen-color 0) (->pen-color 8))
(plot (contour-intervals
(λ (x y) (+ x y)) -2 2 -2 2
#:levels 7 #:contour-styles '(transparent)
#:colors (map ->pen-color (build-list 8 values))))]
}
@defproc[(->brush-color [c plot-color/c]) (list/c real? real? real?)]{
Converts a @italic{fill} color to an RGB triplet. This function interprets integer colors as lighter and less saturated than @(racket ->pen-color) does.
Non-integer colors are converted using @(racket ->color).
Integer colors are chosen for good pairwise contrast, especially between neighbors.
Integer colors repeat starting with @(racket 128).
@examples[#:eval plot-eval
(equal? (->brush-color 0) (->brush-color 8))
(plot (contour-intervals
(λ (x y) (+ x y)) -2 2 -2 2
#:levels 7 #:contour-styles '(transparent)
#:colors (map ->brush-color (build-list 8 values))))]
In the above example, @(racket map)ping @(racket ->brush-color) over the list is actually unnecessary, because @(racket contour-intervals) uses @(racket ->brush-color) internally to convert fill colors.
The @(racket function-interval) function generally plots areas using a fill color and lines using a line color.
Both kinds of color have the default value @(racket 3).
The following example reverses the default behavior; i.e it draws areas using @italic{line} color @(racket 3) and lines using @italic{fill} color @(racket 3):
@interaction[#:eval plot-eval (plot (function-interval sin (λ (x) 0) -4 4
#:color (->pen-color 3)
#:line1-color (->brush-color 3)
#:line2-color (->brush-color 3)
#:line1-width 4 #:line2-width 4))]
}
@defproc[(->pen-style [s plot-pen-style/c]) symbol?]{
Converts a symbolic pen style or a number to a symbolic pen style.
Symbols are unchanged.
Integer pen styles repeat starting at @(racket 5).
@examples[#:eval plot-eval
(eq? (->pen-style 0) (->pen-style 5))
(map ->pen-style '(0 1 2 3 4))]
}
@defproc[(->brush-style [s plot-brush-style/c]) symbol?]{
Converts a symbolic brush style or a number to a symbolic brush style.
Symbols are unchanged.
Integer brush styles repeat starting at @(racket 7).
@examples[#:eval plot-eval
(eq? (->brush-style 0) (->brush-style 7))
(map ->brush-style '(0 1 2 3))
(map ->brush-style '(4 5 6))]
}
@;====================================================================================================
@section{Plot-Specific Math}
@;----------------------------------------------------------------------------------------------------
@subsection{Real Functions}
@defproc[(polar->cartesian [θ real?] [r real?]) (vector/c real? real?)]{
Converts 2D polar coordinates to 2D cartesian coordinates.
}
@defproc[(3d-polar->3d-cartesian [θ real?] [ρ real?] [r real?]) (vector/c real? real? real?)]{
Converts 3D polar coordinates to 3D cartesian coordinates.
See @racket[parametric3d] for an example of use.
}
@defproc[(ceiling-log/base [b (and/c exact-integer? (>=/c 2))] [x (>/c 0)]) exact-integer?]{
Like @racket[(ceiling (/ (log x) (log b)))], but @racket[ceiling-log/base] is not susceptible to floating-point error.
@examples[#:eval plot-eval
(ceiling (/ (log 100) (log 10)))
(ceiling-log/base 10 100)
(ceiling (/ (log 1/1000) (log 10)))
(ceiling-log/base 10 1/1000)]
Various number-formatting functions use this.
}
@defproc[(floor-log/base [b (and/c exact-integer? (>=/c 2))] [x (>/c 0)]) exact-integer?]{
Like @racket[(floor (/ (log x) (log b)))], but @racket[floor-log/base] is not susceptible to floating-point error.
@examples[#:eval plot-eval
(floor (/ (log 100) (log 10)))
(floor-log/base 10 100)
(floor (/ (log 1000) (log 10)))
(floor-log/base 10 1000)]
This is a generalization of @racket[order-of-magnitude].
}
@defproc[(maybe-inexact->exact [x (or/c rational? #f)]) (or/c rational? #f)]{
Returns @racket[#f] if @racket[x] is @racket[#f]; otherwise @racket[(inexact->exact x)].
Use this to convert interval endpoints, which may be @racket[#f], to exact numbers.
}
@;----------------------------------------------------------------------------------------------------
@subsection[#:tag "math.vectors"]{Vector Functions}
@deftogether[(@defproc[(v+ [v1 (vectorof real?)] [v2 (vectorof real?)]) (vectorof real?)]
@defproc[(v- [v1 (vectorof real?)] [v2 (vectorof real?)]) (vectorof real?)]
@defproc[(vneg [v (vectorof real?)]) (vectorof real?)]
@defproc[(v* [v (vectorof real?)] [c real?]) (vectorof real?)]
@defproc[(v/ [v (vectorof real?)] [c real?]) (vectorof real?)])]{
Vector arithmetic. Equivalent to @racket[vector-map]p-ing arithmetic operators over vectors, but specialized so that 2- and 3-vector operations are much faster.
@examples[#:eval plot-eval
(v+ #(1 2) #(3 4))
(v- #(1 2) #(3 4))
(vneg #(1 2))
(v* #(1 2 3) 2)
(v/ #(1 2 3) 2)]
}
@defproc[(v= [v1 (vectorof real?)] [v2 (vectorof real?)]) boolean?]{
Like @racket[equal?] specialized to numeric vectors, but compares elements using @racket[=].
@examples[#:eval plot-eval
(equal? #(1 2) #(1 2))
(equal? #(1 2) #(1.0 2.0))
(v= #(1 2) #(1.0 2.0))]
}
@defproc[(vcross [v1 (vector/c real? real? real?)] [v2 (vector/c real? real? real?)])
(vector/c real? real? real?)]{
Returns the right-hand vector cross product of @racket[v1] and @racket[v2].
@examples[#:eval plot-eval
(vcross #(1 0 0) #(0 1 0))
(vcross #(0 1 0) #(1 0 0))
(vcross #(0 0 1) #(0 0 1))]
}
@defproc[(vcross2 [v1 (vector/c real? real?)] [v2 (vector/c real? real?)]) real?]{
Returns the signed area of the 2D parallelogram with sides @racket[v1] and @racket[v2].
Equivalent to @racket[(vector-ref (vcross (vector-append v1 #(0)) (vector-append v2 #(0))) 2)] but faster.
@examples[#:eval plot-eval
(vcross2 #(1 0) #(0 1))
(vcross2 #(0 1) #(1 0))]
}
@defproc[(vdot [v1 (vectorof real?)] [v2 (vectorof real?)]) real?]{
Returns the dot product of @racket[v1] and @racket[v2].
}
@defproc[(vmag^2 [v (vectorof real?)]) real?]{
Returns the squared magnitude of @racket[v]. Equivalent to @racket[(vdot v v)].
}
@defproc[(vmag [v (vectorof real?)]) real?]{
Returns the magnitude of @racket[v]. Equivalent to @racket[(sqrt (vmag^2 v))].
}
@defproc[(vnormalize [v (vectorof real?)]) (vectorof real?)]{
Returns a normal vector in the same direction as @racket[v]. If @racket[v] is a zero vector, returns @racket[v].
@examples[#:eval plot-eval
(vnormalize #(1 1 0))
(vnormalize #(1 1 1))
(vnormalize #(0 0 0.0))]
}
@defproc[(vcenter [vs (listof (vectorof real?))]) (vectorof real?)]{
Returns the center of the smallest bounding box that contains @racket[vs].
@examples[#:eval plot-eval
(vcenter '(#(1 1) #(2 2)))]
}
@defproc[(vrational? [v (vectorof real?)]) boolean?]{
Returns @racket[#t] if every element of @racket[v] is @racket[rational?].
@examples[#:eval plot-eval
(vrational? #(1 2))
(vrational? #(+inf.0 2))
(vrational? #(#f 1))]
}
@;----------------------------------------------------------------------------------------------------
@subsection[#:tag "math.intervals"]{Intervals and Interval Functions}
@defstruct[ivl ([min real?] [max real?])]{
Represents a closed interval.
An interval with two real-valued endpoints always contains the endpoints in order:
@interaction[#:eval plot-eval (ivl 0 1) (ivl 1 0)]
@;{
If either endpoint is @racket[+nan.0], both are, and the interval represents the empty interval:
@interaction[#:eval plot-eval (ivl +nan.0 0) (ivl 0 +nan.0)]
}
An interval can have infinite endpoints:
@interaction[#:eval plot-eval (ivl -inf.0 0) (ivl 0 +inf.0) (ivl -inf.0 +inf.0)]
Functions that return rectangle renderers, such as @racket[rectangles] and @racket[discrete-histogram3d], accept vectors of @racket[ivl]s as arguments.
The @racket[ivl] struct type is also provided by @racketmodname[plot] so users of such renderers do not have to require @racketmodname[plot/utils].
}
@defproc[(rational-ivl? [i any/c]) boolean?]{
Returns @racket[#t] if @racket[i] is an interval and each of its endpoints is @racket[rational?].
@examples[#:eval plot-eval
(map rational-ivl? (list (ivl -1 1) (ivl -inf.0 2) 'bob))]
}
@;{
@defthing[empty-ivl ivl?]{
The empty interval.
}
@defproc[(ivl-meet [i ivl?] ...) ivl?]{
Returns the intersection of the given intervals.
@examples[#:eval plot-eval
(ivl-meet)
(ivl-meet (ivl 0 1) (ivl 2 3))
(ivl-meet (ivl 0 2) (ivl 1 3))
(ivl-meet empty-ivl (ivl 0 1))]
}
@defproc[(ivl-join [i ivl?] ...) ivl?]{
Returns the smallest interval that contains all the points in the given intervals.
@examples[#:eval plot-eval
(ivl-join)
(ivl-join (ivl 0 1) (ivl 2 3))
(ivl-join (ivl 0 2) (ivl 1 3))
(ivl-join empty-ivl (ivl 0 1))]
Think of it as returning an interval union, but with any gaps filled.
}
@defproc[(ivl-center [i ivl?]) (or/c real? #f)]{
@examples[#:eval plot-eval
(ivl-center (ivl -1 1))
(ivl-center empty-ivl)
(ivl-center (ivl -inf.0 +inf.0))]
}
@defproc[(ivl-contains? [i ivl?] [x real?]) boolean?]{
@examples[#:eval plot-eval
(ivl-contains? (ivl -1 1) 0)
(ivl-contains? (ivl -1 1) 2)
(ivl-contains? (ivl -inf.0 +inf.0) 0)
(ivl-contains? empty-ivl 0)]
}
@defproc[(ivl-empty? [i ivl?]) boolean?]{
@examples[#:eval plot-eval
(ivl-empty? empty-ivl)
(ivl-empty? (ivl 0 0))]
}
@defproc[(ivl-length [i ivl?]) (or/c real? #f)]{
@examples[#:eval plot-eval
(ivl-length empty-ivl)
(ivl-length (ivl 0 0))
(ivl-length (ivl -1 1))
(ivl-length (ivl -inf.0 +inf.0))]
}
@defproc[(ivl-inexact->exact [i ivl?]) ivl?]
@defproc[(ivl-rational? [i ivl?]) boolean?]
@defproc[(ivl-singular? [i ivl?]) boolean?]
@defproc[(ivl-translate [i ivl?] [d real?]) ivl?]
@defproc[(ivl-zero-length? [i ivl?]) boolean?]
}
@defproc[(bounds->intervals [xs (listof real?)]) (listof ivl?)]{
Given a list of points, returns intervals between each pair.
Use this to construct inputs for @(racket rectangles) and @(racket rectangles3d).
@examples[#:eval plot-eval (bounds->intervals (linear-seq 0 1 5))]
}
@defproc[(clamp-real [x real?] [i ivl?]) real?]{
}
@;----------------------------------------------------------------------------------------------------
@;{
@subsection[#:tag "math.rectangles"]{Rectangles and Rectangle Functions}
@margin-note*{The @racket[rect-meet] and @racket[rect-join] functions define a @link["http://en.wikipedia.org/wiki/Lattice_%28order%29"]{pointed lattice} over rectangles.
This fact may seem esoteric, but it allows @(plot-name) to combine multiple renderers with different rectangular bounds in a way that is intuitive and mathematically sound.}
@defproc[(rect-meet [i (vectorof ivl?)] ...) (vectorof ivl?)]{
}
@defproc[(rect-join [i (vectorof ivl?)] ...) (vectorof ivl?)]{
}
@defproc[(empty-rect [n exact-nonnegative-integer?]) (vectorof ivl?)]
@defproc[(rect-area [r (vectorof ivl?)]) (or/c real? #f)]
@defproc[(rect-center [r (vectorof ivl?)]) (vectorof real?)]
@defproc[(rect-contains? [r (vectorof ivl?)] [v (vectorof real?)]) boolean?]
@defproc[(rect-empty? [r (vectorof ivl?)]) boolean?]
@defproc[(rect-inexact->exact [r (vectorof ivl?)]) (vectorof ivl?)]
@defproc[(rect-known? [r (vectorof ivl?)]) boolean?]
@defproc[(rect-rational? [r (vectorof ivl?)]) boolean?]
@defproc[(rect-singular? [r (vectorof ivl?)]) boolean?]
@defproc[(rect-translate [r (vectorof ivl?)] [v (vectorof real?)]) (vectorof ivl?)]
@defproc[(rect-zero-area? [r (vectorof ivl?)]) boolean?]
@defproc[(rational-rect? [r any/c]) boolean?]
@defproc[(bounding-rect [vs (listof (vectorof ivl?))]) (vectorof ivl?)]
}
@;====================================================================================================
@;{
@section{Marching Squares and Cubes}
@defproc[(heights->lines [xa real?] [xb real?] [ya real?] [yb real?]
[z real?] [z1 real?] [z2 real?] [z3 real?] [z4 real?])
(listof (list/c (vector/c real? real? real?)
(vector/c real? real? real?)))]
@defproc[(heights->polys [xa real?] [xb real?] [ya real?] [yb real?]
[za real?] [zb real?]
[z1 real?] [z2 real?] [z3 real?] [z4 real?])
(listof (listof (vector/c real? real? real?)))]
@defproc[(heights->cube-polys [xa real?] [xb real?] [ya real?] [yb real?] [za real?] [zb real?]
[d real?]
[d1 real?] [d2 real?] [d3 real?] [d4 real?]
[d5 real?] [d6 real?] [d7 real?] [d8 real?])
(listof (listof (vector/c real? real? real?)))]{
winding warning
}
}
@;====================================================================================================
@section{Dates and Times}
@defproc[(datetime->real [x (or/c plot-time? date? date*? sql-date? sql-time? sql-timestamp?)]) real?]{
Converts various date/time representations into UTC seconds, respecting time zone offsets.
For dates, the value returned is the number of seconds since @italic{a system-dependent UTC epoch}.
See @racket[date-ticks] for more information.
To plot a time series using dates pulled from an SQL database, simply set the relevant axis ticks (probably @racket[plot-x-ticks]) to @racket[date-ticks], and convert the dates to seconds using @racket[datetime->real] before passing them to @racket[lines].
To keep time zone offsets from influencing the plot, set them to @racket[0] first.
}
@defstruct[plot-time ([second (and/c (>=/c 0) (</c 60))]
[minute (integer-in 0 59)]
[hour (integer-in 0 23)]
[day exact-integer?])]{
A time representation that accounts for days, negative times (using negative days), and fractional seconds.
@(plot-name) (specifically @racket[time-ticks]) uses @racket[plot-time] internally to format times, but because renderer-producing functions require only real values,
user code should not need it. It is provided just in case.
}
@deftogether[(@defproc[(plot-time->seconds [t plot-time?]) real?]
@defproc[(seconds->plot-time [s real?]) plot-time?])]{
Convert @racket[plot-time]s to real seconds, and vice-versa.
@examples[#:eval plot-eval
(define (plot-time+ t1 t2)
(seconds->plot-time (+ (plot-time->seconds t1)
(plot-time->seconds t2))))
(plot-time+ (plot-time 32 0 12 1)
(plot-time 32 0 14 1))]
}
|