File: axis-transform.rkt

package info (click to toggle)
racket 7.2%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,432 kB
  • sloc: ansic: 258,980; pascal: 59,975; sh: 33,650; asm: 13,558; lisp: 7,124; makefile: 3,329; cpp: 2,889; exp: 499; python: 274; xml: 11
file content (189 lines) | stat: -rw-r--r-- 7,078 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#lang typed/racket/base

(require racket/match
         math/flonum
         "type-doc.rkt"
         "math.rkt")

(provide (all-defined-out))

(struct invertible-function ([f : (-> Real Real)]
                             [g : (-> Real Real)])
  #:transparent)

(:: invertible-compose (-> invertible-function invertible-function invertible-function))
(define (invertible-compose f1 f2)
  (match-let ([(invertible-function f1 g1)  f1]
              [(invertible-function f2 g2)  f2])
    (invertible-function (compose f1 f2) (compose g2 g1))))

(:: invertible-inverse (-> invertible-function invertible-function))
(define (invertible-inverse h)
  (match-define (invertible-function f g) h)
  (invertible-function g f))

(deftype Axis-Transform (-> Real Real invertible-function invertible-function))

(defthing id-transform Axis-Transform
  (λ (x-min x-max old-function) old-function))

(defthing id-function invertible-function (invertible-function (λ (x) x) (λ (x) x)))

(:: apply-axis-transform (-> Axis-Transform Real Real invertible-function))
(define (apply-axis-transform t x-min x-max)
  (t x-min x-max id-function))

(:: make-axis-transform (-> invertible-function Axis-Transform))
;; Turns any total, surjective, monotone real function and its inverse into an axis transform
(define (make-axis-transform fun)
  (match-define (invertible-function f g) fun)
  (λ (x-min x-max old-function)
    (define fx-min (f x-min))
    (define fx-scale (/ (- x-max x-min) (- (f x-max) fx-min)))
    (: new-f (-> Real Real))
    (: new-g (-> Real Real))
    (define (new-f x) (+ x-min (* (- (f x) fx-min) fx-scale)))
    (define (new-g y) (g (+ fx-min (/ (- y x-min) fx-scale))))
    (invertible-compose (invertible-function new-f new-g) old-function)))

;; ===================================================================================================
;; Axis transform combinators

(:: axis-transform-compose (-> Axis-Transform Axis-Transform Axis-Transform))
(define (axis-transform-compose t1 t2)
  (λ (x-min x-max old-function)
    (t1 x-min x-max (t2 x-min x-max old-function))))

(:: axis-transform-append (-> Axis-Transform Axis-Transform Real Axis-Transform))
(define (axis-transform-append t1 t2 mid)
  (λ (x-min x-max old-function)
    (match-define (invertible-function old-f old-g) old-function)
    (let ([mid  (old-f mid)])
      (cond [(mid . >= . x-max)  (t1 x-min x-max old-function)]
            [(mid . <= . x-min)  (t2 x-min x-max old-function)]
            [else
             (match-define (invertible-function f1 g1) (t1 x-min mid old-function))
             (match-define (invertible-function f2 g2) (t2 mid x-max old-function))
             ((make-axis-transform
               (invertible-function
                (λ (x) (cond [((old-f x) . < . mid)  (f1 x)]
                             [else  (f2 x)]))
                (λ (x) (cond [(x . < . mid)  (g1 x)]
                             [else  (g2 x)]))))
              x-min x-max id-function)]))))

(:: axis-transform-bound (-> Axis-Transform Real Real Axis-Transform))
(define (axis-transform-bound t a b)
  (axis-transform-append
   (axis-transform-append id-transform t a) id-transform b))

;; ===================================================================================================
;; Specific axis transforms

(: flnewton-invert (-> (-> Flonum Flonum)
                       (-> Flonum Flonum)
                       (-> Flonum Flonum)
                       Index
                       (-> Real Flonum)))
(define ((flnewton-invert f f-diff f-inv-guess n) y)
  (let ([y  (fl y)])
    (let loop ([x  (f-inv-guess y)] [n n])
      (let/ec return : Flonum
        (when (zero? n) (return x))
        
        (define dx (/ (- y (f x)) (f-diff x)))
        (when (zero? dx) (return x))
        
        (loop (fl- x dx) (sub1 n))))))

(: sine-diag (-> Real (-> Real Flonum)))
(define (sine-diag d)
  (let ([d  (fl d)])
    (λ (x) (let ([x  (fl x)])
             (+ x (* (/ 1.0 (* 4.0 d)) (flsin (* d x))))))))

(: sine-diag-diff (-> Real (-> Real Flonum)))
(define (sine-diag-diff d)
  (let ([d  (fl d)])
    (λ (x) (let ([x  (fl x)])
             (- (/ (flcos (* d x)) 4.0) 1.0)))))

(: sine-diag-inv (-> Real (-> Real Flonum)))
(define (sine-diag-inv d)
  (flnewton-invert (sine-diag d) (sine-diag-diff d) values 10))

(: cbrt (-> Real Flonum))
(define (cbrt x)
  (let ([x  (fl x)])
    (* (flsgn x) (flexpt (abs x) #i1/3))))

(: cube (-> Real Flonum))
(define (cube x)
  (let ([x  (fl x)])
    (* x x x)))

(: real-log (-> Real Flonum))
(define (real-log x)
  (fllog (fl x)))

(: real-exp (-> Real Flonum))
(define (real-exp x)
  (flexp (fl x)))

(defthing log-transform Axis-Transform
  (λ (x-min x-max old-function)
    (when ((fl x-min) . <= . 0)
      (raise-type-error 'log-transform "positive real" 0 x-min x-max))
    ((make-axis-transform (invertible-function real-log real-exp)) x-min x-max old-function)))

(defthing cbrt-transform Axis-Transform
  (λ (x-min x-max old-function)
    ((make-axis-transform (invertible-function cbrt cube)) x-min x-max old-function)))

(: hand-drawn-transform (-> Positive-Real Axis-Transform))
(define (hand-drawn-transform freq)
  (λ (x-min x-max old-function)
    (define d (/ freq (- x-max x-min)))
    ((make-axis-transform (invertible-function (sine-diag d) (sine-diag-inv d)))
     x-min x-max old-function)))

;; ===================================================================================================

(: stretch (-> Real Real Real (-> Real Real)))
(define (stretch a b s)
  (define d (- b a))
  (define ds (* d s))
  (λ (x)
    (cond [(x . < . a)  x]
          [(x . > . b)  (+ (- x d) ds)]
          [else         (+ a (* (- x a) s))])))

(: stretch-transform (-> Real Real Positive-Real Axis-Transform))
(define (stretch-transform a b scale)
  (when (a . > . b) (error 'stretch-transform "expected a <= b; given ~e and ~e" a b))
  (λ (x-min x-max old-function)
    (match-define (invertible-function old-f old-g) old-function)
    (let ([a  (old-f a)]
          [b  (old-f b)])
      (define f (stretch a b scale))
      (define g (stretch (f a) (f b) (/ 1 scale)))
      ((make-axis-transform (invertible-function f g)) x-min x-max old-function))))

(: collapse-transform (-> Real Real Axis-Transform))
(define (collapse-transform a b)
  (when (a . > . b) (error 'stretch-transform "expected a <= b; given ~e and ~e" a b))
  (λ (x-min x-max old-function)
    (match-define (invertible-function old-f old-g) old-function)
    (let ([a  (old-f a)]
          [b  (old-f b)])
      (define 1/2size (* 1/2 (- b a)))
      (define center (* 1/2 (+ a b)))
      (: f (-> Real Real))
      (: g (-> Real Real))
      (define (f x) (cond [(x . < . a)  (+ x 1/2size)]
                          [(x . > . b)  (- x 1/2size)]
                          [else  center]))
      (define (g x) (cond [(x . < . center)  (- x 1/2size)]
                          [(x . > . center)   (+ x 1/2size)]
                          [else  center]))
      ((make-axis-transform (invertible-function f g)) x-min x-max old-function))))