1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#lang racket/base
(require (for-syntax racket/base)
(for-syntax "private/count-bits-in-fixnum.rkt")
racket/private/vector-wraps
racket/match
racket/dict
racket/contract/base
racket/fixnum
racket/unsafe/ops
racket/serialize
"private/count-bits-in-fixnum.rkt")
(define bits-in-a-word 8)
(define bits-in-a-word-log2 3)
(define largest-word
(- (expt 2 bits-in-a-word) 1))
(define (word-index n)
(arithmetic-shift n (- bits-in-a-word-log2)))
(define (bit-index n)
(bitwise-and n (sub1 bits-in-a-word)))
(define (make-bit-vector size [fill #f])
(define-values (q r) (quotient/remainder size bits-in-a-word))
(define word-size (+ q (if (zero? r) 0 1)))
(define words (make-bytes word-size (if fill largest-word 0)))
(when (and fill (not (zero? r)))
(bytes-set! words q (- (expt 2 r) 1)))
(bit-vector words size))
(define bit-vector*
(let ([bit-vector
(lambda init-bits
(list->bit-vector init-bits))])
bit-vector))
(define not-given (gensym))
(define (bit-vector-ref bv n [default not-given])
(unless (exact-nonnegative-integer? n)
(raise-argument-error 'bit-vector-ref "exact-nonnegative-integer?" n))
(cond [(< n (bit-vector-size bv))
(unsafe-bit-vector-ref bv n)]
[else
(cond [(eq? default not-given)
(raise-range-error 'bit-vector-ref
"bit-vector"
"" n bv 0 (sub1 (bit-vector-size bv)))]
[(procedure? default)
(default)]
[else default])]))
(define (unsafe-bit-vector-ref bv n)
(define wi (word-index n))
(define bi (bit-index n))
(match bv
[(struct bit-vector (words size))
(define word (bytes-ref words wi))
(define bit (bitwise-bit-set? word bi))
bit]))
(define (bit-vector-iterate-first bv)
(if (zero? (bit-vector-size bv)) #f 0))
(define (bit-vector-iterate-next bv pos)
(if (>= (+ pos 1) (bit-vector-size bv))
#f
(+ pos 1)))
(define (bit-vector-iterate-key bv key)
key)
(define (bit-vector-iterate-value bv key)
(bit-vector-ref bv key))
(define (bit-vector-set! bv n b)
(define wi (word-index n))
(define bi (bit-index n))
(match bv
[(struct bit-vector (words size))
(define word (bytes-ref words wi))
(define bit (bitwise-bit-set? word bi))
(unless (eq? bit b)
(define new-word (bitwise-xor word (arithmetic-shift 1 bi)))
(bytes-set! words wi new-word))]))
(define (bit-vector-length bv)
(bit-vector-size bv))
(define bit-vector-copy*
(let ([bit-vector-copy
(case-lambda
[(bv)
(bit-vector (bytes-copy (bit-vector-words bv))
(bit-vector-size bv))]
[(bv start)
(bit-vector-copy bv start)]
[(bv start end)
(bit-vector-copy bv start end)])])
bit-vector-copy))
(define popcount-table
(let ()
(define-syntax (make-table stx)
(with-syntax ([(elt ...)
(for/list ([i (in-range 256)])
(fxpopcount i))])
;; Literal immutable vector allocated once (?)
#'(quote #(elt ...))))
(make-table)))
(define (bit-vector-popcount bv)
(for/sum ([b (in-bytes (bit-vector-words bv))])
#| (unsafe-fxpopcount* b 8) |#
(unsafe-vector-ref popcount-table b)))
(define (bit-vector->list bv)
(define len (bit-vector-size bv))
(let loop ([i 0])
(cond [(< i len)
(cons (unsafe-bit-vector-ref bv i)
(loop (add1 i)))]
[else null])))
(define (list->bit-vector init-bits)
(define len (length init-bits))
(define bv (make-bit-vector len))
(for ([i (in-range len)]
[b (in-list init-bits)])
(bit-vector-set! bv i b))
bv)
(define (bit-vector->string bv)
(let* ([l (bit-vector-size bv)]
[s (make-string l)])
(for ([i (in-range l)])
(string-set! s i (if (unsafe-bit-vector-ref bv i) #\1 #\0)))
s))
(define (string->bit-vector s)
(let* ([bv (make-bit-vector (string-length s) #f)])
(for ([i (in-range (string-length s))])
(when (eqv? (string-ref s i) #\1)
(bit-vector-set! bv i #t)))
bv))
(define-vector-wraps "bit-vector"
"boolean?" boolean?
bit-vector? bit-vector-length bit-vector-ref bit-vector-set! make-bit-vector
unsafe-bit-vector-ref bit-vector-set! bit-vector-length
in-bit-vector*
in-bit-vector
for/bit-vector
for*/bit-vector
bit-vector-copy
#f
check-bitvector)
;; A bit vector is represented as bytes.
(serializable-struct bit-vector (words size)
; words is the bytes of words
; size is the number of bits in bitvector
#:guard ;; needed because deserialization doesn't go through contracts
(lambda (words size _name)
(unless (bytes? words)
(raise-argument-error 'bit-vector "bytes?" words))
(unless (exact-nonnegative-integer? size)
(raise-argument-error 'bit-vector "exact-nonnegative-integer?" size))
(let-values ([(q r) (quotient/remainder size bits-in-a-word)])
(unless (and (= (bytes-length words) (+ q (if (zero? r) 0 1)))
;; make sure "unreachable" bits are unset
(or (zero? r) (< (bytes-ref words q) (expt 2 r))))
(error 'bit-vector "bit vector data contains wrong number of bits")))
(values words size))
#:property prop:dict/contract
(list (vector-immutable bit-vector-ref
bit-vector-set!
#f ;; set
#f ;; remove!
#f ;; remove
bit-vector-length
bit-vector-iterate-first
bit-vector-iterate-next
bit-vector-iterate-key
bit-vector-iterate-value)
(vector-immutable exact-nonnegative-integer?
boolean?
exact-nonnegative-integer?
#f #f #f))
#:methods gen:equal+hash
[(define (equal-proc x y recursive-equal?)
(let ([vx (bit-vector-words x)]
[vy (bit-vector-words y)]
[nx (bit-vector-size x)]
[ny (bit-vector-size y)])
(and (= nx ny)
(or (zero? nx) ;zero-length bit-vectors are equal
(let ([last-index (sub1 (bytes-length vx))])
(and
;; Check all but last byte.
;; These use all bits, therefore simple eq?.
(for/and ([index (in-range (sub1 last-index))])
(eq? (bytes-ref vx index)
(bytes-ref vy index)))
;; Check the used bits of the last byte.
(let ([used-bits (min 8 (remainder nx 256))])
(eq? (bitwise-bit-field (bytes-ref vx last-index)
0
used-bits)
(bitwise-bit-field (bytes-ref vy last-index)
0
used-bits)))))))))
(define (hash-code x hc)
(let ([v (bit-vector-words x)]
[n (bit-vector-size x)])
(bitwise-xor
(hc n)
(for/fold ([h 1]) ([i (in-range (bytes-length v))])
(bitwise-xor h (hc (bytes-ref v i)))))))
(define hash-proc hash-code)
(define hash2-proc hash-code)]
#:property prop:sequence in-bit-vector)
(provide/contract
[bit-vector?
(-> any/c any)]
[rename bit-vector* bit-vector
(->* () () #:rest (listof boolean?) bit-vector?)]
[make-bit-vector
(->* (exact-nonnegative-integer?) (boolean?) bit-vector?)]
[bit-vector-ref
(->* (bit-vector? exact-nonnegative-integer?) (any/c) any)]
[bit-vector-set!
(-> bit-vector? exact-nonnegative-integer? boolean? any)]
[bit-vector-length
(-> bit-vector? any)]
[bit-vector-popcount
(-> bit-vector? any)]
(rename bit-vector-copy*
bit-vector-copy
(->* [bit-vector?] [exact-nonnegative-integer? exact-nonnegative-integer?] bit-vector?))
[bit-vector->list
(-> bit-vector? (listof boolean?))]
[list->bit-vector
(-> (listof boolean?) bit-vector?)]
[bit-vector->string
(-> bit-vector? string?)]
[string->bit-vector
(-> (and/c string? #rx"^[01]*$") bit-vector?)])
(provide in-bit-vector for/bit-vector for*/bit-vector)
|