File: opt.rkt

package info (click to toggle)
racket 7.9%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 178,684 kB
  • sloc: ansic: 282,112; lisp: 234,887; pascal: 70,954; sh: 27,112; asm: 16,268; makefile: 4,613; cpp: 2,715; ada: 1,681; javascript: 1,244; cs: 879; exp: 499; csh: 422; python: 274; xml: 106; perl: 104
file content (456 lines) | stat: -rw-r--r-- 20,439 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#lang racket/base
(require racket/syntax
         racket/pretty
         syntax/parse/private/residual-ct ;; keep abs. path
         "minimatch.rkt"
         "rep-patterns.rkt"
         "kws.rkt")
(provide (struct-out pk1)
         (rename-out [optimize-matrix0 optimize-matrix]))

;; ----

;; A Matrix is a (listof PK) where each PK has same number of columns
;; A PK is one of
;;  - (pk1 (listof pattern) expr) -- a simple row in a parsing matrix
;;  - (pk/same pattern Matrix)    -- a submatrix with a common first column factored out
;;  - (pk/pair Matrix)            -- a submatrix with pair patterns in the first column unfolded
;;  - (pk/and Matrix)             -- a submatrix with and patterns in the first column unfolded
(struct pk1 (patterns k) #:prefab)
(struct pk/same (pattern inner) #:prefab)
(struct pk/pair (inner) #:prefab)
(struct pk/and (inner) #:prefab)

(define (pk-columns pk)
  (match pk
    [(pk1 patterns k) (length patterns)]
    [(pk/same p inner) (add1 (pk-columns inner))]
    [(pk/pair inner) (sub1 (pk-columns inner))]
    [(pk/and inner) (sub1 (pk-columns inner))]))

;; Can factor pattern P given clauses like
;;   [ P P1 ... | e1]     [  | [P1 ... | e1] ]
;;   [ P  :     |  :]  => [P | [ :     |  :] ]
;;   [ P PN ... | eN]     [  | [PN ... | eN] ]
;; if P cannot cut and P succeeds at most once (otherwise may reorder backtracking)

;; Can unfold pair patterns as follows:
;;   [ (P11 . P12) P1 ... | e1 ]                [ P11 P12 P1 ... | e1 ]
;;   [      :       :     |  : ] => check pair, [      :         |  : ]
;;   [ (PN1 . PN2) PN ... | eN ]                [ PN1 PN2 PN ... | eN ]

;; Can unfold ~and patterns similarly; ~and patterns can hide
;; factoring opportunities.

;; ----

;; FIXME: New (unimplemented) optimization ideas

;; (1) When collecting pair patterns, can reorder rows with pair vs never-pair
;; first columns:
;;   [ (P11 . P12) P1 ... | e1 ]      [ (P11 . P12) P1 ... | e1 ]
;;   [     P21     P2 ... | e2 ]  =>  [ (P31 . P32) P3 ... | e3 ]
;;   [ (P31 . P32) P3 ... | e3 ]      [     P21     P2 ... | e2 ]
;; provided P21 does not cut and cannot match a pair term.
;; Likewise for literals and never-symbol patterns.

;; (2) If a row has a non-rejecting pattern (ie, always matches) in its first
;; column, then the rows above it do not need to produce failure information
;; *for their first columns*. For example, in the following matrix
;;   [ P11 P1 ... | e1 ]
;;   [ P21 P2 ... | e2 ]
;;   [ P31 P3 ... | e3 ]
;; Suppose that P21 always matches (eg _) and assume P{1,3}1 are cut-free. Then
;; P{1,3}1 do not need to produce failure info (set es = #f, etc). Here's why.
;; If control reaches row 2, then since P21 cannot fail, if it fails the
;; progress must be greater than P11 or P31. FIXME: Must also check neither P11
;; nor P31 use ~post (or call stxclass that uses ~post, etc)!


;; ----

(define (optimize-matrix0 rows)
  (define now (current-inexact-milliseconds))
  (when (and (> (length rows) 1))
    (log-syntax-parse-debug "OPT matrix (~s rows)\n~a" (length rows)
                            (pretty-format (matrix->sexpr rows) #:mode 'print)))
  (define result (optimize-matrix rows))
  (define then (current-inexact-milliseconds))
  (when (and (> (length rows) 1))
    (cond [(= (length result) (length rows))
           (log-syntax-parse-debug "OPT FAILED (~s ms)" (floor (- then now)))]
          [else
           (log-syntax-parse-debug "OPT ==> (~s ms)\n~a" (floor (- then now))
                                   (pretty-format (matrix->sexpr result) #:mode 'print))]))
  result)

;; optimize-matrix : (listof pk1) -> Matrix
(define (optimize-matrix rows)
  (cond [(null? rows) null]
        [(null? (cdr rows)) rows] ;; no opportunities for 1 row
        [(null? (pk1-patterns (car rows))) rows]
        [else
         ;; first unfold and-patterns
         (let-values ([(col1 col2)
                       (for/lists (col1 col2) ([row (in-list rows)])
                         (unfold-and (car (pk1-patterns row)) null))])
           (cond [(ormap pair? col2)
                  (list
                   (pk/and
                    (optimize-matrix*
                     (for/list ([row (in-list rows)]
                                [col1 (in-list col1)]
                                [col2 (in-list col2)])
                       (pk1 (list* col1
                                   (make-and-pattern col2)
                                   (cdr (pk1-patterns row)))
                            (pk1-k row))))))]
                 [else (optimize-matrix* rows)]))]))

;; optimize-matrix* : (listof pk1) -> Matrix
;; The matrix is nonempty, and first column has no unfoldable pat:and.
;; Split into submatrixes (sequences of rows) starting with similar patterns,
;; handle according to similarity, then recursively optimize submatrixes.
(define (optimize-matrix* rows)
  (define row1 (car rows))
  (define pat1 (car (pk1-patterns row1)))
  (define k1 (pk1-k row1))
  ;; Now accumulate rows starting with patterns like pat1
  (define-values (like? combine) (pattern->partitioner pat1))
  (let loop ([rows (cdr rows)] [rrows (list row1)])
    (cond [(null? rows)
           (cons (combine (reverse rrows)) null)]
          [else
           (define row1 (car rows))
           (define pat1 (car (pk1-patterns row1)))
           (cond [(like? pat1)
                  (loop (cdr rows) (cons row1 rrows))]
                 [else
                  (cons (combine (reverse rrows))
                        (optimize-matrix* rows))])])))

;; pattern->partitioner : pattern -> (values (pattern -> boolean) ((listof pk1) -> PK))
(define (pattern->partitioner pat1)
  (match pat1
    [(pat:pair head tail)
     (values (lambda (p) (pat:pair? p))
             (lambda (rows)
               (log-syntax-parse-debug "-- got ~s pair rows like ~e" (length rows) (pattern->sexpr pat1))
               (cond [(> (length rows) 1)
                      (pk/pair (optimize-matrix
                                (for/list ([row (in-list rows)])
                                  (let* ([patterns (pk1-patterns row)]
                                         [pat1 (car patterns)])
                                    (pk1 (list* (pat:pair-head pat1)
                                                (pat:pair-tail pat1)
                                                (cdr patterns))
                                         (pk1-k row))))))]
                     [else (car rows)])))]
    [(? pattern-factorable?)
     (values (lambda (pat2) (pattern-equal? pat1 pat2))
             (lambda (rows)
               (log-syntax-parse-debug "-- got ~s factorable like ~e" (length rows) (pattern->sexpr pat1))
               (cond [(> (length rows) 1)
                      (pk/same pat1
                               (optimize-matrix
                                (for/list ([row (in-list rows)])
                                  (pk1 (cdr (pk1-patterns row)) (pk1-k row)))))]
                     [else (car rows)])))]
    [_
     (values (lambda (pat2) #f)
             (lambda (rows)
               ;; (length rows) = 1
               (car rows)))]))

;; unfold-and : pattern (listof pattern) -> (values pattern (listof pattern))
(define (unfold-and p onto)
  (match p
    [(pat:and subpatterns)
     ;; pat:and is worth unfolding if first subpattern is not pat:action
     ;; if first subpattern is also pat:and, keep unfolding
     (let* ([first-sub (car subpatterns)]
            [rest-subs (cdr subpatterns)])
       (cond [(not (pat:action? first-sub))
              (unfold-and first-sub (*append rest-subs onto))]
             [else (values p onto)]))]
    [_ (values p onto)]))

;; pattern-factorable? : *Pattern -> Boolean
(define (pattern-factorable? p) (not (pattern-unfactorable? p)))

;; pattern-unfactorable? : *Pattern -> Boolean
(define (pattern-unfactorable? p)
  ;; Cannot factor out p if
  ;; - if p can succeed multiple times (factoring changes success order)
  ;; - if p can cut (factoring changes which choice points are discarded (too few))
  ;; Note: presence of sub-expressions handled by pattern-equal?.
  (define (for-pattern p recur)
    (match p
      [(pat:var/p _ _ _ _ _ (scopts _ commit? _ _)) (not commit?)]
      [(pat:action _act _pat) #t]
      [(pat:dots heads tail)
       ;; Conservative approximation for common case: one head pattern
       ;; In general, check if heads don't overlap, don't overlap with tail.
       (or (> (length heads) 1)
           (not (equal? tail (pat:datum '())))
           (recur))]
      [(pat:or _ patterns _) #t]
      [(pat:not pattern) #t]
      [(pat:commit pattern) #f]
      [(? pat:reflect?) #t]
      [(hpat:var/p _ _ _ _ _ (scopts _ commit? _ _)) (not commit?)]
      [(hpat:commit inner) #f]
      [(ehpat _ head repc _)
       (or (not (equal? repc #f))
           (recur))]
      [_ (recur)]))
  (pattern-ormap p for-pattern))

(define (subpatterns-equal? as bs)
  (and (= (length as) (length bs))
       (for/and ([a (in-list as)]
                 [b (in-list bs)])
         (pattern-equal? a b))))

(define (pattern-equal? a b)
  (define result
    (cond [(and (pat:any? a) (pat:any? b)) #t]
          [(and (pat:svar? a) (pat:svar? b))
           (bound-identifier=? (pat:svar-name a) (pat:svar-name b))]
          [(and (pat:var/p? a) (pat:var/p? b))
           (and (free-id/f-equal? (pat:var/p-parser a) (pat:var/p-parser b))
                (bound-id/f-equal? (pat:var/p-name a) (pat:var/p-name b))
                (equal-iattrs? (pat:var/p-nested-attrs a) (pat:var/p-nested-attrs b))
                (equal-argu? (pat:var/p-argu a) (pat:var/p-argu b))
                (expr-equal? (pat:var/p-role a) (pat:var/p-role b)))]
          [(and (pat:integrated? a) (pat:integrated? b))
           (and (bound-id/f-equal? (pat:integrated-name a) (pat:integrated-name b))
                (free-identifier=? (pat:integrated-predicate a)
                                   (pat:integrated-predicate b))
                (expr-equal? (pat:integrated-role a) (pat:integrated-role b)))]
          [(and (pat:literal? a) (pat:literal? b))
           ;; literals are hard to compare, so compare gensyms attached to
           ;; literal ids (see rep.rkt) instead
           (let ([ka (syntax-property (pat:literal-id a) 'literal)]
                 [kb (syntax-property (pat:literal-id b) 'literal)])
             (and ka kb (eq? ka kb)))]
          [(and (pat:datum? a) (pat:datum? b))
           (equal? (pat:datum-datum a)
                   (pat:datum-datum b))]
          [(and (pat:head? a) (pat:head? b))
           (and (pattern-equal? (pat:head-head a) (pat:head-head b))
                (pattern-equal? (pat:head-tail a) (pat:head-tail b)))]
          [(and (pat:dots? a) (pat:dots? b))
           (and (subpatterns-equal? (pat:dots-heads a) (pat:dots-heads b))
                (pattern-equal? (pat:dots-tail a) (pat:dots-tail b)))]
          [(and (pat:and? a) (pat:and? b))
           (subpatterns-equal? (pat:and-patterns a) (pat:and-patterns b))]
          [(and (pat:or? a) (pat:or? b))
           (subpatterns-equal? (pat:or-patterns a) (pat:or-patterns b))]
          [(and (pat:not? a) (pat:not? b))
           (pattern-equal? (pat:not-pattern a) (pat:not-pattern b))]
          [(and (pat:pair? a) (pat:pair? b))
           (and (pattern-equal? (pat:pair-head a) (pat:pair-head b))
                (pattern-equal? (pat:pair-tail a) (pat:pair-tail b)))]
          [(and (pat:vector? a) (pat:vector? b))
           (pattern-equal? (pat:vector-pattern a) (pat:vector-pattern b))]
          [(and (pat:box? a) (pat:box? b))
           (pattern-equal? (pat:box-pattern a) (pat:box-pattern b))]
          [(and (pat:pstruct? a) (pat:pstruct? b))
           (and (equal? (pat:pstruct-key a)
                        (pat:pstruct-key b))
                (pattern-equal? (pat:pstruct-pattern a)
                                (pat:pstruct-pattern b)))]
          [(and (pat:describe? a) (pat:describe? b)) #f] ;; can't compare desc exprs
          [(and (pat:delimit? a) (pat:delimit? b))
           (pattern-equal? (pat:delimit-pattern a) (pat:delimit-pattern b))]
          [(and (pat:commit? a) (pat:commit? b))
           (pattern-equal? (pat:commit-pattern a) (pat:commit-pattern b))]
          [(and (pat:reflect? a) (pat:reflect? b)) #f] ;; FIXME: ?
          [(and (pat:ord? a) (pat:ord? b))
           (and (pattern-equal? (pat:ord-pattern a) (pat:ord-pattern b))
                (equal? (pat:ord-group a) (pat:ord-group b))
                (equal? (pat:ord-index a) (pat:ord-index b)))]
          [(and (pat:post? a) (pat:post? b))
           (pattern-equal? (pat:post-pattern a) (pat:post-pattern b))]
          [(and (pat:seq-end? a) (pat:seq-end? b)) #t]
          ;; ---
          [(and (hpat:single? a) (hpat:single? b))
           (pattern-equal? (hpat:single-pattern a) (hpat:single-pattern b))]
          [(and (hpat:var/p? a) (hpat:var/p? b))
           (and (free-id/f-equal? (hpat:var/p-parser a) (hpat:var/p-parser b))
                (bound-id/f-equal? (hpat:var/p-name a) (hpat:var/p-name b))
                (equal-iattrs? (hpat:var/p-nested-attrs a) (hpat:var/p-nested-attrs b))
                (equal-argu? (hpat:var/p-argu a) (hpat:var/p-argu b))
                (expr-equal? (hpat:var/p-role a) (hpat:var/p-role b)))]
          [(and (hpat:seq? a) (hpat:seq? b))
           (pattern-equal? (hpat:seq-inner a) (hpat:seq-inner b))]
          ;; ---
          [(and (ehpat? a) (ehpat? b))
           (and (equal? (ehpat-repc a) #f)
                (equal? (ehpat-repc b) #f)
                (pattern-equal? (ehpat-head a) (ehpat-head b)))]
          ;; FIXME: more?
          [else #f]))
  (when (and (log-level? syntax-parse-logger 'debug)
             (eq? result #f)
             (equal? (syntax->datum #`#,a) (syntax->datum #`#,b)))
    (log-syntax-parse-debug "** pattern-equal? failed on ~e" a))
  result)

(define (equal-iattrs? as bs)
  (and (= (length as) (length bs))
       ;; assumes attrs in same order
       (for/and ([aa (in-list as)]
                 [ba (in-list bs)])
         (and (bound-identifier=? (attr-name aa) (attr-name ba))
              (equal? (attr-depth aa) (attr-depth ba))
              (equal? (attr-syntax? aa) (attr-syntax? ba))))))

(define (expr-equal? a b)
  ;; Expression equality is undecidable in general. Especially difficult for unexpanded
  ;; code, but it would be very difficult to set up correct env for local-expand because of
  ;; attr binding rules. So, do *very* conservative approx: simple variables and literals.
  ;; FIXME: any other common cases?
  (cond [(not (and (syntax? a) (syntax? b)))
         (equal? a b)]
        [(and (identifier? a) (identifier? b))
         ;; note: "vars" might be identifier macros (unsafe to consider equal),
         ;; so check var has no compile-time binding
         (and (free-identifier=? a b)
              (let/ec k (syntax-local-value a (lambda () (k #t))) #f))]
        [(syntax-case (list a b) (quote)
           [((quote ad) (quote bd))
            (cons (syntax->datum #'ad) (syntax->datum #'bd))]
           [_ #f])
         => (lambda (ad+bd)
              (equal? (car ad+bd) (cdr ad+bd)))]
        [else
         ;; approx: equal? only if both simple data (bool, string, etc), no inner stx
         (let ([ad (syntax-e a)]
               [bd (syntax-e b)])
           (and (equal? ad bd)
                (free-identifier=? (datum->syntax a '#%datum) #'#%datum)
                (free-identifier=? (datum->syntax b '#%datum) #'#%datum)))]))

(define (equal-argu? a b)
  (define (unwrap-arguments x)
    (match x
      [(arguments pargs kws kwargs)
       (values pargs kws kwargs)]))
  (define (list-equal? as bs inner-equal?)
    (and (= (length as) (length bs))
         (andmap inner-equal? as bs)))
  (let-values ([(apargs akws akwargs) (unwrap-arguments a)]
               [(bpargs bkws bkwargs) (unwrap-arguments b)])
    (and (list-equal? apargs bpargs expr-equal?)
         (equal? akws bkws)
         (list-equal? akwargs bkwargs expr-equal?))))

(define (free-id/f-equal? a b)
  (or (and (eq? a #f)
           (eq? b #f))
      (and (identifier? a)
           (identifier? b)
           (free-identifier=? a b))))

(define (bound-id/f-equal? a b)
  (or (and (eq? a #f)
           (eq? b #f))
      (and (identifier? a)
           (identifier? b)
           (bound-identifier=? a b))))

(define (make-and-pattern subs)
  (cond [(null? subs) (pat:any)] ;; shouldn't happen
        [(null? (cdr subs)) (car subs)]
        [else (pat:and subs)]))

(define (*append a b) (if (null? b) a (append a b)))

(define (stx-e x) (if (syntax? x) (syntax-e x) x))

;; ----

(define (matrix->sexpr rows)
  (cond [(null? rows) ;; shouldn't happen
         '(FAIL)]
        [(null? (cdr rows))
         (pk->sexpr (car rows))]
        [else
         (cons 'TRY (map pk->sexpr rows))]))
(define (pk->sexpr pk)
  (match pk
    [(pk1 pats k)
     (cons 'MATCH (map pattern->sexpr pats))]
    [(pk/same pat inner)
     (list 'SAME (pattern->sexpr pat) (matrix->sexpr inner))]
    [(pk/pair inner)
     (list 'PAIR (matrix->sexpr inner))]
    [(pk/and inner)
     (list 'AND (matrix->sexpr inner))]))
(define (pattern->sexpr p)
  (match p
    [(pat:any) '_]
    [(pat:integrated name pred desc _)
     (format-symbol "~a:~a" (or name '_) desc)]
    [(pat:svar name)
     (syntax-e name)]
    [(pat:var/p name parser _ _ _ _)
     (cond [(and parser (regexp-match #rx"^parse-(.*)$" (symbol->string (syntax-e parser))))
            => (lambda (m)
                 (format-symbol "~a:~a" (or name '_) (cadr m)))]
           [else
            (if name (syntax-e name) '_)])]
    [(? pat:literal?) `(syntax ,(syntax->datum (pat:literal-id p)))]
    [(pat:datum datum)
     (cond [(or (symbol? datum) (pair? datum))
            `(quote ,datum)]
           [else datum])]
    [(pat:action action (pat:any)) (pattern->sexpr action)]
    [(pat:action action inner) (list '~AAND (pattern->sexpr action) (pattern->sexpr inner))]
    [(pat:and patterns) (cons '~and (map pattern->sexpr patterns))]
    [(pat:or _ patterns _) (cons '~or (map pattern->sexpr patterns))]
    [(pat:not pattern) (list '~not (pattern->sexpr pattern))]
    [(pat:pair head tail)
     (cons (pattern->sexpr head) (pattern->sexpr tail))]
    [(pat:head head tail)
     (cons (pattern->sexpr head) (pattern->sexpr tail))]
    [(pat:dots (list eh) tail)
     (list* (pattern->sexpr eh) '... (pattern->sexpr tail))]
    [(pat:dots ehs tail)
     (list* (cons '~alt (map pattern->sexpr ehs)) '... (pattern->sexpr tail))]
    [(pat:describe sp _ _ _) (list '~describe (pattern->sexpr sp))]
    [(pat:delimit sp) (list '~delimit-cut (pattern->sexpr sp))]
    [(pat:commit sp) (list '~commit (pattern->sexpr sp))]
    [(pat:ord pattern _ _) (list '~ord (pattern->sexpr pattern))]
    [(pat:post sp) (list '~post (pattern->sexpr sp))]
    [(pat:seq-end) '()]
    [(action:cut) '~!]
    [(action:fail cnd msg) (list '~fail)]
    [(action:bind attr expr) (list '~bind)]
    [(action:and as) (cons '~and (map pattern->sexpr as))]
    [(action:parse sp expr) (list '~parse (pattern->sexpr sp))]
    [(action:do stmts) (list '~do)]
    [(action:undo stmts) (list '~undo)]
    [(action:ord ap _ _) (list '~ord (pattern->sexpr ap))]
    [(action:post ap) (list '~post (pattern->sexpr ap))]
    [(hpat:single sp) (pattern->sexpr sp)]
    [(hpat:var/p name parser _ _ _ _)
     (cond [(and parser (regexp-match #rx"^parser-(.*)$" (symbol->string (syntax-e parser))))
            => (lambda (m) (format-symbol "~a:~a" (or name '_) (cadr m)))]
           [else (if name (syntax-e name) '_)])]
    [(hpat:seq lp) (cons '~seq (pattern->sexpr lp))]
    [(hpat:action ap hp) (list '~AAND (pattern->sexpr ap) (pattern->sexpr hp))]
    [(hpat:and hp sp) (list '~and (pattern->sexpr hp) (pattern->sexpr sp))]
    [(hpat:or _ hps _) (cons '~or (map pattern->sexpr hps))]
    [(hpat:describe hp _ _ _) (list '~describe (pattern->sexpr hp))]
    [(hpat:delimit hp) (list '~delimit-cut (pattern->sexpr hp))]
    [(hpat:commit hp) (list '~commit (pattern->sexpr hp))]
    [(hpat:ord hp _ _) (list '~ord (pattern->sexpr hp))]
    [(hpat:post hp) (list '~post (pattern->sexpr hp))]
    [(hpat:peek hp) (list '~peek (pattern->sexpr hp))]
    [(hpat:peek-not hp) (list '~peek-not (pattern->sexpr hp))]
    [(ehpat _as hpat repc _cn)
     (if (eq? repc #f) (pattern->sexpr hpat) (list '~REPC (pattern->sexpr hpat)))]
    [_ '<Pattern>]))