1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
#lang racket/base
(require racket/list
racket/format
syntax/stx
racket/struct
syntax/srcloc
"minimatch.rkt"
syntax/parse/private/residual
"kws.rkt")
(provide call-current-failure-handler
current-failure-handler
invert-failure
maximal-failures
invert-ps
ps->stx+index)
#|
TODO: given (expect:thing _ D _ R) and (expect:thing _ D _ #f),
simplify to (expect:thing _ D _ #f)
thus, "expected D" rather than "expected D or D for R" (?)
|#
#|
Note: there is a cyclic dependence between residual.rkt and this module,
broken by a lazy-require of this module into residual.rkt
|#
(define (call-current-failure-handler ctx fs)
(call-with-values (lambda () ((current-failure-handler) ctx fs))
(lambda vals
(error 'current-failure-handler
"current-failure-handler: did not escape, produced ~e"
(case (length vals)
((1) (car vals))
(else (cons 'values vals)))))))
(define (default-failure-handler ctx fs)
(handle-failureset ctx fs))
(define current-failure-handler
(make-parameter default-failure-handler))
;; ============================================================
;; Processing failure sets
#|
We use progress to select the maximal failures and determine the syntax
they're complaining about. After that, we no longer care about progress.
Old versions of syntax-parse (through 6.4) grouped failures into
progress-equivalence-classes and generated reports by class, but only showed
one report. New syntax-parse just mixes all maximal failures together and
deals with the fact that they might not be talking about the same terms.
|#
;; handle-failureset : (list Symbol/#f Syntax) FailureSet -> escapes
(define (handle-failureset ctx fs)
(define inverted-fs (map invert-failure (reverse (flatten fs))))
(define maximal-classes (maximal-failures inverted-fs))
(define ess (map failure-expectstack (append* maximal-classes)))
(define report (report/sync-shared ess))
;; Hack: alternative to new (primitive) phase-crossing exn type is to store
;; extra information in exn continuation marks. Currently for debugging only.
(with-continuation-mark 'syntax-parse-error
(hasheq 'raw-failures fs
'maximal maximal-classes)
(error/report ctx report)))
;; An RFailure is (failure IPS RExpectList)
;; invert-failure : Failure -> RFailure
(define (invert-failure f)
(match f
[(failure ps es)
(failure (invert-ps ps) (invert-expectstack es (ps->stx+index ps)))]))
;; A Report is (report String (Listof String) Syntax/#f Syntax/#f)
(define-struct report (message context stx within-stx) #:prefab)
;; Sometimes the point where an error occurred does not correspond to
;; a syntax object within the original term being matched. We use one
;; or two syntax objects to identify where an error occurred:
;; - the "at" term is the specific point of error, coerced to a syntax
;; object if it isn't already
;; - the "within" term is the closest enclosing original syntax object,
;; dropped (#f) if same as "at" term
;; Examples (AT is pre-coercion):
;; TERM PATTERN => AT WITHIN
;; #'(1) (a:id) #'1 -- ;; the happy case
;; #'(1) (a b) () #'(1) ;; tail of syntax list, too short
;; #'(1 . ()) (a b) #'() -- ;; tail is already syntax
;; #'#(1) #(a b) () #'#(1) ;; "tail" of syntax vector
;; #'#s(X 1) #s(X a b) () #'#s(X 1) ;; "tail" of syntax prefab
;; #'(1 2) (a) (#'2) #'(1 2) ;; tail of syntax list, too long
;; ============================================================
;; Progress
;; maximal-failures : (listof InvFailure) -> (listof (listof InvFailure))
(define (maximal-failures fs)
(maximal/progress
(for/list ([f (in-list fs)])
(cons (failure-progress f) f))))
#|
Progress ordering
-----------------
Nearly a lexicographic generalization of partial order on frames.
(( CAR < CDR ) || stx ) < POST )
- stx incomparable except with self
But ORD prefixes are sorted out (and discarded) before comparison with
rest of progress. Like post, ord comparable only w/in same group:
- (ord g n1) < (ord g n2) if n1 < n2
- (ord g1 n1) || (ord g2 n2) when g1 != g2
Progress equality
-----------------
If ps1 = ps2 then both must "blame" the same term,
ie (ps->stx+index ps1) = (ps->stx+index ps2).
|#
;; An Inverted PS (IPS) is a PS inverted for easy comparison.
;; An IPS may not contain any 'opaque frames.
;; invert-ps : PS -> IPS
;; Reverse and truncate at earliest 'opaque frame.
(define (invert-ps ps)
(reverse (ps-truncate-opaque ps)))
;; ps-truncate-opaque : PS -> PS
;; Returns maximal tail with no 'opaque frame.
(define (ps-truncate-opaque ps)
(let loop ([ps ps] [acc ps])
;; acc is the biggest tail that has not been seen to contain 'opaque
(cond [(null? ps) acc]
[(eq? (car ps) 'opaque)
(loop (cdr ps) (cdr ps))]
[else (loop (cdr ps) acc)])))
;; maximal/progress : (listof (cons IPS A)) -> (listof (listof A))
;; Eliminates As with non-maximal progress, then groups As into
;; equivalence classes according to progress.
(define (maximal/progress items)
(cond [(null? items)
null]
[(null? (cdr items))
(list (list (cdr (car items))))]
[else
(let loop ([items items] [non-ORD-items null])
(define-values (ORD non-ORD)
(partition (lambda (item) (ord? (item-first-prf item))) items))
(cond [(pair? ORD)
(loop (maximal-prf1/ord ORD) (append non-ORD non-ORD-items))]
[else
(maximal/prf1 (append non-ORD non-ORD-items))]))]))
;; maximal/prf1 : (Listof (Cons IPS A) -> (Listof (Listof A))
(define (maximal/prf1 items)
(define-values (POST rest1)
(partition (lambda (item) (eq? 'post (item-first-prf item))) items))
(cond [(pair? POST)
(maximal/progress (map item-pop-prf POST))]
[else
(define-values (STX rest2)
(partition (lambda (item) (syntax? (item-first-prf item))) rest1))
(define-values (CDR rest3)
(partition (lambda (item) (exact-integer? (item-first-prf item))) rest2))
(define-values (CAR rest4)
(partition (lambda (item) (eq? 'car (item-first-prf item))) rest3))
(define-values (NULL rest5)
(partition (lambda (item) (eq? '#f (item-first-prf item))) rest4))
(unless (null? rest5)
(error 'syntax-parse "INTERNAL ERROR: bad progress: ~e\n" rest5))
(cond [(pair? CDR)
(define leastCDR (apply min (map item-first-prf CDR)))
(append
(maximal/stx STX)
(maximal/progress (map (lambda (item) (item-pop-prf-ncdrs item leastCDR)) CDR)))]
[(pair? CAR)
(append
(maximal/stx STX)
(maximal/progress (map item-pop-prf CAR)))]
[(pair? STX)
(maximal/stx STX)]
[(pair? NULL)
(list (map cdr NULL))]
[else null])]))
;; maximal-prf1/ord : (NEListof (Cons IPS A)) -> (NEListof (Cons IPS A))
;; PRE: each item has ORD first frame
;; Keep only maximal by first frame and pop first frame from each item.
(define (maximal-prf1/ord items)
;; groups : (NEListof (NEListof (cons A IPS)))
(define groups (group-by (lambda (item) (ord-group (item-first-prf item))) items))
(append*
(for/list ([group (in-list groups)])
(define group* (filter-max group (lambda (item) (ord-index (item-first-prf item)))))
(map item-pop-prf group*))))
;; maximal/stx : (NEListof (cons IPS A)) -> (NEListof (NEListof A))
;; PRE: Each IPS starts with a stx frame.
(define (maximal/stx items)
;; groups : (Listof (Listof (cons IPS A)))
(define groups (group-by item-first-prf items))
(append*
(for/list ([group (in-list groups)])
(maximal/progress (map item-pop-prf group)))))
;; filter-max : (Listof X) (X -> Nat) -> (Listof X)
(define (filter-max xs x->nat)
(let loop ([xs xs] [nmax -inf.0] [r-keep null])
(cond [(null? xs)
(reverse r-keep)]
[else
(define n0 (x->nat (car xs)))
(cond [(> n0 nmax)
(loop (cdr xs) n0 (list (car xs)))]
[(= n0 nmax)
(loop (cdr xs) nmax (cons (car xs) r-keep))]
[else
(loop (cdr xs) nmax r-keep)])])))
;; item-first-prf : (cons IPS A) -> prframe/#f
(define (item-first-prf item)
(define ips (car item))
(and (pair? ips) (car ips)))
;; item-split-ord : (cons IPS A) -> (cons IPS (cons IPS A))
(define (item-split-ord item)
(define ips (car item))
(define a (cdr item))
(define-values (rest-ips r-ord)
(let loop ([ips ips] [r-ord null])
(cond [(and (pair? ips) (ord? (car ips)))
(loop (cdr ips) (cons (car ips) r-ord))]
[else (values ips r-ord)])))
(list* (reverse r-ord) rest-ips a))
;; item-pop-prf : (cons IPS A) -> (cons IPS A)
(define (item-pop-prf item)
(let ([ips (car item)]
[a (cdr item)])
(cons (cdr ips) a)))
;; item-pop-prf-ncdrs : (cons IPS A) -> (cons IPS A)
;; Assumes first frame is nat > ncdrs.
(define (item-pop-prf-ncdrs item ncdrs)
(let ([ips (car item)]
[a (cdr item)])
(cond [(= (car ips) ncdrs) (cons (cdr ips) a)]
[else (cons (cons (- (car ips) ncdrs) (cdr ips)) a)])))
;; StxIdx = (cons Syntax Nat), the "within" term and offset (#cdrs) of "at" subterm
;; ps->stx+index : Progress -> StxIdx
;; Gets the innermost stx that should have a real srcloc, and the offset
;; (number of cdrs) within that where the progress ends.
(define (ps->stx+index ps)
(define (interp ps top?)
;; if top?: first frame is 'car, must return Syntax, don't unwrap vector/struct
(match ps
[(cons (? syntax? stx) _) stx]
[(cons 'car parent)
(let* ([x (interp parent #f)]
[d (if (syntax? x) (syntax-e x) x)])
(cond [(pair? d) (car d)]
[(vector? d)
(if top? x (vector->list d))]
[(box? d) (unbox d)]
[(prefab-struct-key d)
(if top? x (struct->list d))]
[else (error 'ps->stx+index "INTERNAL ERROR: unexpected: ~e" d)]))]
[(cons (? exact-positive-integer? n) parent)
(for/fold ([stx (interp parent #f)]) ([i (in-range n)])
(stx-cdr stx))]
[(cons (? ord?) parent)
(interp parent top?)]
[(cons 'post parent)
(interp parent top?)]))
(let loop ([ps (ps-truncate-opaque ps)])
(match ps
[(cons (? syntax? stx) _)
(cons stx 0)]
[(cons 'car _)
(cons (interp ps #t) 0)]
[(cons (? exact-positive-integer? n) parent)
(match (loop parent)
[(cons stx m) (cons stx (+ m n))])]
[(cons (? ord?) parent)
(loop parent)]
[(cons 'post parent)
(loop parent)])))
;; stx+index->at+within : StxIdx -> (values Syntax Syntax/#f)
(define (stx+index->at+within stx+index)
(define within-stx (car stx+index))
(define index (cdr stx+index))
(cond [(zero? index)
(values within-stx #f)]
[else
(define d (syntax-e within-stx))
(define stx*
(cond [(vector? d) (vector->list d)]
[(prefab-struct-key d) (struct->list d)]
[else within-stx]))
(define at-stx*
(for/fold ([x stx*]) ([_i (in-range index)]) (stx-cdr x)))
(values (datum->syntax within-stx at-stx* within-stx)
within-stx)]))
;; ============================================================
;; Expectation simplification
;; normalize-expectstack : ExpectStack StxIdx -> ExpectList
;; Converts to list, converts expect:thing term rep, and truncates
;; expectstack after opaque (ie, transparent=#f) frames.
(define (normalize-expectstack es stx+index [truncate-opaque? #t])
(reverse (invert-expectstack es stx+index truncate-opaque?)))
;; invert-expectstack : ExpectStack StxIdx -> RExpectList
;; Converts to reversed list, converts expect:thing term rep,
;; and truncates expectstack after opaque (ie, transparent=#f) frames.
(define (invert-expectstack es stx+index [truncate-opaque? #t])
(let loop ([es es] [acc null])
(match es
['#f acc]
['#t acc]
[(expect:thing ps desc tr? role rest-es)
(let* (;; discard frames so far if opaque
[acc (if (and truncate-opaque? (not tr?)) null acc)]
;; discard this frame if desc is #f
[acc (if desc (cons (expect:thing #f desc tr? role (ps->stx+index ps)) acc) acc)])
(loop rest-es acc))]
[(expect:message message rest-es)
(loop rest-es (cons (expect:message message stx+index) acc))]
[(expect:atom atom rest-es)
(loop rest-es (cons (expect:atom atom stx+index) acc))]
[(expect:literal literal rest-es)
(loop rest-es (cons (expect:literal literal stx+index) acc))]
[(expect:proper-pair first-desc rest-es)
(loop rest-es (cons (expect:proper-pair first-desc stx+index) acc))])))
;; expect->stxidx : Expect -> StxIdx
(define (expect->stxidx e)
(cond [(expect:thing? e) (expect:thing-next e)]
[(expect:message? e) (expect:message-next e)]
[(expect:atom? e) (expect:atom-next e)]
[(expect:literal? e) (expect:literal-next e)]
[(expect:proper-pair? e) (expect:proper-pair-next e)]
[(expect:disj? e) (expect:disj-next e)]))
#| Simplification
A list of ExpectLists represents a tree, with shared tails meaning shared
branches of the tree. We need a "reasonable" way to simplify it to a list to
show to the user. Here we develop "reasonable" by example. (It would be nice,
of course, to also have some way of exploring the full failure trees.)
Notation: [A B X] means an ExpectList with class/description A at root and X
at leaf. If the term sequences differ, write [t1:A ...] etc.
Options:
(o) = "old behavior (through 6.4)"
(f) = "first divergence"
(s) = "sync on shared"
Case 1: [A B X], [A B Y]
This is nearly the ideal situation: report as
expected X or Y, while parsing B, while parsing A
Case 2: [A X], [A]
For example, matching #'1 as (~describe A (x:id ...)) yields [A], [A '()],
but we don't want to see "expected ()".
So simplify to [A]---that is, drop X.
But there are other cases that are more problematic.
Case 3: [t1:A t2:B t3:X], [t1:A t2:C t3:Y]
Could report as:
(o) expected X for t3, while parsing t2 as B, while parsing t1 as A (also other errors)
(f) expected B or C for t2, while parsing t1 as A
(x) expected X or Y for t3, while parsing t2 as B or C, while parsing t1 as A
(o) is not good
(b) loses the most specific error information
(x) implies spurious contexts (eg, X while parsing C)
I like (b) best for this situation, but ...
Case 4: [t1:A t2:B t4:X], [t1:A t3:C t4:Y]
Could report as:
(f') expected B or C, while parsing t1 as A
(s) expected X or Y for t4, while ..., while parsing t1 as A
(f) expected A for t1
(f') is problematic, since terms are different!
(s) okay, but nothing good to put in that ... space
(f) loses a lot of information
Case 5: [t1:A t2:B t3:X], [t1:A t4:C t5:Y]
Only feasible choice (no other sync points):
(f,s) expected A for t1
Case 6: [t1:A _ t2:B t3:X], [t1:A _ t2:C t3:Y]
Could report as:
(s') expected X or Y for t3, while parsing t2 as B or C, while ..., while parsing t1 as A
(s) expected X or Y for t3, while ..., while parsing t1 as A
(s') again implies spurious contexts, bad
(s) okay
Case 7: [_ t2:B t3:C _], [_ t3:C t2:B _]
Same frames show up in different orders. (Can this really happen? Probably,
with very weird uses of ~parse.)
--
This suggests the following new algorithm based on (s):
- Step 1: emit an intermediate "unified" expectstack (extended with "..." markers)
- make a list (in order) of frames shared by all expectstacks
- emit those frames with "..." markers if (sometimes) unshared stuff between
- continue processing with the tails after the last shared frame:
- find the last term shared by all expectstacks (if any)
- find the last frame for that term for each expectstack
- combine in expect:disj and emit
- Step 2:
- remove trailing and collapse adjacent "..." markers
|#
;; report* : (NEListof RExpectList) ((NEListof (NEListof RExpectList)) -> ExpectList)
;; -> Report
(define (report* ess handle-divergence)
(define es ;; ExpectList
(let loop ([ess ess] [acc null])
(cond [(ormap null? ess) acc]
[else
(define groups (group-by car ess))
(cond [(singleton? groups)
(define group (car groups))
(define frame (car (car group)))
(loop (map cdr group) (cons frame acc))]
[else ;; found point of divergence
(append (handle-divergence groups) acc)])])))
(define stx+index (if (pair? es) (expect->stxidx (car es)) (cons #f 0)))
(report/expectstack (clean-up es) stx+index))
;; clean-up : ExpectList -> ExpectList
;; Remove leading and collapse adjacent '... markers
(define (clean-up es)
(if (and (pair? es) (eq? (car es) '...))
(clean-up (cdr es))
(let loop ([es es])
(cond [(null? es) null]
[(eq? (car es) '...)
(cons '... (clean-up es))]
[else (cons (car es) (loop (cdr es)))]))))
;; --
;; report/first-divergence : (NEListof RExpectList) -> Report
;; Generate a single report, using frames from root to first divergence.
(define (report/first-divergence ess)
(report* ess handle-divergence/first))
;; handle-divergence/first : (NEListof (NEListof RExpectList)) -> ExpectList
(define (handle-divergence/first ess-groups)
(define representative-ess (map car ess-groups))
(define first-frames (map car representative-ess))
;; Do all of the first frames talk about the same term?
(cond [(all-equal? (map expect->stxidx first-frames))
(list (expect:disj first-frames #f))]
[else null]))
;; --
;; report/sync-shared : (NEListof RExpectList) -> Report
;; Generate a single report, syncing on shared frames (and later, terms).
(define (report/sync-shared ess)
(report* ess handle-divergence/sync-shared))
;; handle-divergence/sync-shared : (NEListof (NEListof RExpectList)) -> ExpectList
(define (handle-divergence/sync-shared ess-groups)
(define ess (append* ess-groups)) ;; (NEListof RExpectList)
(define shared-frames (get-shared ess values))
;; rsegs : (NEListof (Rev2n+1-Listof RExpectList))
(define rsegs (for/list ([es (in-list ess)]) (rsplit es values shared-frames)))
(define final-seg (map car rsegs)) ;; (NEListof RExpectList), no common frames
(define ctx-rsegs (transpose (map cdr rsegs))) ;; (Rev2n-Listof (NEListof RExpectList))
(append (hd/sync-shared/final final-seg)
(hd/sync-shared/ctx ctx-rsegs)))
;; hd/sync-shared/final : (NEListof RExpectList) -> ExpectList
;; PRE: ess has no shared frames, but may have shared terms.
(define (hd/sync-shared/final ess0)
(define ess (remove-extensions ess0))
(define shared-terms (get-shared ess expect->stxidx))
(cond [(null? shared-terms) null]
[else
;; split at the last shared term
(define rsegs ;; (NEListof (3-Listof RExpectList))
(for/list ([es (in-list ess)])
(rsplit es expect->stxidx (list (last shared-terms)))))
;; only care about the got segment and pre, not post
(define last-term-ess ;; (NEListof RExpectList)
(map cadr rsegs))
(define pre-term-ess ;; (NEListof RExpectList)
(map caddr rsegs))
;; last is most specific
(append
(list (expect:disj (remove-duplicates (reverse (map last last-term-ess)))
(last shared-terms)))
(if (ormap pair? pre-term-ess) '(...) '()))]))
;; hd/sync-shared/ctx : (Rev2n-Listof (NEListof RExpectList)) -> ExpectList
;; In [gotN preN ... got1 pre1] order, where 1 is root-most, N is leaf-most.
;; We want leaf-most-first, so just process naturally.
(define (hd/sync-shared/ctx rsegs)
(let loop ([rsegs rsegs])
(cond [(null? rsegs) null]
[(null? (cdr rsegs)) (error 'syntax-parse "INTERNAL ERROR: bad segments")]
[else (append
;; shared frame: possible for duplicate ctx frames, but unlikely
(let ([ess (car rsegs)]) (list (car (car ess))))
;; inter frames:
(let ([ess (cadr rsegs)]) (if (ormap pair? ess) '(...) '()))
;; recur
(loop (cddr rsegs)))])))
;; transpose : (Listof (Listof X)) -> (Listof (Listof X))
(define (transpose xss)
(cond [(ormap null? xss) null]
[else (cons (map car xss) (transpose (map cdr xss)))]))
;; get-shared : (Listof (Listof X)) (X -> Y) -> (Listof Y)
;; Return a list of Ys s.t. occur in order in (map of) each xs in xss.
(define (get-shared xss get-y)
(cond [(null? xss) null]
[else
(define yhs ;; (Listof (Hash Y => Nat))
(for/list ([xs (in-list xss)])
(for/hash ([x (in-list xs)] [i (in-naturals 1)])
(values (get-y x) i))))
(remove-duplicates
(let loop ([xs (car xss)] [last (for/list ([xs (in-list xss)]) 0)])
;; last is list of indexes of last accepted y; only accept next if occurs
;; after last in every sequence (see Case 7 above)
(cond [(null? xs) null]
[else
(define y (get-y (car xs)))
(define curr (for/list ([yh (in-list yhs)]) (hash-ref yh y -1)))
(cond [(andmap > curr last)
(cons y (loop (cdr xs) curr))]
[else (loop (cdr xs) last)])])))]))
;; rsplit : (Listof X) (X -> Y) (Listof Y) -> (Listof (Listof X))
;; Given [y1 ... yN], splits xs into [rest gotN preN ... got1 pre1].
;; Thus the result has 2N+1 elements. The sublists are in original order.
(define (rsplit xs get-y ys)
(define (loop xs ys segsacc)
(cond [(null? ys) (cons xs segsacc)]
[else (pre-loop xs ys segsacc null)]))
(define (pre-loop xs ys segsacc preacc)
(cond [(and (pair? xs) (equal? (get-y (car xs)) (car ys)))
(got-loop (cdr xs) ys segsacc preacc (list (car xs)))]
[else
(pre-loop (cdr xs) ys segsacc (cons (car xs) preacc))]))
(define (got-loop xs ys segsacc preacc gotacc)
(cond [(and (pair? xs) (equal? (get-y (car xs)) (car ys)))
(got-loop (cdr xs) ys segsacc preacc (cons (car xs) gotacc))]
[else
(loop xs (cdr ys) (list* (reverse gotacc) (reverse preacc) segsacc))]))
(loop xs ys null))
;; singleton? : list -> boolean
(define (singleton? x) (and (pair? x) (null? (cdr x))))
;; remove-extensions : (Listof (Listof X)) -> (Listof (Listof X))
;; Remove any element that is an extension of another.
(define (remove-extensions xss)
(cond [(null? xss) null]
[else
(let loop ([xss xss])
(cond [(singleton? xss) xss]
[(ormap null? xss) (list null)]
[else
(define groups (group-by car xss))
(append*
(for/list ([group (in-list groups)])
(define group* (loop (map cdr group)))
(map (lambda (x) (cons (caar group) x)) group*)))]))]))
;; all-equal? : (Listof Any) -> Boolean
(define (all-equal? xs) (for/and ([x (in-list xs)]) (equal? x (car xs))))
;; ============================================================
;; Reporting
;; report/expectstack : ExpectList StxIdx -> Report
(define (report/expectstack es stx+index)
(define frame-expect (and (pair? es) (car es)))
(define context-frames (if (pair? es) (cdr es) null))
(define context (append* (map context-prose-for-expect context-frames)))
(cond [(not frame-expect)
(report "bad syntax" context #f #f)]
[else
(define-values (frame-stx within-stx) (stx+index->at+within stx+index))
(cond [(and (match frame-expect [(expect:atom '() _) #t] [_ #f])
(stx-pair? frame-stx))
(report "unexpected term" context (stx-car frame-stx) #f)]
[(expect:disj? frame-expect)
(report (prose-for-expects (expect:disj-expects frame-expect))
context frame-stx within-stx)]
[else
(report (prose-for-expects (list frame-expect))
context frame-stx within-stx)])]))
;; prose-for-expects : (listof Expect) -> string
(define (prose-for-expects expects)
(define msgs (filter expect:message? expects))
(define things (filter expect:thing? expects))
(define literal (filter expect:literal? expects))
(define atom/symbol
(filter (lambda (e) (and (expect:atom? e) (symbol? (expect:atom-atom e)))) expects))
(define atom/nonsym
(filter (lambda (e) (and (expect:atom? e) (not (symbol? (expect:atom-atom e))))) expects))
(define proper-pairs (filter expect:proper-pair? expects))
(join-sep
(append (map prose-for-expect (append msgs things))
(prose-for-expects/literals literal "identifiers")
(prose-for-expects/literals atom/symbol "literal symbols")
(prose-for-expects/literals atom/nonsym "literals")
(prose-for-expects/pairs proper-pairs))
";" "or"))
(define (prose-for-expects/literals expects whats)
(cond [(null? expects) null]
[(singleton? expects) (map prose-for-expect expects)]
[else
(define (prose e)
(match e
[(expect:atom (? symbol? atom) _)
(format "`~s'" atom)]
[(expect:atom atom _)
(format "~s" atom)]
[(expect:literal literal _)
(format "`~s'" (syntax-e literal))]))
(list (string-append "expected one of these " whats ": "
(join-sep (map prose expects) "," "or")))]))
(define (prose-for-expects/pairs expects)
(if (pair? expects) (list (prose-for-proper-pair-expects expects)) null))
;; prose-for-expect : Expect -> string
(define (prose-for-expect e)
(match e
[(expect:thing _ description transparent? role _)
(if role
(format "expected ~a for ~a" description role)
(format "expected ~a" description))]
[(expect:atom (? symbol? atom) _)
(format "expected the literal symbol `~s'" atom)]
[(expect:atom atom _)
(format "expected the literal ~s" atom)]
[(expect:literal literal _)
(format "expected the identifier `~s'" (syntax-e literal))]
[(expect:message message _)
message]
[(expect:proper-pair '#f _)
"expected more terms"]))
;; prose-for-proper-pair-expects : (listof expect:proper-pair) -> string
(define (prose-for-proper-pair-expects es)
(define descs (remove-duplicates (map expect:proper-pair-first-desc es)))
(cond [(for/or ([desc descs]) (equal? desc #f))
;; FIXME: better way to indicate unknown ???
"expected more terms"]
[else
(format "expected more terms starting with ~a"
(join-sep (map prose-for-first-desc descs)
"," "or"))]))
;; prose-for-first-desc : FirstDesc -> string
(define (prose-for-first-desc desc)
(match desc
[(? string?) desc]
[(list 'any) "any term"] ;; FIXME: maybe should cancel out other descs ???
[(list 'literal id) (format "the identifier `~s'" id)]
[(list 'datum (? symbol? s)) (format "the literal symbol `~s'" s)]
[(list 'datum d) (format "the literal ~s" d)]))
;; context-prose-for-expect : (U '... expect:thing) -> (listof string)
(define (context-prose-for-expect e)
(match e
['...
(list "while parsing different things...")]
[(expect:thing '#f description transparent? role stx+index)
(let-values ([(stx _within-stx) (stx+index->at+within stx+index)])
(cons (~a "while parsing " description
(if role (~a " for " role) ""))
(if (error-print-source-location)
(list (~a " term: "
(~s (syntax->datum stx)
#:limit-marker "..."
#:max-width 50))
(~a " location: "
(or (source-location->string stx) "not available")))
null)))]))
;; ============================================================
;; Raise exception
(define (error/report ctx report)
(let* ([message (report-message report)]
[context (report-context report)]
[stx (cadr ctx)]
[who (or (car ctx) (infer-who stx))]
[sub-stx (report-stx report)]
[within-stx (report-within-stx report)]
[message
(format "~a: ~a~a~a~a~a"
who message
(format-if "at" (stx-if-loc sub-stx))
(format-if "within" (stx-if-loc within-stx))
(format-if "in" (stx-if-loc stx))
(if (null? context)
""
(apply string-append
"\n parsing context: "
(for/list ([c (in-list context)])
(format "\n ~a" c)))))]
[message
(if (error-print-source-location)
(let ([source-stx (or stx sub-stx within-stx)])
(string-append (source-location->prefix source-stx) message))
message)])
(raise
(exn:fail:syntax message (current-continuation-marks)
(map syntax-taint
(cond [within-stx (list within-stx)]
[sub-stx (list sub-stx)]
[stx (list stx)]
[else null]))))))
(define (format-if prefix val)
(if val
(format "\n ~a: ~a" prefix val)
""))
(define (stx-if-loc stx)
(and (syntax? stx)
(error-print-source-location)
(format "~.s" (syntax->datum stx))))
(define (infer-who stx)
(let* ([maybe-id (if (stx-pair? stx) (stx-car stx) stx)])
(if (identifier? maybe-id) (syntax-e maybe-id) '?)))
(define (comma-list items)
(join-sep items "," "or"))
(define (improper-stx->list stx)
(syntax-case stx ()
[(a . b) (cons #'a (improper-stx->list #'b))]
[() null]
[rest (list #'rest)]))
;; ============================================================
;; Debugging
(provide failureset->sexpr
failure->sexpr
expectstack->sexpr
expect->sexpr)
(define (failureset->sexpr fs)
(let ([fs (flatten fs)])
(case (length fs)
((1) (failure->sexpr (car fs)))
(else `(union ,@(map failure->sexpr fs))))))
(define (failure->sexpr f)
(match f
[(failure progress expectstack)
`(failure ,(progress->sexpr progress)
#:expected ,(expectstack->sexpr expectstack))]))
(define (expectstack->sexpr es)
(map expect->sexpr es))
(define (expect->sexpr e) e)
(define (progress->sexpr ps)
(for/list ([pf (in-list ps)])
(match pf
[(? syntax? stx) 'stx]
[_ pf])))
|