1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
#lang scribble/manual
@(require scribble/eval
(for-label data/integer-set
racket/contract
(except-in racket/base
foldr)))
@(define (racket-tech pre)
(tech #:doc '(lib "scribblings/reference/reference.scrbl") pre))
@title[#:tag "integer-set"]{Integer Sets}
@(define the-eval (make-base-eval))
@(the-eval '(require data/integer-set))
@defmodule[data/integer-set]
This library provides functions for
working with finite sets of integers. This module is designed for
sets that are compactly represented as groups of intervals, even when
their cardinality is large. For example, the set of integers from
@math{-1000000} to @math{1000000} except for @math{0}, can be represented as
@math{{[-1000000, -1], [1, 1000000]}}. This data structure would not be
a good choice for the set of all odd integers between @math{0} and
@math{1000000}, which would be @math{{[1, 1], [3, 3], ... [999999,
999999]}}.
In addition to the @defterm{integer set} abstract type, a
@defterm{well-formed set} is a list of pairs of exact integers, where
each pair represents a closed range of integers, and the entire set is
the union of the ranges. The ranges must be disjoint and increasing.
Further, adjacent ranges must have at least one integer between them.
For example: @racket['((-1 . 2) (4 . 10))] is a well-formed-set as is
@racket['((1 . 1) (3 . 3))], but @racket['((1 . 5) (6 . 7))],
@racket['((1 . 5) (-3 . -1))], @racket['((5 . 1))], and @racket['((1
. 5) (3 . 6))] are not.
An integer set implements the @racket-tech{stream} and
@racket-tech{sequence} generic interfaces.
@examples[#:eval the-eval
(for/list ([i (make-integer-set '((2 . 3)
(5 . 6)
(10 . 15)))])
i)]
@defproc[(make-integer-set [wfs well-formed-set?]) integer-set?]{
Creates an integer set from a well-formed set.}
@defproc[(integer-set-contents [s integer-set?]) well-formed-set?]{
Produces a well-formed set from an integer set.}
@defproc[(set-integer-set-contents! [s integer-set?][wfs well-formed-set?]) void?]{
Mutates an integer set.}
@defproc[(integer-set? [v any/c]) boolean?]{
Returns @racket[#t] if @racket[v] is an integer set, @racket[#f]
otherwise.}
@defproc[(well-formed-set? [v any/c]) boolean?]{
Recognizes @racket[(listof (cons/c exact-integer? exact-integer?))],
where the result of @racket[(flatten v)] is sorted by
@racket[<=], the elements of the pairs in the list
are distinct (and thus strictly increasing), and the
second element in a pair is at least one less than the
first element of the subsequent pair.
@examples[#:eval the-eval
(well-formed-set? '((-1 . 2) (4 . 10)))
(well-formed-set? '((1 . 1) (3 . 3)))
(well-formed-set? '((1 . 5) (6 . 7)))
(well-formed-set? '((1 . 5) (-3 . -1)))
(well-formed-set? '((5 . 1)))
(well-formed-set? '((1 . 5) (3 . 6)))]
}
@defproc*[([(make-range) integer-set?]
[(make-range [elem exact-integer?]) integer-set?]
[(make-range [start exact-integer?]
[end exact-integer?]) integer-set?])]{
Produces, respectively, an empty integer set, an integer set
containing only @racket[elem], or an integer set containing the
integers from @racket[start] to @racket[end] inclusive, where
@racket[(start . <= . end)].}
@defproc[(intersect [x integer-set?][y integer-set?]) integer-set?]{
Returns the intersection of the given sets.}
@defproc[(subtract [x integer-set?][y integer-set?]) integer-set?]{
Returns the difference of the given sets (i.e., elements in @racket[x]
that are not in @racket[y]).}
@defproc[(union [x integer-set?][y integer-set?]) integer-set?]{
Returns the union of the given sets.}
@defproc[(split [x integer-set?][y integer-set?])
(values integer-set? integer-set? integer-set?)]{
Produces three values: the first is the intersection of @racket[x] and
@racket[y], the second is the difference @racket[x] remove @racket[y],
and the third is the difference @racket[y] remove @racket[x].}
@defproc[(complement [s integer-set?]
[start exact-integer?]
[end exact-integer?]) integer-set?]{
Returns a set containing the elements between @racket[start] to
@racket[end] inclusive that are not in @racket[s], where
@racket[(start-k . <= . end-k)].}
@defproc[(symmetric-difference [x integer-set?][y integer-set?]) integer-set?]{
Returns an integer set containing every member of @racket[x]
and @racket[y] that is not in both sets.}
@defproc[(member? [k exact-integer?][s integer-set?]) boolean?]{
Returns @racket[#t] if @racket[k] is in @racket[s], @racket[#f]
otherwise.}
@defproc[(get-integer [set integer-set?]) (or/c exact-integer? #f)]{
Returns a member of @racket[set], or @racket[#f] if @racket[set] is empty.}
@defproc[(foldr [proc (exact-integer? any/c . -> . any/c)]
[base-v any/c]
[s integer-set?])
any/c]{
Applies @racket[proc] to each member of @racket[s] in ascending order,
where the first argument to @racket[proc] is the set member, and the
second argument is the fold result starting with @racket[base-v]. For
example, @racket[(foldr cons null s)] returns a list of all the
integers in @racket[s], sorted in increasing order.}
@defproc[(partition [s (listof integer-set?)]) (listof integer-set?)]{
Returns the coarsest refinement of the sets in @racket[s] such that
the sets in the result list are pairwise disjoint. For example,
partitioning the sets that represent @racket['((1 . 2) (5 . 10))] and
@racket['((2 . 2) (6 . 6) (12 . 12))] produces the a list containing
the sets for @racket['((1 . 1) (5 . 5) (7 . 10))] @racket['((2 . 2) (6
. 6))], and @racket['((12 . 12))].}
@defproc[(count [s integer-set?]) exact-nonnegative-integer?]{
Returns the number of integers in the given integer set.}
@defproc[(subset? [x integer-set?][y integer-set?]) boolean?]{
Returns true if every integer in @racket[x] is also in
@racket[y], otherwise @racket[#f].}
@close-eval[the-eval]
|