1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/*
* @LANG: c++
*
* Test works with split code gen.
*/
#include "cppscan1.h"
%%{
machine Scanner;
access fsm->;
action pass { fsm->pass(fc); }
action buf { fsm->buf(fc); }
action emit_slit { fsm->token( TK_Slit ); }
action emit_dlit { fsm->token( TK_Dlit ); }
action emit_id { fsm->token( TK_Id ); }
action emit_integer_decimal { fsm->token( TK_IntegerDecimal ); }
action emit_integer_octal { fsm->token( TK_IntegerOctal ); }
action emit_integer_hex { fsm->token( TK_IntegerHex ); }
action emit_float { fsm->token( TK_Float ); }
action emit_symbol { fsm->token( fsm->tokBuf.data[0] ); }
action tokst { fsm->tokStart = fsm->col; }
# Single and double literals.
slit = ( 'L'? ( "'" ( [^'\\\n] | /\\./ )* "'" ) $buf ) >tokst %emit_slit;
dlit = ( 'L'? ( '"' ( [^"\\\n] | /\\./ )* '"' ) $buf ) >tokst %emit_dlit;
# Identifiers
id = ( [a-zA-Z_] [a-zA-Z0-9_]* ) >tokst $buf %emit_id;
# Floating literals.
fract_const = digit* '.' digit+ | digit+ '.';
exponent = [eE] [+\-]? digit+;
float_suffix = [flFL];
float =
( fract_const exponent? float_suffix? |
digit+ exponent float_suffix? ) >tokst $buf %emit_float;
# Integer decimal. Leading part buffered by float.
integer_decimal = ( ( '0' | [1-9] [0-9]* ) [ulUL]{0,3} $buf ) %emit_integer_decimal;
# Integer octal. Leading part buffered by float.
integer_octal = ( '0' [0-9]+ [ulUL]{0,2} $buf ) %emit_integer_octal;
# Integer hex. Leading 0 buffered by float.
integer_hex = ( '0' ( 'x' [0-9a-fA-F]+ [ulUL]{0,2} ) $buf ) %emit_integer_hex;
# Only buffer the second item, first buffered by symbol. */
namesep = '::' @buf %{fsm->token( TK_NameSep );};
deqs = '==' @buf %{fsm->token( TK_EqualsEquals );};
neqs = '!=' @buf %{fsm->token( TK_NotEquals );};
and_and = '&&' @buf %{fsm->token( TK_AndAnd );};
or_or = '||' @buf %{fsm->token( TK_OrOr );};
mult_assign = '*=' @buf %{fsm->token( TK_MultAssign );};
percent_assign = '%=' @buf %{fsm->token( TK_PercentAssign );};
plus_assign = '+=' @buf %{fsm->token( TK_PlusAssign );};
minus_assign = '-=' @buf %{fsm->token( TK_MinusAssign );};
amp_assign = '&=' @buf %{fsm->token( TK_AmpAssign );};
caret_assign = '^=' @buf %{fsm->token( TK_CaretAssign );};
bar_assign = '|=' @buf %{fsm->token( TK_BarAssign );};
plus_plus = '++' @buf %{fsm->token( TK_PlusPlus );};
minus_minus = '--' @buf %{fsm->token( TK_MinusMinus );};
arrow = '->' @buf %{fsm->token( TK_Arrow );};
arrow_star = '->*' @buf %{fsm->token( TK_ArrowStar );};
dot_star = '.*' @buf %{fsm->token( TK_DotStar );};
# Buffer both items. *
div_assign = '/=' @{fsm->buf('/');fsm->buf(fc);} %{fsm->token( TK_DivAssign );};
# Double dot is sent as two dots.
dot_dot = '..' %{fsm->token('.'); fsm->buf('.'); fsm->token('.');};
# Three char compounds, first item already buffered. */
dot_dot_dot = '...' %{fsm->buf('.'); fsm->buf('.'); fsm->token( TK_DotDotDot );};
# All compunds
compound = namesep | deqs | neqs | and_and | or_or | mult_assign |
div_assign | percent_assign | plus_assign | minus_assign |
amp_assign | caret_assign | bar_assign | plus_plus | minus_minus |
arrow | arrow_star | dot_star | dot_dot | dot_dot_dot;
# Single char symbols.
symbol =
( punct - [./_"'] ) >tokst $buf %emit_symbol |
# Do not immediately buffer slash, may be start of comment.
'/' >tokst %{ fsm->buf('/'); fsm->token( '/' ); } |
# Dot covered by float.
'.' %emit_symbol;
# Comments and whitespace.
commc = '/*' @{fsm->pass('/'); fsm->pass('*');} ( any* $0 '*/' @1 ) $pass;
commcc = '//' @{fsm->pass('/'); fsm->pass('/');} ( any* $0 '\n' @1 ) $pass;
whitespace = ( any - ( 0 | 33..126 ) )+ $pass;
action onEOFChar {
/* On EOF char, write out the non token buffer. */
fsm->nonTokBuf.append(0);
cout << fsm->nonTokBuf.data;
fsm->nonTokBuf.clear();
}
# Using 0 as eof. If seeingAs a result all null characters get ignored.
EOF = 0 @onEOFChar;
# All outside code tokens.
tokens = (
id | slit | dlit | float | integer_decimal |
integer_octal | integer_hex | compound | symbol );
nontok = ( commc | commcc | whitespace | EOF );
position = (
'\n' @{ fsm->line += 1; fsm->col = 1; } |
[^\n] @{ fsm->col += 1; } )*;
main := ( ( tokens | nontok )** ) & position;
}%%
%% write data;
void Scanner::init( )
{
Scanner *fsm = this;
/* A count of the number of characters in
* a token. Used for % sequences. */
count = 0;
line = 1;
col = 1;
%% write init;
}
int Scanner::execute( const char *data, int len )
{
Scanner *fsm = this;
const char *p = data;
const char *pe = data + len;
const char *eof = pe;
%% write exec;
if ( cs == Scanner_error )
return -1;
if ( cs >= Scanner_first_final )
return 1;
return 0;
}
int Scanner::finish( )
{
if ( cs == Scanner_error )
return -1;
if ( cs >= Scanner_first_final )
return 1;
return 0;
}
void Scanner::token( int id )
{
/* Leader. */
if ( nonTokBuf.length > 0 ) {
nonTokBuf.append(0);
cout << nonTokBuf.data;
nonTokBuf.clear();
}
/* Token data. */
tokBuf.append(0);
cout << '<' << id << '>' << tokBuf.data;
tokBuf.clear();
}
void Buffer::empty()
{
if ( data != 0 ) {
free( data );
data = 0;
length = 0;
allocated = 0;
}
}
void Buffer::upAllocate( int len )
{
if ( data == 0 )
data = (char*) malloc( len );
else
data = (char*) realloc( data, len );
allocated = len;
}
void test( const char *buf )
{
Scanner scanner(cout);
scanner.init();
scanner.execute( buf, strlen(buf) );
/* The last token is ignored (because there is no next token). Send
* trailing null to force the last token into whitespace. */
char eof = 0;
if ( scanner.execute( &eof, 1 ) <= 0 ) {
cerr << "cppscan: scan failed" << endl;
return;
}
cout.flush();
}
int main()
{
test(
"/*\n"
" * Copyright \n"
" */\n"
"\n"
"/* Construct an fsmmachine from a graph. */\n"
"RedFsmAp::RedFsmAp( FsmAp *graph, bool complete )\n"
":\n"
" graph(graph),\n"
"{\n"
" assert( sizeof(RedTransAp) <= sizeof(TransAp) );\n"
"\n"
" reduceMachine();\n"
"}\n"
"\n"
"{\n"
" /* Get the transition that we want to extend. */\n"
" RedTransAp *extendTrans = list[pos].value;\n"
"\n"
" /* Look ahead in the transition list. */\n"
" for ( int next = pos + 1; next < list.length(); pos++, next++ ) {\n"
" if ( ! keyOps->eq( list[pos].highKey, nextKey ) )\n"
" break;\n"
" }\n"
" return false;\n"
"}\n"
"\n" );
test(
"->*\n"
".*\n"
"/*\"*/\n"
"\"/*\"\n"
"L'\"'\n"
"L\"'\"\n" );
return 0;
}
#ifdef _____OUTPUT_____
/*
* Copyright
*/
/* Construct an fsmmachine from a graph. */
<195>RedFsmAp<197>::<195>RedFsmAp<40>( <195>FsmAp <42>*<195>graph<44>, <195>bool <195>complete <41>)
<58>:
<195>graph<40>(<195>graph<41>)<44>,
<123>{
<195>assert<40>( <195>sizeof<40>(<195>RedTransAp<41>) <60><<61>= <195>sizeof<40>(<195>TransAp<41>) <41>)<59>;
<195>reduceMachine<40>(<41>)<59>;
<125>}
<123>{
/* Get the transition that we want to extend. */
<195>RedTransAp <42>*<195>extendTrans <61>= <195>list<91>[<195>pos<93>]<46>.<195>value<59>;
/* Look ahead in the transition list. */
<195>for <40>( <195>int <195>next <61>= <195>pos <43>+ <218>1<59>; <195>next <60>< <195>list<46>.<195>length<40>(<41>)<59>; <195>pos<212>++<44>, <195>next<212>++ <41>) <123>{
<195>if <40>( <33>! <195>keyOps<211>-><195>eq<40>( <195>list<91>[<195>pos<93>]<46>.<195>highKey<44>, <195>nextKey <41>) <41>)
<195>break<59>;
<125>}
<195>return <195>false<59>;
<125>}
<214>->*
<215>.*
/*"*/
<192>"/*"
<193>L'"'
<192>L"'"
#endif
|