1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
|
**DO NOT READ THIS FILE ON GITHUB, GUIDES ARE PUBLISHED ON http://guides.rubyonrails.org.**
Testing Rails Applications
==========================
This guide covers built-in mechanisms in Rails for testing your application.
After reading this guide, you will know:
* Rails testing terminology.
* How to write unit, functional, integration, and system tests for your application.
* Other popular testing approaches and plugins.
--------------------------------------------------------------------------------
Why Write Tests for your Rails Applications?
--------------------------------------------
Rails makes it super easy to write your tests. It starts by producing skeleton test code while you are creating your models and controllers.
By running your Rails tests you can ensure your code adheres to the desired functionality even after some major code refactoring.
Rails tests can also simulate browser requests and thus you can test your application's response without having to test it through your browser.
Introduction to Testing
-----------------------
Testing support was woven into the Rails fabric from the beginning. It wasn't an "oh! let's bolt on support for running tests because they're new and cool" epiphany.
### Rails Sets up for Testing from the Word Go
Rails creates a `test` directory for you as soon as you create a Rails project using `rails new` _application_name_. If you list the contents of this directory then you shall see:
```bash
$ ls -F test
controllers/ helpers/ mailers/ system/ test_helper.rb
fixtures/ integration/ models/ application_system_test_case.rb
```
The `helpers`, `mailers`, and `models` directories are meant to hold tests for view helpers, mailers, and models, respectively. The `controllers` directory is meant to hold tests for controllers, routes, and views. The `integration` directory is meant to hold tests for interactions between controllers.
The system test directory holds system tests, which are used for full browser
testing of your application. System tests allow you to test your application
the way your users experience it and help you test your JavaScript as well.
System tests inherit from Capybara and perform in browser tests for your
application.
Fixtures are a way of organizing test data; they reside in the `fixtures` directory.
A `jobs` directory will also be created when an associated test is first generated.
The `test_helper.rb` file holds the default configuration for your tests.
The `application_system_test_case.rb` holds the default configuration for your system
tests.
### The Test Environment
By default, every Rails application has three environments: development, test, and production.
Each environment's configuration can be modified similarly. In this case, we can modify our test environment by changing the options found in `config/environments/test.rb`.
NOTE: Your tests are run under `RAILS_ENV=test`.
### Rails meets Minitest
If you remember, we used the `rails generate model` command in the
[Getting Started with Rails](getting_started.html) guide. We created our first
model, and among other things it created test stubs in the `test` directory:
```bash
$ bin/rails generate model article title:string body:text
...
create app/models/article.rb
create test/models/article_test.rb
create test/fixtures/articles.yml
...
```
The default test stub in `test/models/article_test.rb` looks like this:
```ruby
require 'test_helper'
class ArticleTest < ActiveSupport::TestCase
# test "the truth" do
# assert true
# end
end
```
A line by line examination of this file will help get you oriented to Rails testing code and terminology.
```ruby
require 'test_helper'
```
By requiring this file, `test_helper.rb` the default configuration to run our tests is loaded. We will include this with all the tests we write, so any methods added to this file are available to all our tests.
```ruby
class ArticleTest < ActiveSupport::TestCase
```
The `ArticleTest` class defines a _test case_ because it inherits from `ActiveSupport::TestCase`. `ArticleTest` thus has all the methods available from `ActiveSupport::TestCase`. Later in this guide, we'll see some of the methods it gives us.
Any method defined within a class inherited from `Minitest::Test`
(which is the superclass of `ActiveSupport::TestCase`) that begins with `test_` (case sensitive) is simply called a test. So, methods defined as `test_password` and `test_valid_password` are legal test names and are run automatically when the test case is run.
Rails also adds a `test` method that takes a test name and a block. It generates a normal `Minitest::Unit` test with method names prefixed with `test_`. So you don't have to worry about naming the methods, and you can write something like:
```ruby
test "the truth" do
assert true
end
```
Which is approximately the same as writing this:
```ruby
def test_the_truth
assert true
end
```
Although you can still use regular method definitions, using the `test` macro allows for a more readable test name.
NOTE: The method name is generated by replacing spaces with underscores. The result does not need to be a valid Ruby identifier though, the name may contain punctuation characters etc. That's because in Ruby technically any string may be a method name. This may require use of `define_method` and `send` calls to function properly, but formally there's little restriction on the name.
Next, let's look at our first assertion:
```ruby
assert true
```
An assertion is a line of code that evaluates an object (or expression) for expected results. For example, an assertion can check:
* does this value = that value?
* is this object nil?
* does this line of code throw an exception?
* is the user's password greater than 5 characters?
Every test may contain one or more assertions, with no restriction as to how many assertions are allowed. Only when all the assertions are successful will the test pass.
#### Your first failing test
To see how a test failure is reported, you can add a failing test to the `article_test.rb` test case.
```ruby
test "should not save article without title" do
article = Article.new
assert_not article.save
end
```
Let us run this newly added test (where `6` is the number of line where the test is defined).
```bash
$ bin/rails test test/models/article_test.rb:6
Run options: --seed 44656
# Running:
F
Failure:
ArticleTest#test_should_not_save_article_without_title [/path/to/blog/test/models/article_test.rb:6]:
Expected true to be nil or false
bin/rails test test/models/article_test.rb:6
Finished in 0.023918s, 41.8090 runs/s, 41.8090 assertions/s.
1 runs, 1 assertions, 1 failures, 0 errors, 0 skips
```
In the output, `F` denotes a failure. You can see the corresponding trace shown under `Failure` along with the name of the failing test. The next few lines contain the stack trace followed by a message that mentions the actual value and the expected value by the assertion. The default assertion messages provide just enough information to help pinpoint the error. To make the assertion failure message more readable, every assertion provides an optional message parameter, as shown here:
```ruby
test "should not save article without title" do
article = Article.new
assert_not article.save, "Saved the article without a title"
end
```
Running this test shows the friendlier assertion message:
```bash
Failure:
ArticleTest#test_should_not_save_article_without_title [/path/to/blog/test/models/article_test.rb:6]:
Saved the article without a title
```
Now to get this test to pass we can add a model level validation for the _title_ field.
```ruby
class Article < ApplicationRecord
validates :title, presence: true
end
```
Now the test should pass. Let us verify by running the test again:
```bash
$ bin/rails test test/models/article_test.rb:6
Run options: --seed 31252
# Running:
.
Finished in 0.027476s, 36.3952 runs/s, 36.3952 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips
```
Now, if you noticed, we first wrote a test which fails for a desired
functionality, then we wrote some code which adds the functionality and finally
we ensured that our test passes. This approach to software development is
referred to as
[_Test-Driven Development_ (TDD)](http://c2.com/cgi/wiki?TestDrivenDevelopment).
#### What an error looks like
To see how an error gets reported, here's a test containing an error:
```ruby
test "should report error" do
# some_undefined_variable is not defined elsewhere in the test case
some_undefined_variable
assert true
end
```
Now you can see even more output in the console from running the tests:
```bash
$ bin/rails test test/models/article_test.rb
Run options: --seed 1808
# Running:
.E
Error:
ArticleTest#test_should_report_error:
NameError: undefined local variable or method 'some_undefined_variable' for #<ArticleTest:0x007fee3aa71798>
test/models/article_test.rb:11:in 'block in <class:ArticleTest>'
bin/rails test test/models/article_test.rb:9
Finished in 0.040609s, 49.2500 runs/s, 24.6250 assertions/s.
2 runs, 1 assertions, 0 failures, 1 errors, 0 skips
```
Notice the 'E' in the output. It denotes a test with error.
NOTE: The execution of each test method stops as soon as any error or an
assertion failure is encountered, and the test suite continues with the next
method. All test methods are executed in random order. The
[`config.active_support.test_order` option](configuring.html#configuring-active-support)
can be used to configure test order.
When a test fails you are presented with the corresponding backtrace. By default
Rails filters that backtrace and will only print lines relevant to your
application. This eliminates the framework noise and helps to focus on your
code. However there are situations when you want to see the full
backtrace. Set the `-b` (or `--backtrace`) argument to enable this behavior:
```bash
$ bin/rails test -b test/models/article_test.rb
```
If we want this test to pass we can modify it to use `assert_raises` like so:
```ruby
test "should report error" do
# some_undefined_variable is not defined elsewhere in the test case
assert_raises(NameError) do
some_undefined_variable
end
end
```
This test should now pass.
### Available Assertions
By now you've caught a glimpse of some of the assertions that are available. Assertions are the worker bees of testing. They are the ones that actually perform the checks to ensure that things are going as planned.
Here's an extract of the assertions you can use with
[`Minitest`](https://github.com/seattlerb/minitest), the default testing library
used by Rails. The `[msg]` parameter is an optional string message you can
specify to make your test failure messages clearer.
| Assertion | Purpose |
| ---------------------------------------------------------------- | ------- |
| `assert( test, [msg] )` | Ensures that `test` is true.|
| `assert_not( test, [msg] )` | Ensures that `test` is false.|
| `assert_equal( expected, actual, [msg] )` | Ensures that `expected == actual` is true.|
| `assert_not_equal( expected, actual, [msg] )` | Ensures that `expected != actual` is true.|
| `assert_same( expected, actual, [msg] )` | Ensures that `expected.equal?(actual)` is true.|
| `assert_not_same( expected, actual, [msg] )` | Ensures that `expected.equal?(actual)` is false.|
| `assert_nil( obj, [msg] )` | Ensures that `obj.nil?` is true.|
| `assert_not_nil( obj, [msg] )` | Ensures that `obj.nil?` is false.|
| `assert_empty( obj, [msg] )` | Ensures that `obj` is `empty?`.|
| `assert_not_empty( obj, [msg] )` | Ensures that `obj` is not `empty?`.|
| `assert_match( regexp, string, [msg] )` | Ensures that a string matches the regular expression.|
| `assert_no_match( regexp, string, [msg] )` | Ensures that a string doesn't match the regular expression.|
| `assert_includes( collection, obj, [msg] )` | Ensures that `obj` is in `collection`.|
| `assert_not_includes( collection, obj, [msg] )` | Ensures that `obj` is not in `collection`.|
| `assert_in_delta( expected, actual, [delta], [msg] )` | Ensures that the numbers `expected` and `actual` are within `delta` of each other.|
| `assert_not_in_delta( expected, actual, [delta], [msg] )` | Ensures that the numbers `expected` and `actual` are not within `delta` of each other.|
| `assert_in_epsilon ( expected, actual, [epsilon], [msg] )` | Ensures that the numbers `expected` and `actual` have a relative error less than `epsilon`.|
| `assert_not_in_epsilon ( expected, actual, [epsilon], [msg] )` | Ensures that the numbers `expected` and `actual` don't have a relative error less than `epsilon`.|
| `assert_throws( symbol, [msg] ) { block }` | Ensures that the given block throws the symbol.|
| `assert_raises( exception1, exception2, ... ) { block }` | Ensures that the given block raises one of the given exceptions.|
| `assert_instance_of( class, obj, [msg] )` | Ensures that `obj` is an instance of `class`.|
| `assert_not_instance_of( class, obj, [msg] )` | Ensures that `obj` is not an instance of `class`.|
| `assert_kind_of( class, obj, [msg] )` | Ensures that `obj` is an instance of `class` or is descending from it.|
| `assert_not_kind_of( class, obj, [msg] )` | Ensures that `obj` is not an instance of `class` and is not descending from it.|
| `assert_respond_to( obj, symbol, [msg] )` | Ensures that `obj` responds to `symbol`.|
| `assert_not_respond_to( obj, symbol, [msg] )` | Ensures that `obj` does not respond to `symbol`.|
| `assert_operator( obj1, operator, [obj2], [msg] )` | Ensures that `obj1.operator(obj2)` is true.|
| `assert_not_operator( obj1, operator, [obj2], [msg] )` | Ensures that `obj1.operator(obj2)` is false.|
| `assert_predicate ( obj, predicate, [msg] )` | Ensures that `obj.predicate` is true, e.g. `assert_predicate str, :empty?`|
| `assert_not_predicate ( obj, predicate, [msg] )` | Ensures that `obj.predicate` is false, e.g. `assert_not_predicate str, :empty?`|
| `flunk( [msg] )` | Ensures failure. This is useful to explicitly mark a test that isn't finished yet.|
The above are a subset of assertions that minitest supports. For an exhaustive &
more up-to-date list, please check
[Minitest API documentation](http://docs.seattlerb.org/minitest/), specifically
[`Minitest::Assertions`](http://docs.seattlerb.org/minitest/Minitest/Assertions.html).
Because of the modular nature of the testing framework, it is possible to create your own assertions. In fact, that's exactly what Rails does. It includes some specialized assertions to make your life easier.
NOTE: Creating your own assertions is an advanced topic that we won't cover in this tutorial.
### Rails Specific Assertions
Rails adds some custom assertions of its own to the `minitest` framework:
| Assertion | Purpose |
| --------------------------------------------------------------------------------- | ------- |
| [`assert_difference(expressions, difference = 1, message = nil) {...}`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_difference) | Test numeric difference between the return value of an expression as a result of what is evaluated in the yielded block.|
| [`assert_no_difference(expressions, message = nil, &block)`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_no_difference) | Asserts that the numeric result of evaluating an expression is not changed before and after invoking the passed in block.|
| [`assert_changes(expressions, message = nil, from:, to:, &block)`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_changes) | Test that the result of evaluating an expression is changed after invoking the passed in block.|
| [`assert_no_changes(expressions, message = nil, &block)`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_no_changes) | Test the result of evaluating an expression is not changed after invoking the passed in block.|
| [`assert_nothing_raised { block }`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_nothing_raised) | Ensures that the given block doesn't raise any exceptions.|
| [`assert_recognizes(expected_options, path, extras={}, message=nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/RoutingAssertions.html#method-i-assert_recognizes) | Asserts that the routing of the given path was handled correctly and that the parsed options (given in the expected_options hash) match path. Basically, it asserts that Rails recognizes the route given by expected_options.|
| [`assert_generates(expected_path, options, defaults={}, extras = {}, message=nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/RoutingAssertions.html#method-i-assert_generates) | Asserts that the provided options can be used to generate the provided path. This is the inverse of assert_recognizes. The extras parameter is used to tell the request the names and values of additional request parameters that would be in a query string. The message parameter allows you to specify a custom error message for assertion failures.|
| [`assert_response(type, message = nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/ResponseAssertions.html#method-i-assert_response) | Asserts that the response comes with a specific status code. You can specify `:success` to indicate 200-299, `:redirect` to indicate 300-399, `:missing` to indicate 404, or `:error` to match the 500-599 range. You can also pass an explicit status number or its symbolic equivalent. For more information, see [full list of status codes](http://rubydoc.info/github/rack/rack/master/Rack/Utils#HTTP_STATUS_CODES-constant) and how their [mapping](http://rubydoc.info/github/rack/rack/master/Rack/Utils#SYMBOL_TO_STATUS_CODE-constant) works.|
| [`assert_redirected_to(options = {}, message=nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/ResponseAssertions.html#method-i-assert_redirected_to) | Asserts that the redirection options passed in match those of the redirect called in the latest action. This match can be partial, such that `assert_redirected_to(controller: "weblog")` will also match the redirection of `redirect_to(controller: "weblog", action: "show")` and so on. You can also pass named routes such as `assert_redirected_to root_path` and Active Record objects such as `assert_redirected_to @article`.|
You'll see the usage of some of these assertions in the next chapter.
### A Brief Note About Test Cases
All the basic assertions such as `assert_equal` defined in `Minitest::Assertions` are also available in the classes we use in our own test cases. In fact, Rails provides the following classes for you to inherit from:
* [`ActiveSupport::TestCase`](http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html)
* [`ActionMailer::TestCase`](http://api.rubyonrails.org/classes/ActionMailer/TestCase.html)
* [`ActionView::TestCase`](http://api.rubyonrails.org/classes/ActionView/TestCase.html)
* [`ActiveJob::TestCase`](http://api.rubyonrails.org/classes/ActiveJob/TestCase.html)
* [`ActionDispatch::IntegrationTest`](http://api.rubyonrails.org/classes/ActionDispatch/IntegrationTest.html)
* [`ActionDispatch::SystemTestCase`](http://api.rubyonrails.org/classes/ActionDispatch/SystemTestCase.html)
* [`Rails::Generators::TestCase`](http://api.rubyonrails.org/classes/Rails/Generators/TestCase.html)
Each of these classes include `Minitest::Assertions`, allowing us to use all of the basic assertions in our tests.
NOTE: For more information on `Minitest`, refer to [its
documentation](http://docs.seattlerb.org/minitest).
### The Rails Test Runner
We can run all of our tests at once by using the `bin/rails test` command.
Or we can run a single test file by passing the `bin/rails test` command the filename containing the test cases.
```bash
$ bin/rails test test/models/article_test.rb
Run options: --seed 1559
# Running:
..
Finished in 0.027034s, 73.9810 runs/s, 110.9715 assertions/s.
2 runs, 3 assertions, 0 failures, 0 errors, 0 skips
```
This will run all test methods from the test case.
You can also run a particular test method from the test case by providing the
`-n` or `--name` flag and the test's method name.
```bash
$ bin/rails test test/models/article_test.rb -n test_the_truth
Run options: -n test_the_truth --seed 43583
# Running:
.
Finished tests in 0.009064s, 110.3266 tests/s, 110.3266 assertions/s.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips
```
You can also run a test at a specific line by providing the line number.
```bash
$ bin/rails test test/models/article_test.rb:6 # run specific test and line
```
You can also run an entire directory of tests by providing the path to the directory.
```bash
$ bin/rails test test/controllers # run all tests from specific directory
```
The test runner also provides a lot of other features like failing fast, deferring test output
at the end of test run and so on. Check the documentation of the test runner as follows:
```bash
$ bin/rails test -h
minitest options:
-h, --help Display this help.
-s, --seed SEED Sets random seed. Also via env. Eg: SEED=n rake
-v, --verbose Verbose. Show progress processing files.
-n, --name PATTERN Filter run on /regexp/ or string.
--exclude PATTERN Exclude /regexp/ or string from run.
Known extensions: rails, pride
Usage: bin/rails test [options] [files or directories]
You can run a single test by appending a line number to a filename:
bin/rails test test/models/user_test.rb:27
You can run multiple files and directories at the same time:
bin/rails test test/controllers test/integration/login_test.rb
By default test failures and errors are reported inline during a run.
Rails options:
-w, --warnings Run with Ruby warnings enabled
-e, --environment Run tests in the ENV environment
-b, --backtrace Show the complete backtrace
-d, --defer-output Output test failures and errors after the test run
-f, --fail-fast Abort test run on first failure or error
-c, --[no-]color Enable color in the output
```
The Test Database
-----------------
Just about every Rails application interacts heavily with a database and, as a result, your tests will need a database to interact with as well. To write efficient tests, you'll need to understand how to set up this database and populate it with sample data.
By default, every Rails application has three environments: development, test, and production. The database for each one of them is configured in `config/database.yml`.
A dedicated test database allows you to set up and interact with test data in isolation. This way your tests can mangle test data with confidence, without worrying about the data in the development or production databases.
### Maintaining the test database schema
In order to run your tests, your test database will need to have the current
structure. The test helper checks whether your test database has any pending
migrations. It will try to load your `db/schema.rb` or `db/structure.sql`
into the test database. If migrations are still pending, an error will be
raised. Usually this indicates that your schema is not fully migrated. Running
the migrations against the development database (`bin/rails db:migrate`) will
bring the schema up to date.
NOTE: If there were modifications to existing migrations, the test database needs to
be rebuilt. This can be done by executing `bin/rails db:test:prepare`.
### The Low-Down on Fixtures
For good tests, you'll need to give some thought to setting up test data.
In Rails, you can handle this by defining and customizing fixtures.
You can find comprehensive documentation in the [Fixtures API documentation](http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html).
#### What Are Fixtures?
_Fixtures_ is a fancy word for sample data. Fixtures allow you to populate your testing database with predefined data before your tests run. Fixtures are database independent and written in YAML. There is one file per model.
NOTE: Fixtures are not designed to create every object that your tests need, and are best managed when only used for default data that can be applied to the common case.
You'll find fixtures under your `test/fixtures` directory. When you run `rails generate model` to create a new model, Rails automatically creates fixture stubs in this directory.
#### YAML
YAML-formatted fixtures are a human-friendly way to describe your sample data. These types of fixtures have the **.yml** file extension (as in `users.yml`).
Here's a sample YAML fixture file:
```yaml
# lo & behold! I am a YAML comment!
david:
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development
steve:
name: Steve Ross Kellock
birthday: 1974-09-27
profession: guy with keyboard
```
Each fixture is given a name followed by an indented list of colon-separated key/value pairs. Records are typically separated by a blank line. You can place comments in a fixture file by using the # character in the first column.
If you are working with [associations](/association_basics.html), you can
define a reference node between two different fixtures. Here's an example with
a `belongs_to`/`has_many` association:
```yaml
# In fixtures/categories.yml
about:
name: About
# In fixtures/articles.yml
first:
title: Welcome to Rails!
body: Hello world!
category: about
```
Notice the `category` key of the `first` article found in `fixtures/articles.yml` has a value of `about`. This tells Rails to load the category `about` found in `fixtures/categories.yml`.
NOTE: For associations to reference one another by name, you can use the fixture name instead of specifying the `id:` attribute on the associated fixtures. Rails will auto assign a primary key to be consistent between runs. For more information on this association behavior please read the [Fixtures API documentation](http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html).
#### ERB'in It Up
ERB allows you to embed Ruby code within templates. The YAML fixture format is pre-processed with ERB when Rails loads fixtures. This allows you to use Ruby to help you generate some sample data. For example, the following code generates a thousand users:
```erb
<% 1000.times do |n| %>
user_<%= n %>:
username: <%= "user#{n}" %>
email: <%= "user#{n}@example.com" %>
<% end %>
```
#### Fixtures in Action
Rails automatically loads all fixtures from the `test/fixtures` directory by
default. Loading involves three steps:
1. Remove any existing data from the table corresponding to the fixture
2. Load the fixture data into the table
3. Dump the fixture data into a method in case you want to access it directly
TIP: In order to remove existing data from the database, Rails tries to disable referential integrity triggers (like foreign keys and check constraints). If you are getting annoying permission errors on running tests, make sure the database user has privilege to disable these triggers in testing environment. (In PostgreSQL, only superusers can disable all triggers. Read more about PostgreSQL permissions [here](http://blog.endpoint.com/2012/10/postgres-system-triggers-error.html)).
#### Fixtures are Active Record objects
Fixtures are instances of Active Record. As mentioned in point #3 above, you can access the object directly because it is automatically available as a method whose scope is local of the test case. For example:
```ruby
# this will return the User object for the fixture named david
users(:david)
# this will return the property for david called id
users(:david).id
# one can also access methods available on the User class
david = users(:david)
david.call(david.partner)
```
To get multiple fixtures at once, you can pass in a list of fixture names. For example:
```ruby
# this will return an array containing the fixtures david and steve
users(:david, :steve)
```
Model Testing
-------------
Model tests are used to test the various models of your application.
Rails model tests are stored under the `test/models` directory. Rails provides
a generator to create a model test skeleton for you.
```bash
$ bin/rails generate test_unit:model article title:string body:text
create test/models/article_test.rb
create test/fixtures/articles.yml
```
Model tests don't have their own superclass like `ActionMailer::TestCase` instead they inherit from [`ActiveSupport::TestCase`](http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html).
System Testing
--------------
System tests allow you to test user interactions with your application, running tests
in either a real or a headless browser. System tests uses Capybara under the hood.
For creating Rails system tests, you use the `test/system` directory in your
application. Rails provides a generator to create a system test skeleton for you.
```bash
$ bin/rails generate system_test users
invoke test_unit
create test/system/users_test.rb
```
Here's what a freshly generated system test looks like:
```ruby
require "application_system_test_case"
class UsersTest < ApplicationSystemTestCase
# test "visiting the index" do
# visit users_url
#
# assert_selector "h1", text: "Users"
# end
end
```
By default, system tests are run with the Selenium driver, using the Chrome
browser, and a screen size of 1400x1400. The next section explains how to
change the default settings.
### Changing the default settings
Rails makes changing the default settings for system tests very simple. All
the setup is abstracted away so you can focus on writing your tests.
When you generate a new application or scaffold, an `application_system_test_case.rb` file
is created in the test directory. This is where all the configuration for your
system tests should live.
If you want to change the default settings you can change what the system
tests are "driven by". Say you want to change the driver from Selenium to
Poltergeist. First add the `poltergeist` gem to your `Gemfile`. Then in your
`application_system_test_case.rb` file do the following:
```ruby
require "test_helper"
require "capybara/poltergeist"
class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
driven_by :poltergeist
end
```
The driver name is a required argument for `driven_by`. The optional arguments
that can be passed to `driven_by` are `:using` for the browser (this will only
be used by Selenium), `:screen_size` to change the size of the screen for
screenshots, and `:options` which can be used to set options supported by the
driver.
```ruby
require "test_helper"
class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
driven_by :selenium, using: :firefox
end
```
If you want to use a headless browser, you could use Headless Chrome or Headless Firefox by adding
`headless_chrome` or `headless_firefox` in the `:using` argument.
```ruby
require "test_helper"
class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
driven_by :selenium, using: :headless_chrome
end
```
If your Capybara configuration requires more setup than provided by Rails, this
additional configuration could be added into the `application_system_test_case.rb`
file.
Please see [Capybara's documentation](https://github.com/teamcapybara/capybara#setup)
for additional settings.
### Screenshot Helper
The `ScreenshotHelper` is a helper designed to capture screenshots of your tests.
This can be helpful for viewing the browser at the point a test failed, or
to view screenshots later for debugging.
Two methods are provided: `take_screenshot` and `take_failed_screenshot`.
`take_failed_screenshot` is automatically included in `after_teardown` inside
Rails.
The `take_screenshot` helper method can be included anywhere in your tests to
take a screenshot of the browser.
### Implementing a system test
Now we're going to add a system test to our blog application. We'll demonstrate
writing a system test by visiting the index page and creating a new blog article.
If you used the scaffold generator, a system test skeleton was automatically
created for you. If you didn't use the scaffold generator, start by creating a
system test skeleton.
```bash
$ bin/rails generate system_test articles
```
It should have created a test file placeholder for us. With the output of the
previous command you should see:
```bash
invoke test_unit
create test/system/articles_test.rb
```
Now let's open that file and write our first assertion:
```ruby
require "application_system_test_case"
class ArticlesTest < ApplicationSystemTestCase
test "viewing the index" do
visit articles_path
assert_selector "h1", text: "Articles"
end
end
```
The test should see that there is an `h1` on the articles index page and pass.
Run the system tests.
```bash
bin/rails test:system
```
NOTE: By default, running `bin/rails test` won't run your system tests.
Make sure to run `bin/rails test:system` to actually run them.
#### Creating articles system test
Now let's test the flow for creating a new article in our blog.
```ruby
test "creating an article" do
visit articles_path
click_on "New Article"
fill_in "Title", with: "Creating an Article"
fill_in "Body", with: "Created this article successfully!"
click_on "Create Article"
assert_text "Creating an Article"
end
```
The first step is to call `visit articles_path`. This will take the test to the
articles index page.
Then the `click_on "New Article"` will find the "New Article" button on the
index page. This will redirect the browser to `/articles/new`.
Then the test will fill in the title and body of the article with the specified
text. Once the fields are filled in, "Create Article" is clicked on which will
send a POST request to create the new article in the database.
We will be redirected back to the articles index page and there we assert
that the text from the new article's title is on the articles index page.
#### Taking it further
The beauty of system testing is that it is similar to integration testing in
that it tests the user's interaction with your controller, model, and view, but
system testing is much more robust and actually tests your application as if
a real user were using it. Going forward, you can test anything that the user
themselves would do in your application such as commenting, deleting articles,
publishing draft articles, etc.
Integration Testing
-------------------
Integration tests are used to test how various parts of your application interact. They are generally used to test important workflows within our application.
For creating Rails integration tests, we use the `test/integration` directory for our application. Rails provides a generator to create an integration test skeleton for us.
```bash
$ bin/rails generate integration_test user_flows
exists test/integration/
create test/integration/user_flows_test.rb
```
Here's what a freshly generated integration test looks like:
```ruby
require 'test_helper'
class UserFlowsTest < ActionDispatch::IntegrationTest
# test "the truth" do
# assert true
# end
end
```
Here the test is inheriting from `ActionDispatch::IntegrationTest`. This makes some additional helpers available for us to use in our integration tests.
### Helpers Available for Integration Tests
In addition to the standard testing helpers, inheriting from `ActionDispatch::IntegrationTest` comes with some additional helpers available when writing integration tests. Let's get briefly introduced to the three categories of helpers we get to choose from.
For dealing with the integration test runner, see [`ActionDispatch::Integration::Runner`](http://api.rubyonrails.org/classes/ActionDispatch/Integration/Runner.html).
When performing requests, we will have [`ActionDispatch::Integration::RequestHelpers`](http://api.rubyonrails.org/classes/ActionDispatch/Integration/RequestHelpers.html) available for our use.
If we need to modify the session, or state of our integration test, take a look at [`ActionDispatch::Integration::Session`](http://api.rubyonrails.org/classes/ActionDispatch/Integration/Session.html) to help.
### Implementing an integration test
Let's add an integration test to our blog application. We'll start with a basic workflow of creating a new blog article, to verify that everything is working properly.
We'll start by generating our integration test skeleton:
```bash
$ bin/rails generate integration_test blog_flow
```
It should have created a test file placeholder for us. With the output of the
previous command we should see:
```bash
invoke test_unit
create test/integration/blog_flow_test.rb
```
Now let's open that file and write our first assertion:
```ruby
require 'test_helper'
class BlogFlowTest < ActionDispatch::IntegrationTest
test "can see the welcome page" do
get "/"
assert_select "h1", "Welcome#index"
end
end
```
We will take a look at `assert_select` to query the resulting HTML of a request in the "Testing Views" section below. It is used for testing the response of our request by asserting the presence of key HTML elements and their content.
When we visit our root path, we should see `welcome/index.html.erb` rendered for the view. So this assertion should pass.
#### Creating articles integration
How about testing our ability to create a new article in our blog and see the resulting article.
```ruby
test "can create an article" do
get "/articles/new"
assert_response :success
post "/articles",
params: { article: { title: "can create", body: "article successfully." } }
assert_response :redirect
follow_redirect!
assert_response :success
assert_select "p", "Title:\n can create"
end
```
Let's break this test down so we can understand it.
We start by calling the `:new` action on our Articles controller. This response should be successful.
After this we make a post request to the `:create` action of our Articles controller:
```ruby
post "/articles",
params: { article: { title: "can create", body: "article successfully." } }
assert_response :redirect
follow_redirect!
```
The two lines following the request are to handle the redirect we setup when creating a new article.
NOTE: Don't forget to call `follow_redirect!` if you plan to make subsequent requests after a redirect is made.
Finally we can assert that our response was successful and our new article is readable on the page.
#### Taking it further
We were able to successfully test a very small workflow for visiting our blog and creating a new article. If we wanted to take this further we could add tests for commenting, removing articles, or editing comments. Integration tests are a great place to experiment with all kinds of use-cases for our applications.
Functional Tests for Your Controllers
-------------------------------------
In Rails, testing the various actions of a controller is a form of writing functional tests. Remember your controllers handle the incoming web requests to your application and eventually respond with a rendered view. When writing functional tests, you are testing how your actions handle the requests and the expected result or response, in some cases an HTML view.
### What to include in your Functional Tests
You should test for things such as:
* was the web request successful?
* was the user redirected to the right page?
* was the user successfully authenticated?
* was the correct object stored in the response template?
* was the appropriate message displayed to the user in the view?
The easiest way to see functional tests in action is to generate a controller using the scaffold generator:
```bash
$ bin/rails generate scaffold_controller article title:string body:text
...
create app/controllers/articles_controller.rb
...
invoke test_unit
create test/controllers/articles_controller_test.rb
...
```
This will generate the controller code and tests for an `Article` resource.
You can take a look at the file `articles_controller_test.rb` in the `test/controllers` directory.
If you already have a controller and just want to generate the test scaffold code for
each of the seven default actions, you can use the following command:
```bash
$ bin/rails generate test_unit:scaffold article
...
invoke test_unit
create test/controllers/articles_controller_test.rb
...
```
Let's take a look at one such test, `test_should_get_index` from the file `articles_controller_test.rb`.
```ruby
# articles_controller_test.rb
class ArticlesControllerTest < ActionDispatch::IntegrationTest
test "should get index" do
get articles_url
assert_response :success
end
end
```
In the `test_should_get_index` test, Rails simulates a request on the action called `index`, making sure the request was successful
and also ensuring that the right response body has been generated.
The `get` method kicks off the web request and populates the results into the `@response`. It can accept up to 6 arguments:
* The URI of the controller action you are requesting.
This can be in the form of a string or a route helper (e.g. `articles_url`).
* `params`: option with a hash of request parameters to pass into the action
(e.g. query string parameters or article variables).
* `headers`: for setting the headers that will be passed with the request.
* `env`: for customizing the request environment as needed.
* `xhr`: whether the request is Ajax request or not. Can be set to true for marking the request as Ajax.
* `as`: for encoding the request with different content type. Supports `:json` by default.
All of these keyword arguments are optional.
Example: Calling the `:show` action for the first `Article`, passing in an `HTTP_REFERER` header:
```ruby
get article_url(Article.first), headers: { "HTTP_REFERER" => "http://example.com/home" }
```
Another example: Calling the `:update` action for the last `Article`, passing in new text for the `title` in `params`, as an Ajax request:
```ruby
patch article_url(Article.last), params: { article: { title: "updated" } }, xhr: true
```
NOTE: If you try running `test_should_create_article` test from `articles_controller_test.rb` it will fail on account of the newly added model level validation and rightly so.
Let us modify `test_should_create_article` test in `articles_controller_test.rb` so that all our test pass:
```ruby
test "should create article" do
assert_difference('Article.count') do
post articles_url, params: { article: { body: 'Rails is awesome!', title: 'Hello Rails' } }
end
assert_redirected_to article_path(Article.last)
end
```
Now you can try running all the tests and they should pass.
NOTE: If you followed the steps in the Basic Authentication section, you'll need to add the following to the `setup` block to get all the tests passing:
```ruby
request.headers['Authorization'] = ActionController::HttpAuthentication::Basic.
encode_credentials('dhh', 'secret')
```
### Available Request Types for Functional Tests
If you're familiar with the HTTP protocol, you'll know that `get` is a type of request. There are 6 request types supported in Rails functional tests:
* `get`
* `post`
* `patch`
* `put`
* `head`
* `delete`
All of request types have equivalent methods that you can use. In a typical C.R.U.D. application you'll be using `get`, `post`, `put` and `delete` more often.
NOTE: Functional tests do not verify whether the specified request type is accepted by the action, we're more concerned with the result. Request tests exist for this use case to make your tests more purposeful.
### Testing XHR (AJAX) requests
To test AJAX requests, you can specify the `xhr: true` option to `get`, `post`,
`patch`, `put`, and `delete` methods. For example:
```ruby
test "ajax request" do
article = articles(:one)
get article_url(article), xhr: true
assert_equal 'hello world', @response.body
assert_equal "text/javascript", @response.content_type
end
```
### The Three Hashes of the Apocalypse
After a request has been made and processed, you will have 3 Hash objects ready for use:
* `cookies` - Any cookies that are set
* `flash` - Any objects living in the flash
* `session` - Any object living in session variables
As is the case with normal Hash objects, you can access the values by referencing the keys by string. You can also reference them by symbol name. For example:
```ruby
flash["gordon"] flash[:gordon]
session["shmession"] session[:shmession]
cookies["are_good_for_u"] cookies[:are_good_for_u]
```
### Instance Variables Available
You also have access to three instance variables in your functional tests, after a request is made:
* `@controller` - The controller processing the request
* `@request` - The request object
* `@response` - The response object
```ruby
class ArticlesControllerTest < ActionDispatch::IntegrationTest
test "should get index" do
get articles_url
assert_equal "index", @controller.action_name
assert_equal "application/x-www-form-urlencoded", @request.media_type
assert_match "Articles", @response.body
end
end
```
### Setting Headers and CGI variables
[HTTP headers](https://tools.ietf.org/search/rfc2616#section-5.3)
and
[CGI variables](https://tools.ietf.org/search/rfc3875#section-4.1)
can be passed as headers:
```ruby
# setting an HTTP Header
get articles_url, headers: { "Content-Type": "text/plain" } # simulate the request with custom header
# setting a CGI variable
get articles_url, headers: { "HTTP_REFERER": "http://example.com/home" } # simulate the request with custom env variable
```
### Testing `flash` notices
If you remember from earlier, one of the Three Hashes of the Apocalypse was `flash`.
We want to add a `flash` message to our blog application whenever someone
successfully creates a new Article.
Let's start by adding this assertion to our `test_should_create_article` test:
```ruby
test "should create article" do
assert_difference('Article.count') do
post article_url, params: { article: { title: 'Some title' } }
end
assert_redirected_to article_path(Article.last)
assert_equal 'Article was successfully created.', flash[:notice]
end
```
If we run our test now, we should see a failure:
```bash
$ bin/rails test test/controllers/articles_controller_test.rb -n test_should_create_article
Run options: -n test_should_create_article --seed 32266
# Running:
F
Finished in 0.114870s, 8.7055 runs/s, 34.8220 assertions/s.
1) Failure:
ArticlesControllerTest#test_should_create_article [/test/controllers/articles_controller_test.rb:16]:
--- expected
+++ actual
@@ -1 +1 @@
-"Article was successfully created."
+nil
1 runs, 4 assertions, 1 failures, 0 errors, 0 skips
```
Let's implement the flash message now in our controller. Our `:create` action should now look like this:
```ruby
def create
@article = Article.new(article_params)
if @article.save
flash[:notice] = 'Article was successfully created.'
redirect_to @article
else
render 'new'
end
end
```
Now if we run our tests, we should see it pass:
```bash
$ bin/rails test test/controllers/articles_controller_test.rb -n test_should_create_article
Run options: -n test_should_create_article --seed 18981
# Running:
.
Finished in 0.081972s, 12.1993 runs/s, 48.7972 assertions/s.
1 runs, 4 assertions, 0 failures, 0 errors, 0 skips
```
### Putting it together
At this point our Articles controller tests the `:index` as well as `:new` and `:create` actions. What about dealing with existing data?
Let's write a test for the `:show` action:
```ruby
test "should show article" do
article = articles(:one)
get article_url(article)
assert_response :success
end
```
Remember from our discussion earlier on fixtures, the `articles()` method will give us access to our Articles fixtures.
How about deleting an existing Article?
```ruby
test "should destroy article" do
article = articles(:one)
assert_difference('Article.count', -1) do
delete article_url(article)
end
assert_redirected_to articles_path
end
```
We can also add a test for updating an existing Article.
```ruby
test "should update article" do
article = articles(:one)
patch article_url(article), params: { article: { title: "updated" } }
assert_redirected_to article_path(article)
# Reload association to fetch updated data and assert that title is updated.
article.reload
assert_equal "updated", article.title
end
```
Notice we're starting to see some duplication in these three tests, they both access the same Article fixture data. We can D.R.Y. this up by using the `setup` and `teardown` methods provided by `ActiveSupport::Callbacks`.
Our test should now look something as what follows. Disregard the other tests for now, we're leaving them out for brevity.
```ruby
require 'test_helper'
class ArticlesControllerTest < ActionDispatch::IntegrationTest
# called before every single test
setup do
@article = articles(:one)
end
# called after every single test
teardown do
# when controller is using cache it may be a good idea to reset it afterwards
Rails.cache.clear
end
test "should show article" do
# Reuse the @article instance variable from setup
get article_url(@article)
assert_response :success
end
test "should destroy article" do
assert_difference('Article.count', -1) do
delete article_url(@article)
end
assert_redirected_to articles_path
end
test "should update article" do
patch article_url(@article), params: { article: { title: "updated" } }
assert_redirected_to article_path(@article)
# Reload association to fetch updated data and assert that title is updated.
@article.reload
assert_equal "updated", @article.title
end
end
```
Similar to other callbacks in Rails, the `setup` and `teardown` methods can also be used by passing a block, lambda, or method name as a symbol to call.
### Test helpers
To avoid code duplication, you can add your own test helpers.
Sign in helper can be a good example:
```ruby
# test/test_helper.rb
module SignInHelper
def sign_in_as(user)
post sign_in_url(email: user.email, password: user.password)
end
end
class ActionDispatch::IntegrationTest
include SignInHelper
end
```
```ruby
require 'test_helper'
class ProfileControllerTest < ActionDispatch::IntegrationTest
test "should show profile" do
# helper is now reusable from any controller test case
sign_in_as users(:david)
get profile_url
assert_response :success
end
end
```
Testing Routes
--------------
Like everything else in your Rails application, you can test your routes. Route tests reside in `test/controllers/` or are part of controller tests.
NOTE: If your application has complex routes, Rails provides a number of useful helpers to test them.
For more information on routing assertions available in Rails, see the API documentation for [`ActionDispatch::Assertions::RoutingAssertions`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/RoutingAssertions.html).
Testing Views
-------------
Testing the response to your request by asserting the presence of key HTML elements and their content is a common way to test the views of your application. Like route tests, view tests reside in `test/controllers/` or are part of controller tests. The `assert_select` method allows you to query HTML elements of the response by using a simple yet powerful syntax.
There are two forms of `assert_select`:
`assert_select(selector, [equality], [message])` ensures that the equality condition is met on the selected elements through the selector. The selector may be a CSS selector expression (String) or an expression with substitution values.
`assert_select(element, selector, [equality], [message])` ensures that the equality condition is met on all the selected elements through the selector starting from the _element_ (instance of `Nokogiri::XML::Node` or `Nokogiri::XML::NodeSet`) and its descendants.
For example, you could verify the contents on the title element in your response with:
```ruby
assert_select 'title', "Welcome to Rails Testing Guide"
```
You can also use nested `assert_select` blocks for deeper investigation.
In the following example, the inner `assert_select` for `li.menu_item` runs
within the collection of elements selected by the outer block:
```ruby
assert_select 'ul.navigation' do
assert_select 'li.menu_item'
end
```
A collection of selected elements may be iterated through so that `assert_select` may be called separately for each element.
For example if the response contains two ordered lists, each with four nested list elements then the following tests will both pass.
```ruby
assert_select "ol" do |elements|
elements.each do |element|
assert_select element, "li", 4
end
end
assert_select "ol" do
assert_select "li", 8
end
```
This assertion is quite powerful. For more advanced usage, refer to its [documentation](https://github.com/rails/rails-dom-testing/blob/master/lib/rails/dom/testing/assertions/selector_assertions.rb).
#### Additional View-Based Assertions
There are more assertions that are primarily used in testing views:
| Assertion | Purpose |
| --------------------------------------------------------- | ------- |
| `assert_select_email` | Allows you to make assertions on the body of an e-mail. |
| `assert_select_encoded` | Allows you to make assertions on encoded HTML. It does this by un-encoding the contents of each element and then calling the block with all the un-encoded elements.|
| `css_select(selector)` or `css_select(element, selector)` | Returns an array of all the elements selected by the _selector_. In the second variant it first matches the base _element_ and tries to match the _selector_ expression on any of its children. If there are no matches both variants return an empty array.|
Here's an example of using `assert_select_email`:
```ruby
assert_select_email do
assert_select 'small', 'Please click the "Unsubscribe" link if you want to opt-out.'
end
```
Testing Helpers
---------------
A helper is just a simple module where you can define methods which are
available into your views.
In order to test helpers, all you need to do is check that the output of the
helper method matches what you'd expect. Tests related to the helpers are
located under the `test/helpers` directory.
Given we have the following helper:
```ruby
module UsersHelper
def link_to_user(user)
link_to "#{user.first_name} #{user.last_name}", user
end
end
```
We can test the output of this method like this:
```ruby
class UsersHelperTest < ActionView::TestCase
test "should return the user's full name" do
user = users(:david)
assert_dom_equal %{<a href="/user/#{user.id}">David Heinemeier Hansson</a>}, link_to_user(user)
end
end
```
Moreover, since the test class extends from `ActionView::TestCase`, you have
access to Rails' helper methods such as `link_to` or `pluralize`.
Testing Your Mailers
--------------------
Testing mailer classes requires some specific tools to do a thorough job.
### Keeping the Postman in Check
Your mailer classes - like every other part of your Rails application - should be tested to ensure that they are working as expected.
The goals of testing your mailer classes are to ensure that:
* emails are being processed (created and sent)
* the email content is correct (subject, sender, body, etc)
* the right emails are being sent at the right times
#### From All Sides
There are two aspects of testing your mailer, the unit tests and the functional tests. In the unit tests, you run the mailer in isolation with tightly controlled inputs and compare the output to a known value (a fixture.) In the functional tests you don't so much test the minute details produced by the mailer; instead, we test that our controllers and models are using the mailer in the right way. You test to prove that the right email was sent at the right time.
### Unit Testing
In order to test that your mailer is working as expected, you can use unit tests to compare the actual results of the mailer with pre-written examples of what should be produced.
#### Revenge of the Fixtures
For the purposes of unit testing a mailer, fixtures are used to provide an example of how the output _should_ look. Because these are example emails, and not Active Record data like the other fixtures, they are kept in their own subdirectory apart from the other fixtures. The name of the directory within `test/fixtures` directly corresponds to the name of the mailer. So, for a mailer named `UserMailer`, the fixtures should reside in `test/fixtures/user_mailer` directory.
If you generated your mailer, the generator does not create stub fixtures for the mailers actions. You'll have to create those files yourself as described above.
#### The Basic Test Case
Here's a unit test to test a mailer named `UserMailer` whose action `invite` is used to send an invitation to a friend. It is an adapted version of the base test created by the generator for an `invite` action.
```ruby
require 'test_helper'
class UserMailerTest < ActionMailer::TestCase
test "invite" do
# Create the email and store it for further assertions
email = UserMailer.create_invite('me@example.com',
'friend@example.com', Time.now)
# Send the email, then test that it got queued
assert_emails 1 do
email.deliver_now
end
# Test the body of the sent email contains what we expect it to
assert_equal ['me@example.com'], email.from
assert_equal ['friend@example.com'], email.to
assert_equal 'You have been invited by me@example.com', email.subject
assert_equal read_fixture('invite').join, email.body.to_s
end
end
```
In the test we send the email and store the returned object in the `email`
variable. We then ensure that it was sent (the first assert), then, in the
second batch of assertions, we ensure that the email does indeed contain what we
expect. The helper `read_fixture` is used to read in the content from this file.
NOTE: `email.body.to_s` is present when there's only one (HTML or text) part present.
If the mailer provides both, you can test your fixture against specific parts
with `email.text_part.body.to_s` or `email.html_part.body.to_s`.
Here's the content of the `invite` fixture:
```
Hi friend@example.com,
You have been invited.
Cheers!
```
This is the right time to understand a little more about writing tests for your
mailers. The line `ActionMailer::Base.delivery_method = :test` in
`config/environments/test.rb` sets the delivery method to test mode so that
email will not actually be delivered (useful to avoid spamming your users while
testing) but instead it will be appended to an array
(`ActionMailer::Base.deliveries`).
NOTE: The `ActionMailer::Base.deliveries` array is only reset automatically in
`ActionMailer::TestCase` and `ActionDispatch::IntegrationTest` tests.
If you want to have a clean slate outside these test cases, you can reset it
manually with: `ActionMailer::Base.deliveries.clear`
### Functional and System Testing
Unit testing allows us to test the email body, and recipients. In functional and system tests, we test whether user interactions appropriately trigger email to be delivered. For example, you can check that the invite friend operation is sending an email appropriately:
```ruby
# Integration Test
require 'test_helper'
class UsersControllerTest < ActionDispatch::IntegrationTest
include ActionMailer::TestHelper
test "invite friend" do
# Asserts the difference in the ActionMailer::Base.deliveries
assert_emails 1 do
post invite_friend_url, params: { email: 'friend@example.com' }
end
end
end
```
```ruby
# System Test
require 'test_helper'
class UsersTest < ActionDispatch::SystemTestCase
driven_by :selenium, using: :headless_chrome
include ActionMailer::TestHelper
test "inviting a friend" do
visit invite_users_url
fill_in 'Email', with: 'friend@example.com'
assert_emails 1 do
click_on 'Invite'
end
end
end
```
NOTE: These examples take advantage of the `ActionMailer::TestHelper`. For emails we expect to be delivered immediately with the `deliver_now` method, we can use the `assert_emails` method. For emails we expect to be delivered as an ActiveJob with the `deliver_later` method, we can use the `assert_enqueued_emails` method. More information can be found in the [documentation here](https://api.rubyonrails.org/classes/ActionMailer/TestHelper.html).
Testing Jobs
------------
Since your custom jobs can be queued at different levels inside your application,
you'll need to test both the jobs themselves (their behavior when they get enqueued)
and that other entities correctly enqueue them.
### A Basic Test Case
By default, when you generate a job, an associated test will be generated as well
under the `test/jobs` directory. Here's an example test with a billing job:
```ruby
require 'test_helper'
class BillingJobTest < ActiveJob::TestCase
test 'that account is charged' do
BillingJob.perform_now(account, product)
assert account.reload.charged_for?(product)
end
end
```
This test is pretty simple and only asserts that the job got the work done
as expected.
By default, `ActiveJob::TestCase` will set the queue adapter to `:test` so that
your jobs are performed inline. It will also ensure that all previously performed
and enqueued jobs are cleared before any test run so you can safely assume that
no jobs have already been executed in the scope of each test.
### Custom Assertions And Testing Jobs Inside Other Components
Active Job ships with a bunch of custom assertions that can be used to lessen the verbosity of tests. For a full list of available assertions, see the API documentation for [`ActiveJob::TestHelper`](http://api.rubyonrails.org/classes/ActiveJob/TestHelper.html).
It's a good practice to ensure that your jobs correctly get enqueued or performed
wherever you invoke them (e.g. inside your controllers). This is precisely where
the custom assertions provided by Active Job are pretty useful. For instance,
within a model:
```ruby
require 'test_helper'
class ProductTest < ActiveJob::TestCase
test 'billing job scheduling' do
assert_enqueued_with(job: BillingJob) do
product.charge(account)
end
end
end
```
Additional Testing Resources
----------------------------
### Testing Time-Dependent Code
Rails provides built-in helper methods that enable you to assert that your time-sensitive code works as expected.
Here is an example using the [`travel_to`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/TimeHelpers.html#method-i-travel_to) helper:
```ruby
# Lets say that a user is eligible for gifting a month after they register.
user = User.create(name: 'Gaurish', activation_date: Date.new(2004, 10, 24))
assert_not user.applicable_for_gifting?
travel_to Date.new(2004, 11, 24) do
assert_equal Date.new(2004, 10, 24), user.activation_date # inside the `travel_to` block `Date.current` is mocked
assert user.applicable_for_gifting?
end
assert_equal Date.new(2004, 10, 24), user.activation_date # The change was visible only inside the `travel_to` block.
```
Please see [`ActiveSupport::Testing::TimeHelpers` API Documentation](http://api.rubyonrails.org/classes/ActiveSupport/Testing/TimeHelpers.html)
for in-depth information about the available time helpers.
|