1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// Range v3 library
//
// Copyright Eric Niebler 2014-present
// Copyright Tomislav Ivek 2015-2016
//
// Use, modification and distribution is subject to the
// Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Project home: https://github.com/ericniebler/range-v3
#include <vector>
#include <sstream>
#include <range/v3/core.hpp>
#include <range/v3/algorithm/set_algorithm.hpp>
#include <range/v3/algorithm/move.hpp>
#include <range/v3/functional/identity.hpp>
#include <range/v3/iterator/operations.hpp>
#include <range/v3/iterator/insert_iterators.hpp>
#include <range/v3/utility/common_type.hpp>
#include <range/v3/utility/copy.hpp>
#include <range/v3/view/all.hpp>
#include <range/v3/view/const.hpp>
#include <range/v3/view/drop_while.hpp>
#include <range/v3/view/iota.hpp>
#include <range/v3/view/move.hpp>
#include <range/v3/view/reverse.hpp>
#include <range/v3/view/set_algorithm.hpp>
#include <range/v3/view/stride.hpp>
#include <range/v3/view/take.hpp>
#include <range/v3/view/transform.hpp>
#include "../simple_test.hpp"
#include "../test_utils.hpp"
int main()
{
using namespace ranges;
int i1_finite[] = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4};
int i2_finite[] = { -3, 2, 4, 4, 6, 9};
auto i1_infinite = views::ints | views::stride(3);
auto i2_infinite = views::ints | views::transform([](int x)
{
return x * x;
});
// simple identity check
{
::check_equal(views::set_union(i1_infinite, i1_infinite) | views::take(100), i1_infinite | views::take(100));
}
// union of two finite ranges/sets
{
auto res = views::set_union(i1_finite, i2_finite);
CPP_assert(view_<decltype(res)>);
CPP_assert(forward_range<decltype(res)>);
CPP_assert(!random_access_range<decltype(res)>);
CPP_assert(!common_range<decltype(res)>);
using R = decltype(res);
CPP_assert(same_as<range_value_t<R>, int>);
CPP_assert(same_as<range_reference_t<R>, int&>);
CPP_assert(same_as<decltype(iter_move(begin(res))), int&&>);
static_assert(range_cardinality<R>::value == ranges::finite, "Cardinality of union of finite ranges should be finite!");
::check_equal(res, {-3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 6, 9});
// check if the final result agrees with the greedy algorithm
std::vector<int> greedy_union;
set_union(i1_finite, i2_finite, back_inserter(greedy_union));
::check_equal(res, greedy_union);
auto it = begin(res);
CHECK(&*it == &*(begin(i2_finite)));
++it;
CHECK(&*it == &*(begin(i1_finite)));
}
// union of two infinite ranges
{
auto res = views::set_union(i1_infinite, i2_infinite);
CPP_assert(view_<decltype(res)>);
CPP_assert(forward_range<decltype(res)>);
CPP_assert(!random_access_range<decltype(res)>);
CPP_assert(!common_range<decltype(res)>);
using R = decltype(res);
CPP_assert(same_as<range_value_t<R>,
common_type_t<range_value_t<decltype(i1_infinite)>,
range_value_t<decltype(i2_infinite)>>>);
CPP_assert(same_as<range_reference_t<R>,
common_reference_t<range_reference_t<decltype(i1_infinite)>,
range_reference_t<decltype(i2_infinite)>>
>);
CPP_assert(same_as<range_rvalue_reference_t<R>,
common_reference_t<range_rvalue_reference_t<decltype(i1_infinite)>,
range_rvalue_reference_t<decltype(i2_infinite)>>
>);
static_assert(range_cardinality<R>::value == ranges::infinite, "Cardinality of union of infinite ranges should be infinite!");
::check_equal(res | views::take(6), {0, 1, 3, 4, 6, 9});
// check if the final result agrees with the greedy algorithm
std::vector<int> greedy_union;
set_union(i1_infinite | views::take(10), i2_infinite | views::take(10), back_inserter(greedy_union));
::check_equal(res | views::take(6), greedy_union | views::take(6));
}
// union of a finite and an infinite range
{
auto res = views::set_union(i1_finite, i2_infinite);
CPP_assert(view_<decltype(res)>);
CPP_assert(forward_range<decltype(res)>);
CPP_assert(!random_access_range<decltype(res)>);
CPP_assert(!common_range<decltype(res)>);
using R = decltype(res);
CPP_assert(same_as<range_value_t<R>, int>);
CPP_assert(same_as<range_reference_t<R>, int>); // our infinite range does not give out references
CPP_assert(same_as<range_rvalue_reference_t<R>, int>);
static_assert(range_cardinality<R>::value == ranges::infinite, "Cardinality of union with an infinite range should be infinite!");
::check_equal(res | views::take(5), {0, 1, 2, 2, 3});
}
// union of an infinite and a finite range
{
auto res = views::set_union(i1_infinite, i2_finite);
CPP_assert(view_<decltype(res)>);
CPP_assert(forward_range<decltype(res)>);
CPP_assert(!random_access_range<decltype(res)>);
CPP_assert(!common_range<decltype(res)>);
using R = decltype(res);
CPP_assert(same_as<range_value_t<R>, int>);
CPP_assert(same_as<range_reference_t<R>, int>); // our infinite range does not give out references
CPP_assert(same_as<range_rvalue_reference_t<R>, int>);
static_assert(range_cardinality<R>::value == ranges::infinite, "Cardinality of union with an infinite range should be infinite!");
::check_equal(res | views::take(7), {-3, 0, 2, 3, 4, 4, 6});
}
// unions involving unknown cardinalities
{
auto rng0 = views::iota(10) | views::drop_while([](int i)
{
return i < 25;
});
static_assert(range_cardinality<decltype(rng0)>::value == ranges::unknown, "");
auto res1 = views::set_union(i2_finite, rng0);
static_assert(range_cardinality<decltype(res1)>::value == ranges::unknown, "Union of a finite and unknown cardinality set should have unknown cardinality!");
auto res2 = views::set_union(rng0, i2_finite);
static_assert(range_cardinality<decltype(res2)>::value == ranges::unknown, "Union of an unknown and finite cardinality set should have unknown cardinality!");
auto res3 = views::set_union(i1_infinite, rng0);
static_assert(range_cardinality<decltype(res3)>::value == ranges::infinite, "Union of an infinite and unknown cardinality set should have infinite cardinality!");
auto res4 = views::set_union(rng0, i1_infinite);
static_assert(range_cardinality<decltype(res4)>::value == ranges::infinite, "Union of an unknown and infinite cardinality set should have infinite cardinality!");
auto res5 = views::set_union(rng0, rng0);
static_assert(range_cardinality<decltype(res5)>::value == ranges::unknown, "Union of two unknown cardinality sets should have unknown cardinality!");
::check_equal(res5 | views::take(100), rng0 | views::take(100));
}
// test const ranges
{
auto res1 = views::set_union(views::const_(i1_finite), views::const_(i2_finite));
using R1 = decltype(res1);
CPP_assert(same_as<range_value_t<R1>, int>);
CPP_assert(same_as<range_reference_t<R1>, const int&>);
CPP_assert(same_as<range_rvalue_reference_t<R1>, const int&&>);
auto res2 = views::set_union(views::const_(i1_finite), i2_finite);
using R2 = decltype(res2);
CPP_assert(same_as<range_value_t<R2>, int>);
CPP_assert(same_as<range_reference_t<R2>, const int&>);
CPP_assert(same_as<range_rvalue_reference_t<R2>, const int&&>);
}
// test different orderings
{
auto res = views::set_union(views::reverse(i1_finite), views::reverse(i2_finite), [](int a, int b)
{
return a > b;
});
::check_equal(res, {9, 6, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, -3});
}
struct B
{
int val;
B(int i): val{i} {}
bool operator==(const B& other) const
{
return val == other.val;
}
};
struct D: public B
{
D(int i): B{i} {}
D(B b): B{std::move(b)} {}
};
B b_finite[] = {B{-20}, B{-10}, B{1}, B{3}, B{3}, B{6}, B{8}, B{20}};
D d_finite[] = {D{0}, D{2}, D{4}, D{6}};
// sets with different element types, custom orderings
{
auto res = views::set_union(b_finite, d_finite, [](const B& a, const D& b){ return a.val < b.val; });
using R = decltype(res);
CPP_assert(same_as<range_value_t<R>, B>);
CPP_assert(same_as<range_reference_t<R>, B&>);
CPP_assert(same_as<range_rvalue_reference_t<R>, B&&>);
::check_equal(res, {B{-20}, B{-10}, B{0}, B{1}, B{2}, B{3}, B{3}, B{4}, B{6}, B{8}, B{20}});
auto it = begin(res);
CHECK(&*it == &*begin(b_finite));
advance(it, 2);
CHECK(&*it == &*begin(d_finite));
}
// projections
{
auto res1 = views::set_union(b_finite, d_finite,
less(),
&B::val,
&D::val
);
using R1 = decltype(res1);
CPP_assert(same_as<range_value_t<R1>, B>);
CPP_assert(same_as<range_reference_t<R1>, B&>);
CPP_assert(same_as<range_rvalue_reference_t<R1>, B&&>);
::check_equal(res1, {B{-20}, B{-10}, B{0}, B{1}, B{2}, B{3}, B{3}, B{4}, B{6}, B{8}, B{20}});
auto res2 = views::set_union(views::ints(-2, 10), b_finite,
less(),
identity(),
[](const B& x){ return x.val; }
);
using R2 = decltype(res2);
CPP_assert(same_as<range_value_t<R2>, B>);
CPP_assert(same_as<range_reference_t<R2>, B>);
CPP_assert(same_as<range_rvalue_reference_t<R2>, B>);
::check_equal(res2, {B{-20}, B{-10}, B{-2}, B{-1}, B{0}, B{1}, B{2}, B{3}, B{3}, B{4}, B{5}, B{6}, B{7}, B{8}, B{9}, B{20}});
}
// move
{
auto v0 = to<std::vector<MoveOnlyString>>({"a","b","c","x"});
auto v1 = to<std::vector<MoveOnlyString>>({"b","x","y","z"});
auto res = views::set_union(v0, v1, [](const MoveOnlyString& a, const MoveOnlyString& b){return a<b;});
std::vector<MoveOnlyString> expected;
move(res, back_inserter(expected));
::check_equal(expected, {"a","b","c","x","y","z"});
::check_equal(v0, {"","","",""});
::check_equal(v1, {"b","x","",""});
using R = decltype(res);
CPP_assert(same_as<range_value_t<R>, MoveOnlyString>);
CPP_assert(same_as<range_reference_t<R>, MoveOnlyString &>);
CPP_assert(same_as<range_rvalue_reference_t<R>, MoveOnlyString &&>);
}
// iterator (in)equality
{
int r1[] = {1, 2, 3};
int r2[] = { 2, 3, 4, 5};
auto res = views::set_union(r1, r2); // 1, 2, 3, 4, 5
auto it1 = ranges::next(res.begin(), 3); // *it1 == 4, member iterator into r1 points to r1.end()
auto it2 = ranges::next(it1); // *it2 == 5, member iterator into r1 also points to r1.end()
auto sentinel = res.end();
CHECK(*it1 == 4);
CHECK(*it2 == 5);
CHECK(it1 != it2); // should be different even though member iterators into r1 are the same
CHECK(it1 != sentinel);
CHECK(ranges::next(it1, 2) == sentinel);
CHECK(it2 != sentinel);
CHECK(ranges::next(it2, 1) == sentinel);
}
{
auto rng = views::set_union(
debug_input_view<int const>{i1_finite},
debug_input_view<int const>{i2_finite}
);
::check_equal(rng, {-3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 6, 9});
}
return test_result();
}
|