File: set_union.cpp

package info (click to toggle)
range-v3 0.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,652 kB
  • sloc: cpp: 76,839; xml: 226; sh: 89; python: 34; makefile: 19; perl: 15
file content (315 lines) | stat: -rw-r--r-- 12,172 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Range v3 library
//
//  Copyright Eric Niebler 2014-present
//  Copyright Tomislav Ivek 2015-2016
//
//  Use, modification and distribution is subject to the
//  Boost Software License, Version 1.0. (See accompanying
//  file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)
//
// Project home: https://github.com/ericniebler/range-v3

#include <vector>
#include <sstream>
#include <range/v3/core.hpp>
#include <range/v3/algorithm/set_algorithm.hpp>
#include <range/v3/algorithm/move.hpp>
#include <range/v3/functional/identity.hpp>
#include <range/v3/iterator/operations.hpp>
#include <range/v3/iterator/insert_iterators.hpp>
#include <range/v3/utility/common_type.hpp>
#include <range/v3/utility/copy.hpp>
#include <range/v3/view/all.hpp>
#include <range/v3/view/const.hpp>
#include <range/v3/view/drop_while.hpp>
#include <range/v3/view/iota.hpp>
#include <range/v3/view/move.hpp>
#include <range/v3/view/reverse.hpp>
#include <range/v3/view/set_algorithm.hpp>
#include <range/v3/view/stride.hpp>
#include <range/v3/view/take.hpp>
#include <range/v3/view/transform.hpp>
#include "../simple_test.hpp"
#include "../test_utils.hpp"

int main()
{
    using namespace ranges;

    int i1_finite[] = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4};
    int i2_finite[] = { -3, 2, 4, 4, 6, 9};

    auto i1_infinite = views::ints | views::stride(3);
    auto i2_infinite = views::ints | views::transform([](int x)
    {
        return x * x;
    });

    // simple identity check
    {
        ::check_equal(views::set_union(i1_infinite, i1_infinite) | views::take(100), i1_infinite | views::take(100));
    }

    // union of two finite ranges/sets
    {
        auto res = views::set_union(i1_finite, i2_finite);

        CPP_assert(view_<decltype(res)>);
        CPP_assert(forward_range<decltype(res)>);
        CPP_assert(!random_access_range<decltype(res)>);
        CPP_assert(!common_range<decltype(res)>);

        using R = decltype(res);

        CPP_assert(same_as<range_value_t<R>, int>);
        CPP_assert(same_as<range_reference_t<R>, int&>);
        CPP_assert(same_as<decltype(iter_move(begin(res))), int&&>);

        static_assert(range_cardinality<R>::value == ranges::finite, "Cardinality of union of finite ranges should be finite!");

        ::check_equal(res, {-3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 6, 9});

        // check if the final result agrees with the greedy algorithm
        std::vector<int> greedy_union;
        set_union(i1_finite, i2_finite, back_inserter(greedy_union));
        ::check_equal(res, greedy_union);

        auto it = begin(res);
        CHECK(&*it == &*(begin(i2_finite)));
        ++it;
        CHECK(&*it == &*(begin(i1_finite)));
    }

    // union of two infinite ranges
    {
        auto res = views::set_union(i1_infinite, i2_infinite);

        CPP_assert(view_<decltype(res)>);
        CPP_assert(forward_range<decltype(res)>);
        CPP_assert(!random_access_range<decltype(res)>);
        CPP_assert(!common_range<decltype(res)>);

        using R = decltype(res);

        CPP_assert(same_as<range_value_t<R>,
                            common_type_t<range_value_t<decltype(i1_infinite)>,
                                          range_value_t<decltype(i2_infinite)>>>);
        CPP_assert(same_as<range_reference_t<R>,
                            common_reference_t<range_reference_t<decltype(i1_infinite)>,
                                               range_reference_t<decltype(i2_infinite)>>
                           >);
        CPP_assert(same_as<range_rvalue_reference_t<R>,
                            common_reference_t<range_rvalue_reference_t<decltype(i1_infinite)>,
                                               range_rvalue_reference_t<decltype(i2_infinite)>>
                           >);

        static_assert(range_cardinality<R>::value == ranges::infinite, "Cardinality of union of infinite ranges should be infinite!");

        ::check_equal(res | views::take(6), {0, 1, 3, 4, 6, 9});

        // check if the final result agrees with the greedy algorithm
        std::vector<int> greedy_union;
        set_union(i1_infinite | views::take(10), i2_infinite | views::take(10), back_inserter(greedy_union));
        ::check_equal(res | views::take(6), greedy_union | views::take(6));
    }

    // union of a finite and an infinite range
    {
        auto res = views::set_union(i1_finite, i2_infinite);

        CPP_assert(view_<decltype(res)>);
        CPP_assert(forward_range<decltype(res)>);
        CPP_assert(!random_access_range<decltype(res)>);
        CPP_assert(!common_range<decltype(res)>);

        using R = decltype(res);

        CPP_assert(same_as<range_value_t<R>, int>);
        CPP_assert(same_as<range_reference_t<R>, int>); // our infinite range does not give out references
        CPP_assert(same_as<range_rvalue_reference_t<R>, int>);

        static_assert(range_cardinality<R>::value == ranges::infinite, "Cardinality of union with an infinite range should be infinite!");

        ::check_equal(res | views::take(5), {0, 1, 2, 2, 3});
    }

    // union of an infinite and a finite range
    {
        auto res = views::set_union(i1_infinite, i2_finite);

        CPP_assert(view_<decltype(res)>);
        CPP_assert(forward_range<decltype(res)>);
        CPP_assert(!random_access_range<decltype(res)>);
        CPP_assert(!common_range<decltype(res)>);

        using R = decltype(res);

        CPP_assert(same_as<range_value_t<R>, int>);
        CPP_assert(same_as<range_reference_t<R>, int>); // our infinite range does not give out references
        CPP_assert(same_as<range_rvalue_reference_t<R>, int>);

        static_assert(range_cardinality<R>::value == ranges::infinite, "Cardinality of union with an infinite range should be infinite!");

        ::check_equal(res | views::take(7), {-3, 0, 2, 3, 4, 4, 6});
    }

    // unions involving unknown cardinalities
    {
        auto rng0 = views::iota(10) | views::drop_while([](int i)
        {
            return i < 25;
        });
        static_assert(range_cardinality<decltype(rng0)>::value == ranges::unknown, "");

        auto res1 = views::set_union(i2_finite, rng0);
        static_assert(range_cardinality<decltype(res1)>::value == ranges::unknown, "Union of a finite and unknown cardinality set should have unknown cardinality!");

        auto res2 = views::set_union(rng0, i2_finite);
        static_assert(range_cardinality<decltype(res2)>::value == ranges::unknown, "Union of an unknown and finite cardinality set should have unknown cardinality!");

        auto res3 = views::set_union(i1_infinite, rng0);
        static_assert(range_cardinality<decltype(res3)>::value == ranges::infinite, "Union of an infinite and unknown cardinality set should have infinite cardinality!");

        auto res4 = views::set_union(rng0, i1_infinite);
        static_assert(range_cardinality<decltype(res4)>::value == ranges::infinite, "Union of an unknown and infinite cardinality set should have infinite cardinality!");

        auto res5 = views::set_union(rng0, rng0);
        static_assert(range_cardinality<decltype(res5)>::value == ranges::unknown, "Union of two unknown cardinality sets should have unknown cardinality!");
        ::check_equal(res5 | views::take(100), rng0 | views::take(100));
    }

    // test const ranges
    {
        auto res1 = views::set_union(views::const_(i1_finite), views::const_(i2_finite));
        using R1 = decltype(res1);
        CPP_assert(same_as<range_value_t<R1>, int>);
        CPP_assert(same_as<range_reference_t<R1>, const int&>);
        CPP_assert(same_as<range_rvalue_reference_t<R1>, const int&&>);

        auto res2 = views::set_union(views::const_(i1_finite), i2_finite);
        using R2 = decltype(res2);
        CPP_assert(same_as<range_value_t<R2>, int>);
        CPP_assert(same_as<range_reference_t<R2>, const int&>);
        CPP_assert(same_as<range_rvalue_reference_t<R2>, const int&&>);
    }

    // test different orderings
    {
        auto res = views::set_union(views::reverse(i1_finite), views::reverse(i2_finite), [](int a, int b)
        {
            return a > b;
        });
        ::check_equal(res, {9, 6, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, -3});
    }

    struct B
    {
        int val;
        B(int i): val{i} {}
        bool operator==(const B& other) const
        {
            return val == other.val;
        }
    };

    struct D: public B
    {
        D(int i): B{i} {}
        D(B b): B{std::move(b)} {}
    };

    B b_finite[] = {B{-20}, B{-10}, B{1}, B{3}, B{3}, B{6}, B{8}, B{20}};
    D d_finite[] = {D{0}, D{2}, D{4}, D{6}};

    // sets with different element types, custom orderings
    {
        auto res = views::set_union(b_finite, d_finite, [](const B& a, const D& b){ return a.val < b.val; });
        using R = decltype(res);
        CPP_assert(same_as<range_value_t<R>, B>);
        CPP_assert(same_as<range_reference_t<R>, B&>);
        CPP_assert(same_as<range_rvalue_reference_t<R>, B&&>);
        ::check_equal(res, {B{-20}, B{-10}, B{0}, B{1}, B{2}, B{3}, B{3}, B{4}, B{6}, B{8}, B{20}});
        auto it = begin(res);
        CHECK(&*it == &*begin(b_finite));
        advance(it, 2);
        CHECK(&*it == &*begin(d_finite));
    }

    // projections
    {
        auto res1 = views::set_union(b_finite, d_finite,
                                    less(),
                                    &B::val,
                                    &D::val
                                   );
        using R1 = decltype(res1);
        CPP_assert(same_as<range_value_t<R1>, B>);
        CPP_assert(same_as<range_reference_t<R1>, B&>);
        CPP_assert(same_as<range_rvalue_reference_t<R1>, B&&>);
        ::check_equal(res1, {B{-20}, B{-10}, B{0}, B{1}, B{2}, B{3}, B{3}, B{4}, B{6}, B{8}, B{20}});

        auto res2 = views::set_union(views::ints(-2, 10), b_finite,
                                    less(),
                                    identity(),
                                    [](const B& x){ return x.val; }
                                   );
        using R2 = decltype(res2);
        CPP_assert(same_as<range_value_t<R2>, B>);
        CPP_assert(same_as<range_reference_t<R2>, B>);
        CPP_assert(same_as<range_rvalue_reference_t<R2>, B>);
        ::check_equal(res2, {B{-20}, B{-10}, B{-2}, B{-1}, B{0}, B{1}, B{2}, B{3}, B{3}, B{4}, B{5}, B{6}, B{7}, B{8}, B{9}, B{20}});
    }

    // move
    {
        auto v0 = to<std::vector<MoveOnlyString>>({"a","b","c","x"});
        auto v1 = to<std::vector<MoveOnlyString>>({"b","x","y","z"});
        auto res = views::set_union(v0, v1, [](const MoveOnlyString& a, const MoveOnlyString& b){return a<b;});

        std::vector<MoveOnlyString> expected;
        move(res, back_inserter(expected));

        ::check_equal(expected, {"a","b","c","x","y","z"});
        ::check_equal(v0, {"","","",""});
        ::check_equal(v1, {"b","x","",""});

        using R = decltype(res);

        CPP_assert(same_as<range_value_t<R>, MoveOnlyString>);
        CPP_assert(same_as<range_reference_t<R>, MoveOnlyString &>);
        CPP_assert(same_as<range_rvalue_reference_t<R>, MoveOnlyString &&>);
    }

    // iterator (in)equality
    {
        int r1[] = {1, 2, 3};
        int r2[] = {   2, 3, 4, 5};
        auto res = views::set_union(r1, r2); // 1, 2, 3, 4, 5

        auto it1 = ranges::next(res.begin(), 3); // *it1 == 4, member iterator into r1 points to r1.end()
        auto it2 = ranges::next(it1);            // *it2 == 5, member iterator into r1 also points to r1.end()
        auto sentinel = res.end();

        CHECK(*it1 == 4);
        CHECK(*it2 == 5);

        CHECK(it1 != it2); // should be different even though member iterators into r1 are the same

        CHECK(it1 != sentinel);
        CHECK(ranges::next(it1, 2) == sentinel);

        CHECK(it2 != sentinel);
        CHECK(ranges::next(it2, 1) == sentinel);
    }

    {
        auto rng = views::set_union(
            debug_input_view<int const>{i1_finite},
            debug_input_view<int const>{i2_finite}
        );
        ::check_equal(rng, {-3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 6, 9});
    }

    return test_result();
}