1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#include <benchmark/benchmark.h>
#include <random>
#include <rapidfuzz/distance/Levenshtein.hpp>
#include <string>
#include <vector>
std::string generate(int max_length)
{
std::string possible_characters = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
std::random_device rd;
std::mt19937 engine(rd());
std::uniform_int_distribution<> dist(0, static_cast<int>(possible_characters.size() - 1));
std::string ret = "";
for (int i = 0; i < max_length; i++) {
int random_index = dist(engine);
ret += possible_characters[static_cast<size_t>(random_index)];
}
return ret;
}
template <typename T>
std::basic_string<T> str_multiply(std::basic_string<T> a, unsigned int b)
{
std::basic_string<T> output;
while (b--)
output += a;
return output;
}
// Define another benchmark
static void BM_LevWeightedDist1(benchmark::State& state)
{
std::string a = "aaaaa aaaaa";
for (auto _ : state) {
benchmark::DoNotOptimize(rapidfuzz::levenshtein_distance(a, a));
}
state.SetLabel("Similar Strings");
}
static void BM_LevWeightedDist2(benchmark::State& state)
{
std::string a = "aaaaa aaaaa";
std::string b = "bbbbb bbbbb";
for (auto _ : state) {
benchmark::DoNotOptimize(rapidfuzz::levenshtein_distance(a, b));
}
state.SetLabel("Different Strings");
}
static void BM_LevNormWeightedDist1(benchmark::State& state)
{
std::string a = "aaaaa aaaaa";
for (auto _ : state) {
benchmark::DoNotOptimize(rapidfuzz::levenshtein_normalized_distance(a, a));
}
state.SetLabel("Similar Strings");
}
static void BM_LevNormWeightedDist2(benchmark::State& state)
{
std::string a = "aaaaa aaaaa";
std::string b = "bbbbb bbbbb";
for (auto _ : state) {
benchmark::DoNotOptimize(rapidfuzz::levenshtein_normalized_distance(a, b));
}
state.SetLabel("Different Strings");
}
static void BM_LevLongSimilarSequence(benchmark::State& state)
{
size_t len = state.range(0);
size_t score_cutoff = state.range(1);
std::string s1 = std::string("a") + str_multiply(std::string("b"), (len - 2)) + std::string("a");
std::string s2 = str_multiply(std::string("b"), len);
size_t num = 0;
for (auto _ : state) {
benchmark::DoNotOptimize(rapidfuzz::levenshtein_distance(s1, s2, {1, 1, 1}, score_cutoff));
++num;
}
state.counters["Rate"] = benchmark::Counter(static_cast<double>(num * len), benchmark::Counter::kIsRate);
state.counters["InvRate"] = benchmark::Counter(static_cast<double>(num * len),
benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
}
static void BM_LevLongNonSimilarSequence(benchmark::State& state)
{
size_t len = state.range(0);
size_t score_cutoff = state.range(1);
std::string s1 = str_multiply(std::string("a"), len);
std::string s2 = str_multiply(std::string("b"), len);
size_t num = 0;
for (auto _ : state) {
benchmark::DoNotOptimize(rapidfuzz::levenshtein_distance(s1, s2, {1, 1, 1}, score_cutoff));
++num;
}
state.counters["Rate"] = benchmark::Counter(static_cast<double>(num * len), benchmark::Counter::kIsRate);
state.counters["InvRate"] = benchmark::Counter(static_cast<double>(num * len),
benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
}
template <size_t MaxLen>
static void BM_Levenshtein(benchmark::State& state)
{
std::vector<std::string> seq1;
std::vector<std::string> seq2;
for (int i = 0; i < 256; i++)
seq1.push_back(generate(MaxLen));
for (int i = 0; i < 10000; i++)
seq2.push_back(generate(MaxLen));
size_t num = 0;
for (auto _ : state) {
for (size_t j = 0; j < seq2.size(); ++j)
for (size_t i = 0; i < seq1.size(); ++i)
benchmark::DoNotOptimize(rapidfuzz::levenshtein_distance(seq1[i], seq2[j]));
num += seq1.size() * seq2.size();
}
state.counters["Rate"] = benchmark::Counter(static_cast<double>(num), benchmark::Counter::kIsRate);
state.counters["InvRate"] = benchmark::Counter(static_cast<double>(num),
benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
}
template <size_t MaxLen>
static void BM_Levenshtein_Cached(benchmark::State& state)
{
std::vector<std::string> seq1;
std::vector<std::string> seq2;
for (int i = 0; i < 256; i++)
seq1.push_back(generate(MaxLen));
for (int i = 0; i < 10000; i++)
seq2.push_back(generate(MaxLen));
size_t num = 0;
for (auto _ : state) {
for (const auto& str1 : seq1) {
rapidfuzz::CachedLevenshtein<char> scorer(str1);
for (size_t j = 0; j < seq2.size(); ++j)
benchmark::DoNotOptimize(scorer.similarity(seq2[j]));
}
num += seq1.size() * seq2.size();
}
state.counters["Rate"] = benchmark::Counter(static_cast<double>(num), benchmark::Counter::kIsRate);
state.counters["InvRate"] = benchmark::Counter(static_cast<double>(num),
benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
}
#ifdef RAPIDFUZZ_SIMD
template <size_t MaxLen>
static void BM_Levenshtein_SIMD(benchmark::State& state)
{
std::vector<std::string> seq1;
std::vector<std::string> seq2;
std::vector<size_t> results(64);
for (int i = 0; i < 64; i++)
seq1.push_back(generate(MaxLen));
for (int i = 0; i < 10000; i++)
seq2.push_back(generate(MaxLen));
size_t num = 0;
for (auto _ : state) {
rapidfuzz::experimental::MultiLevenshtein<MaxLen> scorer(seq1.size());
for (const auto& str1 : seq1)
scorer.insert(str1);
for (const auto& str2 : seq2)
scorer.similarity(&results[0], results.size(), str2);
num += seq1.size() * seq2.size();
}
state.counters["Rate"] = benchmark::Counter(static_cast<double>(num), benchmark::Counter::kIsRate);
state.counters["InvRate"] = benchmark::Counter(static_cast<double>(num),
benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
}
#endif
BENCHMARK(BM_LevLongSimilarSequence)
->Args({100, 30})
->Args({500, 30})
->Args({5000, 30})
->Args({10000, 30})
->Args({20000, 30})
->Args({50000, 30});
BENCHMARK(BM_LevLongNonSimilarSequence)
->Args({100, 30})
->Args({500, 30})
->Args({5000, 30})
->Args({10000, 30})
->Args({20000, 30})
->Args({50000, 30});
BENCHMARK(BM_LevWeightedDist1);
BENCHMARK(BM_LevWeightedDist2);
BENCHMARK(BM_LevNormWeightedDist1);
BENCHMARK(BM_LevNormWeightedDist2);
BENCHMARK_TEMPLATE(BM_Levenshtein, 8);
BENCHMARK_TEMPLATE(BM_Levenshtein, 16);
BENCHMARK_TEMPLATE(BM_Levenshtein, 32);
BENCHMARK_TEMPLATE(BM_Levenshtein, 64);
BENCHMARK_TEMPLATE(BM_Levenshtein_Cached, 8);
BENCHMARK_TEMPLATE(BM_Levenshtein_Cached, 16);
BENCHMARK_TEMPLATE(BM_Levenshtein_Cached, 32);
BENCHMARK_TEMPLATE(BM_Levenshtein_Cached, 64);
#ifdef RAPIDFUZZ_SIMD
BENCHMARK_TEMPLATE(BM_Levenshtein_SIMD, 8);
BENCHMARK_TEMPLATE(BM_Levenshtein_SIMD, 16);
BENCHMARK_TEMPLATE(BM_Levenshtein_SIMD, 32);
BENCHMARK_TEMPLATE(BM_Levenshtein_SIMD, 64);
#endif
BENCHMARK_MAIN();
|