1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/* SPDX-License-Identifier: MIT */
/* Copyright (c) 2022 Max Bachmann */
#pragma once
#include <cassert>
#include <cstddef>
#include <iterator>
#include <limits>
#include <ostream>
#include <stdexcept>
#include <stdint.h>
#include <sys/types.h>
#include <vector>
#include <rapidfuzz/details/type_traits.hpp>
namespace rapidfuzz {
namespace detail {
static inline void assume(bool b)
{
#if defined(__clang__)
__builtin_assume(b);
#elif defined(__GNUC__) || defined(__GNUG__)
if (!b) __builtin_unreachable();
#elif defined(_MSC_VER)
__assume(b);
#endif
}
namespace to_begin_detail {
using std::begin;
template <typename CharT>
CharT* to_begin(CharT* s)
{
return s;
}
template <typename T>
auto to_begin(T& x) -> decltype(begin(x))
{
return begin(x);
}
} // namespace to_begin_detail
using to_begin_detail::to_begin;
namespace to_end_detail {
using std::end;
template <typename CharT>
CharT* to_end(CharT* s)
{
assume(s != nullptr);
while (*s != 0)
++s;
return s;
}
template <typename T>
auto to_end(T& x) -> decltype(end(x))
{
return end(x);
}
} // namespace to_end_detail
using to_end_detail::to_end;
template <typename Iter>
class Range {
Iter _first;
Iter _last;
// todo we might not want to cache the size for iterators
// that can can retrieve the size in O(1) time
size_t _size;
public:
using value_type = typename std::iterator_traits<Iter>::value_type;
using iterator = Iter;
using reverse_iterator = std::reverse_iterator<iterator>;
Range(Iter first, Iter last) : _first(first), _last(last)
{
assert(std::distance(_first, _last) >= 0);
_size = static_cast<size_t>(std::distance(_first, _last));
}
Range(Iter first, Iter last, size_t size) : _first(first), _last(last), _size(size)
{}
template <typename T>
Range(T& x) : Range(to_begin(x), to_end(x))
{}
iterator begin() const noexcept
{
return _first;
}
iterator end() const noexcept
{
return _last;
}
reverse_iterator rbegin() const noexcept
{
return reverse_iterator(end());
}
reverse_iterator rend() const noexcept
{
return reverse_iterator(begin());
}
size_t size() const
{
return _size;
}
bool empty() const
{
return size() == 0;
}
explicit operator bool() const
{
return !empty();
}
template <typename... Dummy, typename IterCopy = Iter,
typename = rapidfuzz::rf_enable_if_t<
std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<IterCopy>::iterator_category>::value>>
auto operator[](size_t n) const -> decltype(*_first)
{
return _first[static_cast<ptrdiff_t>(n)];
}
void remove_prefix(size_t n)
{
std::advance(_first, static_cast<ptrdiff_t>(n));
_size -= n;
}
void remove_suffix(size_t n)
{
std::advance(_last, -static_cast<ptrdiff_t>(n));
_size -= n;
}
Range subseq(size_t pos = 0, size_t count = std::numeric_limits<size_t>::max())
{
if (pos > size()) throw std::out_of_range("Index out of range in Range::substr");
Range res = *this;
res.remove_prefix(pos);
if (count < res.size()) res.remove_suffix(res.size() - count);
return res;
}
const value_type& front() const
{
return *_first;
}
const value_type& back() const
{
return *(_last - 1);
}
Range<reverse_iterator> reversed() const
{
return {rbegin(), rend(), _size};
}
friend std::ostream& operator<<(std::ostream& os, const Range& seq)
{
os << "[";
for (auto x : seq)
os << static_cast<uint64_t>(x) << ", ";
os << "]";
return os;
}
};
template <typename Iter>
auto make_range(Iter first, Iter last) -> Range<Iter>
{
return Range<Iter>(first, last);
}
template <typename T>
auto make_range(T& x) -> Range<decltype(to_begin(x))>
{
return {to_begin(x), to_end(x)};
}
template <typename InputIt1, typename InputIt2>
inline bool operator==(const Range<InputIt1>& a, const Range<InputIt2>& b)
{
if (a.size() != b.size()) return false;
return std::equal(a.begin(), a.end(), b.begin());
}
template <typename InputIt1, typename InputIt2>
inline bool operator!=(const Range<InputIt1>& a, const Range<InputIt2>& b)
{
return !(a == b);
}
template <typename InputIt1, typename InputIt2>
inline bool operator<(const Range<InputIt1>& a, const Range<InputIt2>& b)
{
return (std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()));
}
template <typename InputIt1, typename InputIt2>
inline bool operator>(const Range<InputIt1>& a, const Range<InputIt2>& b)
{
return b < a;
}
template <typename InputIt1, typename InputIt2>
inline bool operator<=(const Range<InputIt1>& a, const Range<InputIt2>& b)
{
return !(b < a);
}
template <typename InputIt1, typename InputIt2>
inline bool operator>=(const Range<InputIt1>& a, const Range<InputIt2>& b)
{
return !(a < b);
}
template <typename InputIt>
using RangeVec = std::vector<Range<InputIt>>;
} // namespace detail
} // namespace rapidfuzz
|