1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
/* SPDX-License-Identifier: MIT */
/* Copyright © 2022-present Max Bachmann */
#include <cstddef>
#include <cstdint>
#include <rapidfuzz/details/PatternMatchVector.hpp>
#include <rapidfuzz/details/common.hpp>
#include <rapidfuzz/details/distance.hpp>
#include <rapidfuzz/details/intrinsics.hpp>
#include <vector>
namespace rapidfuzz {
namespace detail {
struct FlaggedCharsWord {
uint64_t P_flag;
uint64_t T_flag;
};
struct FlaggedCharsMultiword {
std::vector<uint64_t> P_flag;
std::vector<uint64_t> T_flag;
};
struct SearchBoundMask {
size_t words = 0;
size_t empty_words = 0;
uint64_t last_mask = 0;
uint64_t first_mask = 0;
};
static inline double jaro_calculate_similarity(size_t P_len, size_t T_len, size_t CommonChars,
size_t Transpositions)
{
Transpositions /= 2;
double Sim = 0;
Sim += static_cast<double>(CommonChars) / static_cast<double>(P_len);
Sim += static_cast<double>(CommonChars) / static_cast<double>(T_len);
Sim += (static_cast<double>(CommonChars) - static_cast<double>(Transpositions)) /
static_cast<double>(CommonChars);
return Sim / 3.0;
}
/**
* @brief filter matches below score_cutoff based on string lengths
*/
static inline bool jaro_length_filter(size_t P_len, size_t T_len, double score_cutoff)
{
if (!T_len || !P_len) return false;
double min_len = static_cast<double>(std::min(P_len, T_len));
double Sim = min_len / static_cast<double>(P_len) + min_len / static_cast<double>(T_len) + 1.0;
Sim /= 3.0;
return Sim >= score_cutoff;
}
/**
* @brief filter matches below score_cutoff based on string lengths and common characters
*/
static inline bool jaro_common_char_filter(size_t P_len, size_t T_len, size_t CommonChars,
double score_cutoff)
{
if (!CommonChars) return false;
double Sim = 0;
Sim += static_cast<double>(CommonChars) / static_cast<double>(P_len);
Sim += static_cast<double>(CommonChars) / static_cast<double>(T_len);
Sim += 1.0;
Sim /= 3.0;
return Sim >= score_cutoff;
}
static inline size_t count_common_chars(const FlaggedCharsWord& flagged)
{
return popcount(flagged.P_flag);
}
static inline size_t count_common_chars(const FlaggedCharsMultiword& flagged)
{
size_t CommonChars = 0;
if (flagged.P_flag.size() < flagged.T_flag.size()) {
for (uint64_t flag : flagged.P_flag) {
CommonChars += popcount(flag);
}
}
else {
for (uint64_t flag : flagged.T_flag) {
CommonChars += popcount(flag);
}
}
return CommonChars;
}
template <typename PM_Vec, typename InputIt1, typename InputIt2>
static inline FlaggedCharsWord flag_similar_characters_word(const PM_Vec& PM,
#ifdef NDEBUG
const Range<InputIt1>&,
#else
const Range<InputIt1>& P,
#endif
const Range<InputIt2>& T, size_t Bound)
{
assert(P.size() <= 64);
assert(T.size() <= 64);
assert(Bound > P.size() || P.size() - Bound <= T.size());
FlaggedCharsWord flagged = {0, 0};
uint64_t BoundMask = bit_mask_lsb<uint64_t>(Bound + 1);
size_t j = 0;
auto T_iter = T.begin();
for (; j < std::min(Bound, T.size()); ++j, ++T_iter) {
uint64_t PM_j = PM.get(0, *T_iter) & BoundMask & (~flagged.P_flag);
flagged.P_flag |= blsi(PM_j);
flagged.T_flag |= static_cast<uint64_t>(PM_j != 0) << j;
BoundMask = (BoundMask << 1) | 1;
}
for (; j < T.size(); ++j, ++T_iter) {
uint64_t PM_j = PM.get(0, *T_iter) & BoundMask & (~flagged.P_flag);
flagged.P_flag |= blsi(PM_j);
flagged.T_flag |= static_cast<uint64_t>(PM_j != 0) << j;
BoundMask <<= 1;
}
return flagged;
}
template <typename CharT>
static inline void flag_similar_characters_step(const BlockPatternMatchVector& PM, CharT T_j,
FlaggedCharsMultiword& flagged, size_t j,
SearchBoundMask BoundMask)
{
size_t j_word = j / 64;
size_t j_pos = j % 64;
size_t word = BoundMask.empty_words;
size_t last_word = word + BoundMask.words;
if (BoundMask.words == 1) {
uint64_t PM_j =
PM.get(word, T_j) & BoundMask.last_mask & BoundMask.first_mask & (~flagged.P_flag[word]);
flagged.P_flag[word] |= blsi(PM_j);
flagged.T_flag[j_word] |= static_cast<uint64_t>(PM_j != 0) << j_pos;
return;
}
if (BoundMask.first_mask) {
uint64_t PM_j = PM.get(word, T_j) & BoundMask.first_mask & (~flagged.P_flag[word]);
if (PM_j) {
flagged.P_flag[word] |= blsi(PM_j);
flagged.T_flag[j_word] |= 1ull << j_pos;
return;
}
word++;
}
/* unroll for better performance on long sequences when access is fast */
if (T_j >= 0 && T_j < 256) {
for (; word + 3 < last_word - 1; word += 4) {
uint64_t PM_j[4];
unroll<size_t, 4>([&](size_t i) {
PM_j[i] = PM.get(word + i, static_cast<uint8_t>(T_j)) & (~flagged.P_flag[word + i]);
});
if (PM_j[0]) {
flagged.P_flag[word] |= blsi(PM_j[0]);
flagged.T_flag[j_word] |= 1ull << j_pos;
return;
}
if (PM_j[1]) {
flagged.P_flag[word + 1] |= blsi(PM_j[1]);
flagged.T_flag[j_word] |= 1ull << j_pos;
return;
}
if (PM_j[2]) {
flagged.P_flag[word + 2] |= blsi(PM_j[2]);
flagged.T_flag[j_word] |= 1ull << j_pos;
return;
}
if (PM_j[3]) {
flagged.P_flag[word + 3] |= blsi(PM_j[3]);
flagged.T_flag[j_word] |= 1ull << j_pos;
return;
}
}
}
for (; word < last_word - 1; ++word) {
uint64_t PM_j = PM.get(word, T_j) & (~flagged.P_flag[word]);
if (PM_j) {
flagged.P_flag[word] |= blsi(PM_j);
flagged.T_flag[j_word] |= 1ull << j_pos;
return;
}
}
if (BoundMask.last_mask) {
uint64_t PM_j = PM.get(word, T_j) & BoundMask.last_mask & (~flagged.P_flag[word]);
flagged.P_flag[word] |= blsi(PM_j);
flagged.T_flag[j_word] |= static_cast<uint64_t>(PM_j != 0) << j_pos;
}
}
template <typename InputIt1, typename InputIt2>
static inline FlaggedCharsMultiword flag_similar_characters_block(const BlockPatternMatchVector& PM,
const Range<InputIt1>& P,
const Range<InputIt2>& T, size_t Bound)
{
assert(P.size() > 64 || T.size() > 64);
assert(Bound > P.size() || P.size() - Bound <= T.size());
assert(Bound >= 31);
FlaggedCharsMultiword flagged;
flagged.T_flag.resize(ceil_div(T.size(), 64));
flagged.P_flag.resize(ceil_div(P.size(), 64));
SearchBoundMask BoundMask;
size_t start_range = std::min(Bound + 1, P.size());
BoundMask.words = 1 + start_range / 64;
BoundMask.empty_words = 0;
BoundMask.last_mask = (1ull << (start_range % 64)) - 1;
BoundMask.first_mask = ~UINT64_C(0);
auto T_iter = T.begin();
for (size_t j = 0; j < T.size(); ++j, ++T_iter) {
flag_similar_characters_step(PM, *T_iter, flagged, j, BoundMask);
if (j + Bound + 1 < P.size()) {
BoundMask.last_mask = (BoundMask.last_mask << 1) | 1;
if (j + Bound + 2 < P.size() && BoundMask.last_mask == ~UINT64_C(0)) {
BoundMask.last_mask = 0;
BoundMask.words++;
}
}
if (j >= Bound) {
BoundMask.first_mask <<= 1;
if (BoundMask.first_mask == 0) {
BoundMask.first_mask = ~UINT64_C(0);
BoundMask.words--;
BoundMask.empty_words++;
}
}
}
return flagged;
}
template <typename PM_Vec, typename InputIt1>
static inline size_t count_transpositions_word(const PM_Vec& PM, const Range<InputIt1>& T,
const FlaggedCharsWord& flagged)
{
uint64_t P_flag = flagged.P_flag;
uint64_t T_flag = flagged.T_flag;
size_t Transpositions = 0;
while (T_flag) {
uint64_t PatternFlagMask = blsi(P_flag);
Transpositions += !(PM.get(0, T[countr_zero(T_flag)]) & PatternFlagMask);
T_flag = blsr(T_flag);
P_flag ^= PatternFlagMask;
}
return Transpositions;
}
template <typename InputIt1>
static inline size_t count_transpositions_block(const BlockPatternMatchVector& PM, const Range<InputIt1>& T,
const FlaggedCharsMultiword& flagged, size_t FlaggedChars)
{
size_t TextWord = 0;
size_t PatternWord = 0;
uint64_t T_flag = flagged.T_flag[TextWord];
uint64_t P_flag = flagged.P_flag[PatternWord];
auto T_first = T.begin();
size_t Transpositions = 0;
while (FlaggedChars) {
while (!T_flag) {
TextWord++;
T_first += 64;
T_flag = flagged.T_flag[TextWord];
}
while (T_flag) {
while (!P_flag) {
PatternWord++;
P_flag = flagged.P_flag[PatternWord];
}
uint64_t PatternFlagMask = blsi(P_flag);
Transpositions += !(PM.get(PatternWord, T_first[static_cast<ptrdiff_t>(countr_zero(T_flag))]) &
PatternFlagMask);
T_flag = blsr(T_flag);
P_flag ^= PatternFlagMask;
FlaggedChars--;
}
}
return Transpositions;
}
// todo cleanup the split between jaro_bounds
/**
* @brief find bounds
*/
static inline size_t jaro_bounds(size_t P_len, size_t T_len)
{
/* since jaro uses a sliding window some parts of T/P might never be in
* range an can be removed ahead of time
*/
size_t Bound = (T_len > P_len) ? T_len : P_len;
Bound /= 2;
if (Bound > 0) Bound--;
return Bound;
}
/**
* @brief find bounds and skip out of bound parts of the sequences
*/
template <typename InputIt1, typename InputIt2>
static inline size_t jaro_bounds(Range<InputIt1>& P, Range<InputIt2>& T)
{
size_t P_len = P.size();
size_t T_len = T.size();
// this is currently an early exit condition
// if this is changed handle this below, so Bound is never below 0
assert(P_len != 0 || T_len != 0);
/* since jaro uses a sliding window some parts of T/P might never be in
* range an can be removed ahead of time
*/
size_t Bound = 0;
if (T_len > P_len) {
Bound = T_len / 2 - 1;
if (T_len > P_len + Bound) T.remove_suffix(T_len - (P_len + Bound));
}
else {
Bound = P_len / 2 - 1;
if (P_len > T_len + Bound) P.remove_suffix(P_len - (T_len + Bound));
}
return Bound;
}
template <typename InputIt1, typename InputIt2>
static inline double jaro_similarity(Range<InputIt1> P, Range<InputIt2> T, double score_cutoff)
{
size_t P_len = P.size();
size_t T_len = T.size();
if (score_cutoff > 1.0) return 0.0;
if (!P_len && !T_len) return 1.0;
/* filter out based on the length difference between the two strings */
if (!jaro_length_filter(P_len, T_len, score_cutoff)) return 0.0;
if (P_len == 1 && T_len == 1) return static_cast<double>(P.front() == T.front());
size_t Bound = jaro_bounds(P, T);
/* common prefix never includes Transpositions */
size_t CommonChars = remove_common_prefix(P, T);
size_t Transpositions = 0;
if (P.empty() || T.empty()) {
/* already has correct number of common chars and transpositions */
}
else if (P.size() <= 64 && T.size() <= 64) {
PatternMatchVector PM(P);
auto flagged = flag_similar_characters_word(PM, P, T, Bound);
CommonChars += count_common_chars(flagged);
if (!jaro_common_char_filter(P_len, T_len, CommonChars, score_cutoff)) return 0.0;
Transpositions = count_transpositions_word(PM, T, flagged);
}
else {
BlockPatternMatchVector PM(P);
auto flagged = flag_similar_characters_block(PM, P, T, Bound);
size_t FlaggedChars = count_common_chars(flagged);
CommonChars += FlaggedChars;
if (!jaro_common_char_filter(P_len, T_len, CommonChars, score_cutoff)) return 0.0;
Transpositions = count_transpositions_block(PM, T, flagged, FlaggedChars);
}
double Sim = jaro_calculate_similarity(P_len, T_len, CommonChars, Transpositions);
return (Sim >= score_cutoff) ? Sim : 0;
}
template <typename InputIt1, typename InputIt2>
static inline double jaro_similarity(const BlockPatternMatchVector& PM, Range<InputIt1> P, Range<InputIt2> T,
double score_cutoff)
{
size_t P_len = P.size();
size_t T_len = T.size();
if (score_cutoff > 1.0) return 0.0;
if (!P_len && !T_len) return 1.0;
/* filter out based on the length difference between the two strings */
if (!jaro_length_filter(P_len, T_len, score_cutoff)) return 0.0;
if (P_len == 1 && T_len == 1) return static_cast<double>(P[0] == T[0]);
size_t Bound = jaro_bounds(P, T);
/* common prefix never includes Transpositions */
size_t CommonChars = 0;
size_t Transpositions = 0;
if (P.empty() || T.empty()) {
/* already has correct number of common chars and transpositions */
}
else if (P.size() <= 64 && T.size() <= 64) {
auto flagged = flag_similar_characters_word(PM, P, T, Bound);
CommonChars += count_common_chars(flagged);
if (!jaro_common_char_filter(P_len, T_len, CommonChars, score_cutoff)) return 0.0;
Transpositions = count_transpositions_word(PM, T, flagged);
}
else {
auto flagged = flag_similar_characters_block(PM, P, T, Bound);
size_t FlaggedChars = count_common_chars(flagged);
CommonChars += FlaggedChars;
if (!jaro_common_char_filter(P_len, T_len, CommonChars, score_cutoff)) return 0.0;
Transpositions = count_transpositions_block(PM, T, flagged, FlaggedChars);
}
double Sim = jaro_calculate_similarity(P_len, T_len, CommonChars, Transpositions);
return (Sim >= score_cutoff) ? Sim : 0;
}
#ifdef RAPIDFUZZ_SIMD
template <typename VecType>
struct JaroSimilaritySimdBounds {
size_t maxBound = 0;
VecType boundMaskSize;
VecType boundMask;
};
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
static inline auto jaro_similarity_prepare_bound_short_s2(const VecType* s1_lengths, Range<InputIt>& s2)
# ifdef RAPIDFUZZ_AVX2
-> JaroSimilaritySimdBounds<simd_avx2::native_simd<VecType>>
# else
-> JaroSimilaritySimdBounds<simd_sse2::native_simd<VecType>>
# endif
{
# ifdef RAPIDFUZZ_AVX2
using namespace simd_avx2;
# else
using namespace simd_sse2;
# endif
# ifndef RAPIDFUZZ_AVX2
static constexpr size_t alignment = native_simd<VecType>::alignment;
# endif
static constexpr size_t vec_width = native_simd<VecType>::size;
assert(s2.size() <= sizeof(VecType) * 8);
JaroSimilaritySimdBounds<native_simd<VecType>> bounds;
VecType maxLen = 0;
// todo permutate + max to find maxLen
// side-note: we know only the first 8 bit are actually used
for (size_t i = 0; i < vec_width; ++i)
if (s1_lengths[i] > maxLen) maxLen = s1_lengths[i];
# ifdef RAPIDFUZZ_AVX2
native_simd<VecType> zero(VecType(0));
native_simd<VecType> one(1);
native_simd<VecType> s1_lengths_simd(reinterpret_cast<const uint64_t*>(s1_lengths));
native_simd<VecType> s2_length_simd(static_cast<VecType>(s2.size()));
// we always know that the number does not exceed 64, so we can operate on smaller vectors if this
// proves to be faster
native_simd<VecType> boundSizes = max8(s1_lengths_simd, s2_length_simd) >> 1; // divide by two
// todo there could be faster options since comparisions can be relatively expensive for some vector sizes
boundSizes -= (boundSizes > zero) & one;
// this can never overflow even when using larger vectors for shifting here, since in the worst case of
// 8bit vectors this shifts by (8/2-1)*2=6 bits todo << 1 performs unneeded masking here sllv is pretty
// expensive for 8 / 16 bit since it has to be emulated maybe there is a better solution
bounds.boundMaskSize = sllv(one, boundSizes << 1) - one;
bounds.boundMask = sllv(one, boundSizes + one) - one;
bounds.maxBound = (s2.size() > maxLen) ? s2.size() : maxLen;
bounds.maxBound /= 2;
if (bounds.maxBound > 0) bounds.maxBound--;
# else
alignas(alignment) std::array<VecType, vec_width> boundMaskSize_;
alignas(alignment) std::array<VecType, vec_width> boundMask_;
// todo try to find a simd implementation for sse2
for (size_t i = 0; i < vec_width; ++i) {
size_t Bound = jaro_bounds(static_cast<size_t>(s1_lengths[i]), s2.size());
if (Bound > bounds.maxBound) bounds.maxBound = Bound;
boundMaskSize_[i] = bit_mask_lsb<VecType>(2 * Bound);
boundMask_[i] = bit_mask_lsb<VecType>(Bound + 1);
}
bounds.boundMaskSize = native_simd<VecType>(reinterpret_cast<uint64_t*>(boundMaskSize_.data()));
bounds.boundMask = native_simd<VecType>(reinterpret_cast<uint64_t*>(boundMask_.data()));
# endif
size_t lastRelevantChar = static_cast<size_t>(maxLen) + bounds.maxBound;
if (s2.size() > lastRelevantChar) s2.remove_suffix(s2.size() - lastRelevantChar);
return bounds;
}
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
static inline auto jaro_similarity_prepare_bound_long_s2(const VecType* s1_lengths, Range<InputIt>& s2)
# ifdef RAPIDFUZZ_AVX2
-> JaroSimilaritySimdBounds<simd_avx2::native_simd<VecType>>
# else
-> JaroSimilaritySimdBounds<simd_sse2::native_simd<VecType>>
# endif
{
# ifdef RAPIDFUZZ_AVX2
using namespace simd_avx2;
# else
using namespace simd_sse2;
# endif
static constexpr size_t vec_width = native_simd<VecType>::size;
assert(s2.size() > sizeof(VecType) * 8);
JaroSimilaritySimdBounds<native_simd<VecType>> bounds;
VecType maxLen = 0;
// todo permutate + max to find maxLen
// side-note: we know only the first 8 bit are actually used
for (size_t i = 0; i < vec_width; ++i)
if (s1_lengths[i] > maxLen) maxLen = s1_lengths[i];
bounds.maxBound = s2.size() / 2 - 1;
bounds.boundMaskSize = native_simd<VecType>(bit_mask_lsb<VecType>(2 * bounds.maxBound));
bounds.boundMask = native_simd<VecType>(bit_mask_lsb<VecType>(bounds.maxBound + 1));
size_t lastRelevantChar = static_cast<size_t>(maxLen) + bounds.maxBound;
if (s2.size() > lastRelevantChar) s2.remove_suffix(s2.size() - lastRelevantChar);
return bounds;
}
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
static inline void
jaro_similarity_simd_long_s2(Range<double*> scores, const detail::BlockPatternMatchVector& block,
VecType* s1_lengths, Range<InputIt> s2, double score_cutoff) noexcept
{
# ifdef RAPIDFUZZ_AVX2
using namespace simd_avx2;
# else
using namespace simd_sse2;
# endif
static constexpr size_t alignment = native_simd<VecType>::alignment;
static constexpr size_t vec_width = native_simd<VecType>::size;
static constexpr size_t vecs = native_simd<uint64_t>::size;
assert(block.size() % vecs == 0);
assert(s2.size() > sizeof(VecType) * 8);
struct AlignedAlloc {
AlignedAlloc(size_t size) : memory(rf_aligned_alloc(native_simd<VecType>::alignment, size))
{}
~AlignedAlloc()
{
rf_aligned_free(memory);
}
void* memory = nullptr;
};
native_simd<VecType> zero(VecType(0));
native_simd<VecType> one(1);
size_t result_index = 0;
size_t s2_block_count = detail::ceil_div(s2.size(), sizeof(VecType) * 8);
AlignedAlloc memory(2 * s2_block_count * sizeof(native_simd<VecType>));
native_simd<VecType>* T_flag = static_cast<native_simd<VecType>*>(memory.memory);
// reuse the same memory since counter is only required in the first half of the algorithm while
// T_flags is required in the second half
native_simd<VecType>* counter = static_cast<native_simd<VecType>*>(memory.memory) + s2_block_count;
VecType* T_flags = static_cast<VecType*>(memory.memory) + s2_block_count * vec_width;
for (size_t cur_vec = 0; cur_vec < block.size(); cur_vec += vecs) {
auto s2_cur = s2;
auto bounds = jaro_similarity_prepare_bound_long_s2(s1_lengths + result_index, s2_cur);
native_simd<VecType> P_flag(VecType(0));
std::fill(T_flag, T_flag + detail::ceil_div(s2_cur.size(), sizeof(VecType) * 8),
native_simd<VecType>(VecType(0)));
std::fill(counter, counter + detail::ceil_div(s2_cur.size(), sizeof(VecType) * 8),
native_simd<VecType>(VecType(1)));
// In case s2 is longer than all of the elements in s1_lengths boundMaskSize
// might have all bits set and therefor the condition ((boundMask <= boundMaskSize) & one)
// would incorrectly always set the first bit to 1.
// this is solved by splitting the loop into two parts where after this boundary is reached
// the first bit inside boundMask is no longer set
size_t j = 0;
for (; j < std::min(bounds.maxBound, s2_cur.size()); ++j) {
alignas(alignment) std::array<uint64_t, vecs> stored;
unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + i, s2_cur[j]); });
native_simd<VecType> X(stored.data());
native_simd<VecType> PM_j = andnot(X & bounds.boundMask, P_flag);
P_flag |= blsi(PM_j);
size_t T_word_index = j / (sizeof(VecType) * 8);
T_flag[T_word_index] |= andnot(counter[T_word_index], (PM_j == zero));
counter[T_word_index] = counter[T_word_index] << 1;
bounds.boundMask = (bounds.boundMask << 1) | ((bounds.boundMask <= bounds.boundMaskSize) & one);
}
for (; j < s2_cur.size(); ++j) {
alignas(alignment) std::array<uint64_t, vecs> stored;
unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + i, s2_cur[j]); });
native_simd<VecType> X(stored.data());
native_simd<VecType> PM_j = andnot(X & bounds.boundMask, P_flag);
P_flag |= blsi(PM_j);
size_t T_word_index = j / (sizeof(VecType) * 8);
T_flag[T_word_index] |= andnot(counter[T_word_index], (PM_j == zero));
counter[T_word_index] = counter[T_word_index] << 1;
bounds.boundMask = bounds.boundMask << 1;
}
auto counts = popcount(P_flag);
alignas(alignment) std::array<VecType, vec_width> P_flags;
P_flag.store(P_flags.data());
for (size_t i = 0; i < detail::ceil_div(s2_cur.size(), sizeof(VecType) * 8); ++i)
T_flag[i].store(T_flags + i * vec_width);
for (size_t i = 0; i < vec_width; ++i) {
size_t CommonChars = static_cast<size_t>(counts[i]);
if (!jaro_common_char_filter(static_cast<size_t>(s1_lengths[result_index]), s2.size(),
CommonChars, score_cutoff))
{
scores[result_index] = 0.0;
result_index++;
continue;
}
VecType P_flag_cur = P_flags[i];
size_t Transpositions = 0;
static constexpr size_t vecs_per_word = vec_width / vecs;
size_t cur_block = i / vecs_per_word;
size_t offset = sizeof(VecType) * 8 * (i % vecs_per_word);
{
size_t T_word_index = 0;
VecType T_flag_cur = T_flags[T_word_index * vec_width + i];
while (P_flag_cur) {
while (!T_flag_cur) {
++T_word_index;
T_flag_cur = T_flags[T_word_index * vec_width + i];
}
VecType PatternFlagMask = blsi(P_flag_cur);
uint64_t PM_j =
block.get(cur_vec + cur_block,
s2[countr_zero(T_flag_cur) + T_word_index * sizeof(VecType) * 8]);
Transpositions += !(PM_j & (static_cast<uint64_t>(PatternFlagMask) << offset));
T_flag_cur = blsr(T_flag_cur);
P_flag_cur ^= PatternFlagMask;
}
}
double Sim = jaro_calculate_similarity(static_cast<size_t>(s1_lengths[result_index]), s2.size(),
CommonChars, Transpositions);
scores[result_index] = (Sim >= score_cutoff) ? Sim : 0;
result_index++;
}
}
}
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
static inline void
jaro_similarity_simd_short_s2(Range<double*> scores, const detail::BlockPatternMatchVector& block,
VecType* s1_lengths, Range<InputIt> s2, double score_cutoff) noexcept
{
# ifdef RAPIDFUZZ_AVX2
using namespace simd_avx2;
# else
using namespace simd_sse2;
# endif
static constexpr size_t alignment = native_simd<VecType>::alignment;
static constexpr size_t vec_width = native_simd<VecType>::size;
static constexpr size_t vecs = native_simd<uint64_t>::size;
assert(block.size() % vecs == 0);
assert(s2.size() <= sizeof(VecType) * 8);
native_simd<VecType> zero(VecType(0));
native_simd<VecType> one(1);
size_t result_index = 0;
for (size_t cur_vec = 0; cur_vec < block.size(); cur_vec += vecs) {
auto s2_cur = s2;
auto bounds = jaro_similarity_prepare_bound_short_s2(s1_lengths + result_index, s2_cur);
native_simd<VecType> P_flag(VecType(0));
native_simd<VecType> T_flag(VecType(0));
native_simd<VecType> counter(VecType(1));
// In case s2 is longer than all of the elements in s1_lengths boundMaskSize
// might have all bits set and therefor the condition ((boundMask <= boundMaskSize) & one)
// would incorrectly always set the first bit to 1.
// this is solved by splitting the loop into two parts where after this boundary is reached
// the first bit inside boundMask is no longer set
size_t j = 0;
for (; j < std::min(bounds.maxBound, s2_cur.size()); ++j) {
alignas(alignment) std::array<uint64_t, vecs> stored;
unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + i, s2_cur[j]); });
native_simd<VecType> X(stored.data());
native_simd<VecType> PM_j = andnot(X & bounds.boundMask, P_flag);
P_flag |= blsi(PM_j);
T_flag |= andnot(counter, (PM_j == zero));
counter = counter << 1;
bounds.boundMask = (bounds.boundMask << 1) | ((bounds.boundMask <= bounds.boundMaskSize) & one);
}
for (; j < s2_cur.size(); ++j) {
alignas(alignment) std::array<uint64_t, vecs> stored;
unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + i, s2_cur[j]); });
native_simd<VecType> X(stored.data());
native_simd<VecType> PM_j = andnot(X & bounds.boundMask, P_flag);
P_flag |= blsi(PM_j);
T_flag |= andnot(counter, (PM_j == zero));
counter = counter << 1;
bounds.boundMask = bounds.boundMask << 1;
}
auto counts = popcount(P_flag);
alignas(alignment) std::array<VecType, vec_width> P_flags;
P_flag.store(P_flags.data());
alignas(alignment) std::array<VecType, vec_width> T_flags;
T_flag.store(T_flags.data());
for (size_t i = 0; i < vec_width; ++i) {
size_t CommonChars = static_cast<size_t>(counts[i]);
if (!jaro_common_char_filter(static_cast<size_t>(s1_lengths[result_index]), s2.size(),
CommonChars, score_cutoff))
{
scores[result_index] = 0.0;
result_index++;
continue;
}
VecType P_flag_cur = P_flags[i];
VecType T_flag_cur = T_flags[i];
size_t Transpositions = 0;
static constexpr size_t vecs_per_word = vec_width / vecs;
size_t cur_block = i / vecs_per_word;
size_t offset = sizeof(VecType) * 8 * (i % vecs_per_word);
while (P_flag_cur) {
VecType PatternFlagMask = blsi(P_flag_cur);
uint64_t PM_j = block.get(cur_vec + cur_block, s2[countr_zero(T_flag_cur)]);
Transpositions += !(PM_j & (static_cast<uint64_t>(PatternFlagMask) << offset));
T_flag_cur = blsr(T_flag_cur);
P_flag_cur ^= PatternFlagMask;
}
double Sim = jaro_calculate_similarity(static_cast<size_t>(s1_lengths[result_index]), s2.size(),
CommonChars, Transpositions);
scores[result_index] = (Sim >= score_cutoff) ? Sim : 0;
result_index++;
}
}
}
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
static inline void jaro_similarity_simd(Range<double*> scores, const detail::BlockPatternMatchVector& block,
VecType* s1_lengths, size_t s1_lengths_size, const Range<InputIt>& s2,
double score_cutoff) noexcept
{
if (score_cutoff > 1.0) {
for (size_t i = 0; i < s1_lengths_size; i++)
scores[i] = 0.0;
return;
}
if (s2.empty()) {
for (size_t i = 0; i < s1_lengths_size; i++)
scores[i] = s1_lengths[i] ? 0.0 : 1.0;
return;
}
if (s2.size() > sizeof(VecType) * 8)
return jaro_similarity_simd_long_s2(scores, block, s1_lengths, s2, score_cutoff);
else
return jaro_similarity_simd_short_s2(scores, block, s1_lengths, s2, score_cutoff);
}
#endif /* RAPIDFUZZ_SIMD */
class Jaro : public SimilarityBase<Jaro, double, 0, 1> {
friend SimilarityBase<Jaro, double, 0, 1>;
friend NormalizedMetricBase<Jaro>;
template <typename InputIt1, typename InputIt2>
static double maximum(const Range<InputIt1>&, const Range<InputIt2>&) noexcept
{
return 1.0;
}
template <typename InputIt1, typename InputIt2>
static double _similarity(const Range<InputIt1>& s1, const Range<InputIt2>& s2, double score_cutoff,
double)
{
return jaro_similarity(s1, s2, score_cutoff);
}
};
} // namespace detail
} // namespace rapidfuzz
|