1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/* SPDX-License-Identifier: MIT */
/* Copyright © 2022-present Max Bachmann */
#pragma once
#include <rapidfuzz/distance/LCSseq_impl.hpp>
#include <algorithm>
#include <limits>
namespace rapidfuzz {
template <typename InputIt1, typename InputIt2>
size_t lcs_seq_distance(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
size_t score_cutoff = std::numeric_limits<size_t>::max())
{
return detail::LCSseq::distance(first1, last1, first2, last2, score_cutoff, score_cutoff);
}
template <typename Sentence1, typename Sentence2>
size_t lcs_seq_distance(const Sentence1& s1, const Sentence2& s2,
size_t score_cutoff = std::numeric_limits<size_t>::max())
{
return detail::LCSseq::distance(s1, s2, score_cutoff, score_cutoff);
}
template <typename InputIt1, typename InputIt2>
size_t lcs_seq_similarity(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
size_t score_cutoff = 0)
{
return detail::LCSseq::similarity(first1, last1, first2, last2, score_cutoff, score_cutoff);
}
template <typename Sentence1, typename Sentence2>
size_t lcs_seq_similarity(const Sentence1& s1, const Sentence2& s2, size_t score_cutoff = 0)
{
return detail::LCSseq::similarity(s1, s2, score_cutoff, score_cutoff);
}
template <typename InputIt1, typename InputIt2>
double lcs_seq_normalized_distance(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
double score_cutoff = 1.0)
{
return detail::LCSseq::normalized_distance(first1, last1, first2, last2, score_cutoff, score_cutoff);
}
template <typename Sentence1, typename Sentence2>
double lcs_seq_normalized_distance(const Sentence1& s1, const Sentence2& s2, double score_cutoff = 1.0)
{
return detail::LCSseq::normalized_distance(s1, s2, score_cutoff, score_cutoff);
}
template <typename InputIt1, typename InputIt2>
double lcs_seq_normalized_similarity(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2,
double score_cutoff = 0.0)
{
return detail::LCSseq::normalized_similarity(first1, last1, first2, last2, score_cutoff, score_cutoff);
}
template <typename Sentence1, typename Sentence2>
double lcs_seq_normalized_similarity(const Sentence1& s1, const Sentence2& s2, double score_cutoff = 0.0)
{
return detail::LCSseq::normalized_similarity(s1, s2, score_cutoff, score_cutoff);
}
template <typename InputIt1, typename InputIt2>
Editops lcs_seq_editops(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2)
{
return detail::lcs_seq_editops(detail::make_range(first1, last1), detail::make_range(first2, last2));
}
template <typename Sentence1, typename Sentence2>
Editops lcs_seq_editops(const Sentence1& s1, const Sentence2& s2)
{
return detail::lcs_seq_editops(detail::make_range(s1), detail::make_range(s2));
}
#ifdef RAPIDFUZZ_SIMD
namespace experimental {
template <int MaxLen>
struct MultiLCSseq : public detail::MultiSimilarityBase<MultiLCSseq<MaxLen>, size_t, 0,
std::numeric_limits<int64_t>::max()> {
private:
friend detail::MultiSimilarityBase<MultiLCSseq<MaxLen>, size_t, 0, std::numeric_limits<int64_t>::max()>;
friend detail::MultiNormalizedMetricBase<MultiLCSseq<MaxLen>, size_t>;
RAPIDFUZZ_CONSTEXPR_CXX14 static size_t get_vec_size()
{
# ifdef RAPIDFUZZ_AVX2
using namespace detail::simd_avx2;
# else
using namespace detail::simd_sse2;
# endif
RAPIDFUZZ_IF_CONSTEXPR (MaxLen <= 8)
return native_simd<uint8_t>::size;
else RAPIDFUZZ_IF_CONSTEXPR (MaxLen <= 16)
return native_simd<uint16_t>::size;
else RAPIDFUZZ_IF_CONSTEXPR (MaxLen <= 32)
return native_simd<uint32_t>::size;
else RAPIDFUZZ_IF_CONSTEXPR (MaxLen <= 64)
return native_simd<uint64_t>::size;
static_assert(MaxLen <= 64, "expected MaxLen <= 64");
}
static size_t find_block_count(size_t count)
{
size_t vec_size = get_vec_size();
size_t simd_vec_count = detail::ceil_div(count, vec_size);
return detail::ceil_div(simd_vec_count * vec_size * MaxLen, 64);
}
public:
MultiLCSseq(size_t count) : input_count(count), pos(0), PM(find_block_count(count) * 64)
{
str_lens.resize(result_count());
}
/**
* @brief get minimum size required for result vectors passed into
* - distance
* - similarity
* - normalized_distance
* - normalized_similarity
*
* @return minimum vector size
*/
size_t result_count() const
{
size_t vec_size = get_vec_size();
size_t simd_vec_count = detail::ceil_div(input_count, vec_size);
return simd_vec_count * vec_size;
}
template <typename Sentence1>
void insert(const Sentence1& s1_)
{
insert(detail::to_begin(s1_), detail::to_end(s1_));
}
template <typename InputIt1>
void insert(InputIt1 first1, InputIt1 last1)
{
auto len = std::distance(first1, last1);
int block_pos = static_cast<int>((pos * MaxLen) % 64);
auto block = (pos * MaxLen) / 64;
assert(len <= MaxLen);
if (pos >= input_count) throw std::invalid_argument("out of bounds insert");
str_lens[pos] = static_cast<size_t>(len);
for (; first1 != last1; ++first1) {
PM.insert(block, *first1, block_pos);
block_pos++;
}
pos++;
}
private:
template <typename InputIt2>
void _similarity(size_t* scores, size_t score_count, const detail::Range<InputIt2>& s2,
size_t score_cutoff = 0) const
{
if (score_count < result_count())
throw std::invalid_argument("scores has to have >= result_count() elements");
auto scores_ = detail::make_range(scores, scores + score_count);
RAPIDFUZZ_IF_CONSTEXPR (MaxLen == 8)
detail::lcs_simd<uint8_t>(scores_, PM, s2, score_cutoff);
else RAPIDFUZZ_IF_CONSTEXPR (MaxLen == 16)
detail::lcs_simd<uint16_t>(scores_, PM, s2, score_cutoff);
else RAPIDFUZZ_IF_CONSTEXPR (MaxLen == 32)
detail::lcs_simd<uint32_t>(scores_, PM, s2, score_cutoff);
else RAPIDFUZZ_IF_CONSTEXPR (MaxLen == 64)
detail::lcs_simd<uint64_t>(scores_, PM, s2, score_cutoff);
}
template <typename InputIt2>
size_t maximum(size_t s1_idx, const detail::Range<InputIt2>& s2) const
{
return std::max(str_lens[s1_idx], s2.size());
}
size_t get_input_count() const noexcept
{
return input_count;
}
size_t input_count;
size_t pos;
detail::BlockPatternMatchVector PM;
std::vector<size_t> str_lens;
};
} /* namespace experimental */
#endif
template <typename CharT1>
struct CachedLCSseq
: detail::CachedSimilarityBase<CachedLCSseq<CharT1>, size_t, 0, std::numeric_limits<int64_t>::max()> {
template <typename Sentence1>
explicit CachedLCSseq(const Sentence1& s1_) : CachedLCSseq(detail::to_begin(s1_), detail::to_end(s1_))
{}
template <typename InputIt1>
CachedLCSseq(InputIt1 first1, InputIt1 last1) : s1(first1, last1), PM(detail::make_range(first1, last1))
{}
private:
friend detail::CachedSimilarityBase<CachedLCSseq<CharT1>, size_t, 0, std::numeric_limits<int64_t>::max()>;
friend detail::CachedNormalizedMetricBase<CachedLCSseq<CharT1>>;
template <typename InputIt2>
size_t maximum(const detail::Range<InputIt2>& s2) const
{
return std::max(s1.size(), s2.size());
}
template <typename InputIt2>
size_t _similarity(const detail::Range<InputIt2>& s2, size_t score_cutoff, size_t) const
{
return detail::lcs_seq_similarity(PM, detail::make_range(s1), s2, score_cutoff);
}
std::vector<CharT1> s1;
detail::BlockPatternMatchVector PM;
};
#ifdef RAPIDFUZZ_DEDUCTION_GUIDES
template <typename Sentence1>
explicit CachedLCSseq(const Sentence1& s1_) -> CachedLCSseq<char_type<Sentence1>>;
template <typename InputIt1>
CachedLCSseq(InputIt1 first1, InputIt1 last1) -> CachedLCSseq<iter_value_t<InputIt1>>;
#endif
} // namespace rapidfuzz
|