1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
/* SPDX-License-Identifier: MIT */
/* Copyright © 2022-present Max Bachmann */
#include <limits>
#include <rapidfuzz/details/Matrix.hpp>
#include <rapidfuzz/details/PatternMatchVector.hpp>
#include <rapidfuzz/details/common.hpp>
#include <rapidfuzz/details/distance.hpp>
#include <rapidfuzz/details/intrinsics.hpp>
#include <rapidfuzz/details/simd.hpp>
#include <algorithm>
#include <array>
#include <rapidfuzz/details/types.hpp>
namespace rapidfuzz {
namespace detail {
template <bool RecordMatrix>
struct LCSseqResult;
template <>
struct LCSseqResult<true> {
ShiftedBitMatrix<uint64_t> S;
size_t sim;
};
template <>
struct LCSseqResult<false> {
size_t sim;
};
template <bool RecordMatrix>
LCSseqResult<true>& getMatrixRef(LCSseqResult<RecordMatrix>& res)
{
#if RAPIDFUZZ_IF_CONSTEXPR_AVAILABLE
return res;
#else
// this is a hack since the compiler doesn't know early enough that
// this is never called when the types differ.
// On C++17 this properly uses if constexpr
assert(RecordMatrix);
return reinterpret_cast<LCSseqResult<true>&>(res);
#endif
}
/*
* An encoded mbleven model table.
*
* Each 8-bit integer represents an edit sequence, with using two
* bits for a single operation.
*
* Each Row of 8 integers represent all possible combinations
* of edit sequences for a gived maximum edit distance and length
* difference between the two strings, that is below the maximum
* edit distance
*
* 0x1 = 01 = DELETE,
* 0x2 = 10 = INSERT
*
* 0x5 -> DEL + DEL
* 0x6 -> DEL + INS
* 0x9 -> INS + DEL
* 0xA -> INS + INS
*/
static constexpr std::array<std::array<uint8_t, 6>, 14> lcs_seq_mbleven2018_matrix = {{
/* max edit distance 1 */
{0},
/* case does not occur */ /* len_diff 0 */
{0x01}, /* len_diff 1 */
/* max edit distance 2 */
{0x09, 0x06}, /* len_diff 0 */
{0x01}, /* len_diff 1 */
{0x05}, /* len_diff 2 */
/* max edit distance 3 */
{0x09, 0x06}, /* len_diff 0 */
{0x25, 0x19, 0x16}, /* len_diff 1 */
{0x05}, /* len_diff 2 */
{0x15}, /* len_diff 3 */
/* max edit distance 4 */
{0x96, 0x66, 0x5A, 0x99, 0x69, 0xA5}, /* len_diff 0 */
{0x25, 0x19, 0x16}, /* len_diff 1 */
{0x65, 0x56, 0x95, 0x59}, /* len_diff 2 */
{0x15}, /* len_diff 3 */
{0x55}, /* len_diff 4 */
}};
template <typename InputIt1, typename InputIt2>
size_t lcs_seq_mbleven2018(const Range<InputIt1>& s1, const Range<InputIt2>& s2, size_t score_cutoff)
{
auto len1 = s1.size();
auto len2 = s2.size();
assert(len1 != 0);
assert(len2 != 0);
if (len1 < len2) return lcs_seq_mbleven2018(s2, s1, score_cutoff);
auto len_diff = len1 - len2;
size_t max_misses = len1 + len2 - 2 * score_cutoff;
size_t ops_index = (max_misses + max_misses * max_misses) / 2 + len_diff - 1;
auto& possible_ops = lcs_seq_mbleven2018_matrix[ops_index];
size_t max_len = 0;
for (uint8_t ops : possible_ops) {
auto iter_s1 = s1.begin();
auto iter_s2 = s2.begin();
size_t cur_len = 0;
if (!ops) break;
while (iter_s1 != s1.end() && iter_s2 != s2.end()) {
if (*iter_s1 != *iter_s2) {
if (!ops) break;
if (ops & 1)
iter_s1++;
else if (ops & 2)
iter_s2++;
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ < 10
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
#endif
ops >>= 2;
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ < 10
# pragma GCC diagnostic pop
#endif
}
else {
cur_len++;
iter_s1++;
iter_s2++;
}
}
max_len = std::max(max_len, cur_len);
}
return (max_len >= score_cutoff) ? max_len : 0;
}
#ifdef RAPIDFUZZ_SIMD
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
void lcs_simd(Range<size_t*> scores, const BlockPatternMatchVector& block, const Range<InputIt>& s2,
size_t score_cutoff) noexcept
{
# ifdef RAPIDFUZZ_AVX2
using namespace simd_avx2;
# else
using namespace simd_sse2;
# endif
auto score_iter = scores.begin();
static constexpr size_t alignment = native_simd<VecType>::alignment;
static constexpr size_t vecs = native_simd<uint64_t>::size;
assert(block.size() % vecs == 0);
static constexpr size_t interleaveCount = 3;
size_t cur_vec = 0;
for (; cur_vec + interleaveCount * vecs <= block.size(); cur_vec += interleaveCount * vecs) {
std::array<native_simd<VecType>, interleaveCount> S;
unroll<size_t, interleaveCount>([&](size_t j) { S[j] = static_cast<VecType>(-1); });
for (const auto& ch : s2) {
unroll<size_t, interleaveCount>([&](size_t j) {
alignas(32) std::array<uint64_t, vecs> stored;
unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + j * vecs + i, ch); });
native_simd<VecType> Matches(stored.data());
native_simd<VecType> u = S[j] & Matches;
S[j] = (S[j] + u) | (S[j] - u);
});
}
unroll<size_t, interleaveCount>([&](size_t j) {
auto counts = popcount(~S[j]);
unroll<size_t, counts.size()>([&](size_t i) {
*score_iter = (counts[i] >= score_cutoff) ? static_cast<size_t>(counts[i]) : 0;
score_iter++;
});
});
}
for (; cur_vec < block.size(); cur_vec += vecs) {
native_simd<VecType> S = static_cast<VecType>(-1);
for (const auto& ch : s2) {
alignas(alignment) std::array<uint64_t, vecs> stored;
unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + i, ch); });
native_simd<VecType> Matches(stored.data());
native_simd<VecType> u = S & Matches;
S = (S + u) | (S - u);
}
auto counts = popcount(~S);
unroll<size_t, counts.size()>([&](size_t i) {
*score_iter = (counts[i] >= score_cutoff) ? static_cast<size_t>(counts[i]) : 0;
score_iter++;
});
}
}
#endif
template <size_t N, bool RecordMatrix, typename PMV, typename InputIt1, typename InputIt2>
auto lcs_unroll(const PMV& block, const Range<InputIt1>&, const Range<InputIt2>& s2,
size_t score_cutoff = 0) -> LCSseqResult<RecordMatrix>
{
uint64_t S[N];
unroll<size_t, N>([&](size_t i) { S[i] = ~UINT64_C(0); });
LCSseqResult<RecordMatrix> res;
RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
auto& res_ = getMatrixRef(res);
res_.S = ShiftedBitMatrix<uint64_t>(s2.size(), N, ~UINT64_C(0));
}
auto iter_s2 = s2.begin();
for (size_t i = 0; i < s2.size(); ++i) {
uint64_t carry = 0;
static constexpr size_t unroll_factor = 3;
for (unsigned int j = 0; j < N / unroll_factor; ++j) {
unroll<size_t, unroll_factor>([&](size_t word_) {
size_t word = word_ + j * unroll_factor;
uint64_t Matches = block.get(word, *iter_s2);
uint64_t u = S[word] & Matches;
uint64_t x = addc64(S[word], u, carry, &carry);
S[word] = x | (S[word] - u);
RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
auto& res_ = getMatrixRef(res);
res_.S[i][word] = S[word];
}
});
}
unroll<size_t, N % unroll_factor>([&](size_t word_) {
size_t word = word_ + N / unroll_factor * unroll_factor;
uint64_t Matches = block.get(word, *iter_s2);
uint64_t u = S[word] & Matches;
uint64_t x = addc64(S[word], u, carry, &carry);
S[word] = x | (S[word] - u);
RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
auto& res_ = getMatrixRef(res);
res_.S[i][word] = S[word];
}
});
iter_s2++;
}
res.sim = 0;
unroll<size_t, N>([&](size_t i) { res.sim += popcount(~S[i]); });
if (res.sim < score_cutoff) res.sim = 0;
return res;
}
/**
* implementation is following the paper Bit-Parallel LCS-length Computation Revisited
* from Heikki Hyyrö
*
* The paper refers to s1 as m and s2 as n
*/
template <bool RecordMatrix, typename PMV, typename InputIt1, typename InputIt2>
auto lcs_blockwise(const PMV& PM, const Range<InputIt1>& s1, const Range<InputIt2>& s2,
size_t score_cutoff = 0) -> LCSseqResult<RecordMatrix>
{
assert(score_cutoff <= s1.size());
assert(score_cutoff <= s2.size());
size_t word_size = sizeof(uint64_t) * 8;
size_t words = PM.size();
std::vector<uint64_t> S(words, ~UINT64_C(0));
size_t band_width_left = s1.size() - score_cutoff;
size_t band_width_right = s2.size() - score_cutoff;
LCSseqResult<RecordMatrix> res;
RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
auto& res_ = getMatrixRef(res);
size_t full_band = band_width_left + 1 + band_width_right;
size_t full_band_words = std::min(words, full_band / word_size + 2);
res_.S = ShiftedBitMatrix<uint64_t>(s2.size(), full_band_words, ~UINT64_C(0));
}
/* first_block is the index of the first block in Ukkonen band. */
size_t first_block = 0;
size_t last_block = std::min(words, ceil_div(band_width_left + 1, word_size));
auto iter_s2 = s2.begin();
for (size_t row = 0; row < s2.size(); ++row) {
uint64_t carry = 0;
RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
auto& res_ = getMatrixRef(res);
res_.S.set_offset(row, static_cast<ptrdiff_t>(first_block * word_size));
}
for (size_t word = first_block; word < last_block; ++word) {
const uint64_t Matches = PM.get(word, *iter_s2);
uint64_t Stemp = S[word];
uint64_t u = Stemp & Matches;
uint64_t x = addc64(Stemp, u, carry, &carry);
S[word] = x | (Stemp - u);
RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
auto& res_ = getMatrixRef(res);
res_.S[row][word - first_block] = S[word];
}
}
if (row > band_width_right) first_block = (row - band_width_right) / word_size;
if (row + 1 + band_width_left <= s1.size())
last_block = ceil_div(row + 1 + band_width_left, word_size);
iter_s2++;
}
res.sim = 0;
for (uint64_t Stemp : S)
res.sim += popcount(~Stemp);
if (res.sim < score_cutoff) res.sim = 0;
return res;
}
template <typename PMV, typename InputIt1, typename InputIt2>
size_t longest_common_subsequence(const PMV& PM, const Range<InputIt1>& s1, const Range<InputIt2>& s2,
size_t score_cutoff)
{
assert(score_cutoff <= s1.size());
assert(score_cutoff <= s2.size());
size_t word_size = sizeof(uint64_t) * 8;
size_t words = PM.size();
size_t band_width_left = s1.size() - score_cutoff;
size_t band_width_right = s2.size() - score_cutoff;
size_t full_band = band_width_left + 1 + band_width_right;
size_t full_band_words = std::min(words, full_band / word_size + 2);
if (full_band_words < words) return lcs_blockwise<false>(PM, s1, s2, score_cutoff).sim;
auto nr = ceil_div(s1.size(), 64);
switch (nr) {
case 0: return 0;
case 1: return lcs_unroll<1, false>(PM, s1, s2, score_cutoff).sim;
case 2: return lcs_unroll<2, false>(PM, s1, s2, score_cutoff).sim;
case 3: return lcs_unroll<3, false>(PM, s1, s2, score_cutoff).sim;
case 4: return lcs_unroll<4, false>(PM, s1, s2, score_cutoff).sim;
case 5: return lcs_unroll<5, false>(PM, s1, s2, score_cutoff).sim;
case 6: return lcs_unroll<6, false>(PM, s1, s2, score_cutoff).sim;
case 7: return lcs_unroll<7, false>(PM, s1, s2, score_cutoff).sim;
case 8: return lcs_unroll<8, false>(PM, s1, s2, score_cutoff).sim;
default: return lcs_blockwise<false>(PM, s1, s2, score_cutoff).sim;
}
}
template <typename InputIt1, typename InputIt2>
size_t longest_common_subsequence(const Range<InputIt1>& s1, const Range<InputIt2>& s2, size_t score_cutoff)
{
if (s1.empty()) return 0;
if (s1.size() <= 64) return longest_common_subsequence(PatternMatchVector(s1), s1, s2, score_cutoff);
return longest_common_subsequence(BlockPatternMatchVector(s1), s1, s2, score_cutoff);
}
template <typename InputIt1, typename InputIt2>
size_t lcs_seq_similarity(const BlockPatternMatchVector& block, Range<InputIt1> s1, Range<InputIt2> s2,
size_t score_cutoff)
{
auto len1 = s1.size();
auto len2 = s2.size();
if (score_cutoff > len1 || score_cutoff > len2) return 0;
size_t max_misses = len1 + len2 - 2 * score_cutoff;
/* no edits are allowed */
if (max_misses == 0 || (max_misses == 1 && len1 == len2)) return s1 == s2 ? len1 : 0;
if (max_misses < abs_diff(len1, len2)) return 0;
// do this first, since we can not remove any affix in encoded form
if (max_misses >= 5) return longest_common_subsequence(block, s1, s2, score_cutoff);
/* common affix does not effect Levenshtein distance */
StringAffix affix = remove_common_affix(s1, s2);
size_t lcs_sim = affix.prefix_len + affix.suffix_len;
if (!s1.empty() && !s2.empty()) {
size_t adjusted_cutoff = score_cutoff >= lcs_sim ? score_cutoff - lcs_sim : 0;
lcs_sim += lcs_seq_mbleven2018(s1, s2, adjusted_cutoff);
}
return (lcs_sim >= score_cutoff) ? lcs_sim : 0;
}
template <typename InputIt1, typename InputIt2>
size_t lcs_seq_similarity(Range<InputIt1> s1, Range<InputIt2> s2, size_t score_cutoff)
{
auto len1 = s1.size();
auto len2 = s2.size();
// Swapping the strings so the second string is shorter
if (len1 < len2) return lcs_seq_similarity(s2, s1, score_cutoff);
if (score_cutoff > len1 || score_cutoff > len2) return 0;
size_t max_misses = len1 + len2 - 2 * score_cutoff;
/* no edits are allowed */
if (max_misses == 0 || (max_misses == 1 && len1 == len2)) return s1 == s2 ? len1 : 0;
if (max_misses < abs_diff(len1, len2)) return 0;
/* common affix does not effect Levenshtein distance */
StringAffix affix = remove_common_affix(s1, s2);
size_t lcs_sim = affix.prefix_len + affix.suffix_len;
if (s1.size() && s2.size()) {
size_t adjusted_cutoff = score_cutoff >= lcs_sim ? score_cutoff - lcs_sim : 0;
if (max_misses < 5)
lcs_sim += lcs_seq_mbleven2018(s1, s2, adjusted_cutoff);
else
lcs_sim += longest_common_subsequence(s1, s2, adjusted_cutoff);
}
return (lcs_sim >= score_cutoff) ? lcs_sim : 0;
}
/**
* @brief recover alignment from bitparallel Levenshtein matrix
*/
template <typename InputIt1, typename InputIt2>
Editops recover_alignment(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
const LCSseqResult<true>& matrix, StringAffix affix)
{
size_t len1 = s1.size();
size_t len2 = s2.size();
size_t dist = len1 + len2 - 2 * matrix.sim;
Editops editops(dist);
editops.set_src_len(len1 + affix.prefix_len + affix.suffix_len);
editops.set_dest_len(len2 + affix.prefix_len + affix.suffix_len);
if (dist == 0) return editops;
#ifndef NDEBUG
size_t band_width_right = s2.size() - matrix.sim;
#endif
auto col = len1;
auto row = len2;
while (row && col) {
/* Deletion */
if (matrix.S.test_bit(row - 1, col - 1)) {
assert(dist > 0);
assert(static_cast<ptrdiff_t>(col) >=
static_cast<ptrdiff_t>(row) - static_cast<ptrdiff_t>(band_width_right));
dist--;
col--;
editops[dist].type = EditType::Delete;
editops[dist].src_pos = col + affix.prefix_len;
editops[dist].dest_pos = row + affix.prefix_len;
}
else {
row--;
/* Insertion */
if (row && !(matrix.S.test_bit(row - 1, col - 1))) {
assert(dist > 0);
dist--;
editops[dist].type = EditType::Insert;
editops[dist].src_pos = col + affix.prefix_len;
editops[dist].dest_pos = row + affix.prefix_len;
}
/* Match */
else {
col--;
assert(s1[col] == s2[row]);
}
}
}
while (col) {
dist--;
col--;
editops[dist].type = EditType::Delete;
editops[dist].src_pos = col + affix.prefix_len;
editops[dist].dest_pos = row + affix.prefix_len;
}
while (row) {
dist--;
row--;
editops[dist].type = EditType::Insert;
editops[dist].src_pos = col + affix.prefix_len;
editops[dist].dest_pos = row + affix.prefix_len;
}
return editops;
}
template <typename InputIt1, typename InputIt2>
LCSseqResult<true> lcs_matrix(const Range<InputIt1>& s1, const Range<InputIt2>& s2)
{
size_t nr = ceil_div(s1.size(), 64);
switch (nr) {
case 0:
{
LCSseqResult<true> res;
res.sim = 0;
return res;
}
case 1: return lcs_unroll<1, true>(PatternMatchVector(s1), s1, s2);
case 2: return lcs_unroll<2, true>(BlockPatternMatchVector(s1), s1, s2);
case 3: return lcs_unroll<3, true>(BlockPatternMatchVector(s1), s1, s2);
case 4: return lcs_unroll<4, true>(BlockPatternMatchVector(s1), s1, s2);
case 5: return lcs_unroll<5, true>(BlockPatternMatchVector(s1), s1, s2);
case 6: return lcs_unroll<6, true>(BlockPatternMatchVector(s1), s1, s2);
case 7: return lcs_unroll<7, true>(BlockPatternMatchVector(s1), s1, s2);
case 8: return lcs_unroll<8, true>(BlockPatternMatchVector(s1), s1, s2);
default: return lcs_blockwise<true>(BlockPatternMatchVector(s1), s1, s2);
}
}
template <typename InputIt1, typename InputIt2>
Editops lcs_seq_editops(Range<InputIt1> s1, Range<InputIt2> s2)
{
/* prefix and suffix are no-ops, which do not need to be added to the editops */
StringAffix affix = remove_common_affix(s1, s2);
return recover_alignment(s1, s2, lcs_matrix(s1, s2), affix);
}
class LCSseq : public SimilarityBase<LCSseq, size_t, 0, std::numeric_limits<int64_t>::max()> {
friend SimilarityBase<LCSseq, size_t, 0, std::numeric_limits<int64_t>::max()>;
friend NormalizedMetricBase<LCSseq>;
template <typename InputIt1, typename InputIt2>
static size_t maximum(const Range<InputIt1>& s1, const Range<InputIt2>& s2)
{
return std::max(s1.size(), s2.size());
}
template <typename InputIt1, typename InputIt2>
static size_t _similarity(const Range<InputIt1>& s1, const Range<InputIt2>& s2, size_t score_cutoff,
size_t)
{
return lcs_seq_similarity(s1, s2, score_cutoff);
}
};
} // namespace detail
} // namespace rapidfuzz
|