File: Levenshtein_impl.hpp

package info (click to toggle)
rapidfuzz-cpp 3.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,480 kB
  • sloc: cpp: 30,893; python: 63; makefile: 26; sh: 8
file content (1260 lines) | stat: -rw-r--r-- 47,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/* SPDX-License-Identifier: MIT */
/* Copyright © 2022-present Max Bachmann */

#include <cstddef>
#include <cstdint>
#include <limits>
#include <rapidfuzz/details/GrowingHashmap.hpp>
#include <rapidfuzz/details/Matrix.hpp>
#include <rapidfuzz/details/PatternMatchVector.hpp>
#include <rapidfuzz/details/common.hpp>
#include <rapidfuzz/details/distance.hpp>
#include <rapidfuzz/details/intrinsics.hpp>
#include <rapidfuzz/details/type_traits.hpp>
#include <rapidfuzz/distance/Indel.hpp>
#include <sys/types.h>

namespace rapidfuzz {
namespace detail {

struct LevenshteinRow {
    uint64_t VP;
    uint64_t VN;

    LevenshteinRow() : VP(~UINT64_C(0)), VN(0)
    {}

    LevenshteinRow(uint64_t VP_, uint64_t VN_) : VP(VP_), VN(VN_)
    {}
};

template <bool RecordMatrix, bool RecordBitRow>
struct LevenshteinResult;

template <>
struct LevenshteinResult<true, false> {
    ShiftedBitMatrix<uint64_t> VP;
    ShiftedBitMatrix<uint64_t> VN;

    size_t dist;
};

template <>
struct LevenshteinResult<false, true> {
    size_t first_block;
    size_t last_block;
    size_t prev_score;
    std::vector<LevenshteinRow> vecs;

    size_t dist;
};

template <>
struct LevenshteinResult<false, false> {
    size_t dist;
};

template <bool RecordMatrix, bool RecordBitRow>
LevenshteinResult<true, false>& getMatrixRef(LevenshteinResult<RecordMatrix, RecordBitRow>& res)
{
#if RAPIDFUZZ_IF_CONSTEXPR_AVAILABLE
    return res;
#else
    // this is a hack since the compiler doesn't know early enough that
    // this is never called when the types differ.
    // On C++17 this properly uses if constexpr
    assert(RecordMatrix);
    return reinterpret_cast<LevenshteinResult<true, false>&>(res);
#endif
}

template <bool RecordMatrix, bool RecordBitRow>
LevenshteinResult<false, true>& getBitRowRef(LevenshteinResult<RecordMatrix, RecordBitRow>& res)
{
#if RAPIDFUZZ_IF_CONSTEXPR_AVAILABLE
    return res;
#else
    // this is a hack since the compiler doesn't know early enough that
    // this is never called when the types differ.
    // On C++17 this properly uses if constexpr
    assert(RecordBitRow);
    return reinterpret_cast<LevenshteinResult<false, true>&>(res);
#endif
}

template <typename InputIt1, typename InputIt2>
size_t generalized_levenshtein_wagner_fischer(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                                              LevenshteinWeightTable weights, size_t max)
{
    size_t cache_size = s1.size() + 1;
    std::vector<size_t> cache(cache_size);
    assume(cache_size != 0);

    for (size_t i = 0; i < cache_size; ++i)
        cache[i] = i * weights.delete_cost;

    for (const auto& ch2 : s2) {
        auto cache_iter = cache.begin();
        size_t temp = *cache_iter;
        *cache_iter += weights.insert_cost;

        for (const auto& ch1 : s1) {
            if (ch1 != ch2)
                temp = std::min({*cache_iter + weights.delete_cost, *(cache_iter + 1) + weights.insert_cost,
                                 temp + weights.replace_cost});
            ++cache_iter;
            std::swap(*cache_iter, temp);
        }
    }

    size_t dist = cache.back();
    return (dist <= max) ? dist : max + 1;
}

/**
 * @brief calculates the maximum possible Levenshtein distance based on
 * string lengths and weights
 */
static inline size_t levenshtein_maximum(size_t len1, size_t len2, LevenshteinWeightTable weights)
{
    size_t max_dist = len1 * weights.delete_cost + len2 * weights.insert_cost;

    if (len1 >= len2)
        max_dist = std::min(max_dist, len2 * weights.replace_cost + (len1 - len2) * weights.delete_cost);
    else
        max_dist = std::min(max_dist, len1 * weights.replace_cost + (len2 - len1) * weights.insert_cost);

    return max_dist;
}

/**
 * @brief calculates the minimal possible Levenshtein distance based on
 * string lengths and weights
 */
template <typename InputIt1, typename InputIt2>
size_t levenshtein_min_distance(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                                LevenshteinWeightTable weights)
{
    if (s1.size() > s2.size())
        return (s1.size() - s2.size()) * weights.delete_cost;
    else
        return (s2.size() - s1.size()) * weights.insert_cost;
}

template <typename InputIt1, typename InputIt2>
size_t generalized_levenshtein_distance(Range<InputIt1> s1, Range<InputIt2> s2,
                                        LevenshteinWeightTable weights, size_t max)
{
    size_t min_edits = levenshtein_min_distance(s1, s2, weights);
    if (min_edits > max) return max + 1;

    /* common affix does not effect Levenshtein distance */
    remove_common_affix(s1, s2);

    return generalized_levenshtein_wagner_fischer(s1, s2, weights, max);
}

/*
 * An encoded mbleven model table.
 *
 * Each 8-bit integer represents an edit sequence, with using two
 * bits for a single operation.
 *
 * Each Row of 8 integers represent all possible combinations
 * of edit sequences for a gived maximum edit distance and length
 * difference between the two strings, that is below the maximum
 * edit distance
 *
 *   01 = DELETE, 10 = INSERT, 11 = SUBSTITUTE
 *
 * For example, 3F -> 0b111111 means three substitutions
 */
static constexpr std::array<std::array<uint8_t, 7>, 9> levenshtein_mbleven2018_matrix = {{
    /* max edit distance 1 */
    {0x03}, /* len_diff 0 */
    {0x01}, /* len_diff 1 */
    /* max edit distance 2 */
    {0x0F, 0x09, 0x06}, /* len_diff 0 */
    {0x0D, 0x07},       /* len_diff 1 */
    {0x05},             /* len_diff 2 */
    /* max edit distance 3 */
    {0x3F, 0x27, 0x2D, 0x39, 0x36, 0x1E, 0x1B}, /* len_diff 0 */
    {0x3D, 0x37, 0x1F, 0x25, 0x19, 0x16},       /* len_diff 1 */
    {0x35, 0x1D, 0x17},                         /* len_diff 2 */
    {0x15},                                     /* len_diff 3 */
}};

template <typename InputIt1, typename InputIt2>
size_t levenshtein_mbleven2018(const Range<InputIt1>& s1, const Range<InputIt2>& s2, size_t max)
{
    size_t len1 = s1.size();
    size_t len2 = s2.size();
    assert(len1 > 0);
    assert(len2 > 0);
    assert(*s1.begin() != *s2.begin());
    assert(*std::prev(s1.end()) != *std::prev(s2.end()));

    if (len1 < len2) return levenshtein_mbleven2018(s2, s1, max);

    size_t len_diff = len1 - len2;

    if (max == 1) return max + static_cast<size_t>(len_diff == 1 || len1 != 1);

    size_t ops_index = (max + max * max) / 2 + len_diff - 1;
    auto& possible_ops = levenshtein_mbleven2018_matrix[ops_index];
    size_t dist = max + 1;

    for (uint8_t ops : possible_ops) {
        auto iter_s1 = s1.begin();
        auto iter_s2 = s2.begin();
        size_t cur_dist = 0;

        if (!ops) break;

        while (iter_s1 != s1.end() && iter_s2 != s2.end()) {
            if (*iter_s1 != *iter_s2) {
                cur_dist++;
                if (!ops) break;
                if (ops & 1) iter_s1++;
                if (ops & 2) iter_s2++;
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ < 10
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wconversion"
#endif
                ops >>= 2;
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ICC) && __GNUC__ < 10
#    pragma GCC diagnostic pop
#endif
            }
            else {
                iter_s1++;
                iter_s2++;
            }
        }
        cur_dist += static_cast<size_t>(std::distance(iter_s1, s1.end()) + std::distance(iter_s2, s2.end()));
        dist = std::min(dist, cur_dist);
    }

    return (dist <= max) ? dist : max + 1;
}

/**
 * @brief Bitparallel implementation of the Levenshtein distance.
 *
 * This implementation requires the first string to have a length <= 64.
 * The algorithm used is described @cite hyrro_2002 and has a time complexity
 * of O(N). Comments and variable names in the implementation follow the
 * paper. This implementation is used internally when the strings are short enough
 *
 * @tparam CharT1 This is the char type of the first sentence
 * @tparam CharT2 This is the char type of the second sentence
 *
 * @param s1
 *   string to compare with s2 (for type info check Template parameters above)
 * @param s2
 *   string to compare with s1 (for type info check Template parameters above)
 *
 * @return returns the levenshtein distance between s1 and s2
 */
template <bool RecordMatrix, bool RecordBitRow, typename PM_Vec, typename InputIt1, typename InputIt2>
auto levenshtein_hyrroe2003(const PM_Vec& PM, const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                            size_t max = std::numeric_limits<size_t>::max())
    -> LevenshteinResult<RecordMatrix, RecordBitRow>
{
    assert(s1.size() != 0);

    /* VP is set to 1^m. Shifting by bitwidth would be undefined behavior */
    uint64_t VP = ~UINT64_C(0);
    uint64_t VN = 0;

    LevenshteinResult<RecordMatrix, RecordBitRow> res;
    res.dist = s1.size();
    RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
        auto& res_ = getMatrixRef(res);
        res_.VP = ShiftedBitMatrix<uint64_t>(s2.size(), 1, ~UINT64_C(0));
        res_.VN = ShiftedBitMatrix<uint64_t>(s2.size(), 1, 0);
    }

    /* mask used when computing D[m,j] in the paper 10^(m-1) */
    uint64_t mask = UINT64_C(1) << (s1.size() - 1);

    /* Searching */
    auto iter_s2 = s2.begin();
    for (size_t i = 0; iter_s2 != s2.end(); ++iter_s2, ++i) {
        /* Step 1: Computing D0 */
        uint64_t PM_j = PM.get(0, *iter_s2);
        uint64_t X = PM_j;
        uint64_t D0 = (((X & VP) + VP) ^ VP) | X | VN;

        /* Step 2: Computing HP and HN */
        uint64_t HP = VN | ~(D0 | VP);
        uint64_t HN = D0 & VP;

        /* Step 3: Computing the value D[m,j] */
        res.dist += bool(HP & mask);
        res.dist -= bool(HN & mask);

        /* Step 4: Computing Vp and VN */
        HP = (HP << 1) | 1;
        HN = (HN << 1);

        VP = HN | ~(D0 | HP);
        VN = HP & D0;

        RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
            auto& res_ = getMatrixRef(res);
            res_.VP[i][0] = VP;
            res_.VN[i][0] = VN;
        }
    }

    if (res.dist > max) res.dist = max + 1;

    RAPIDFUZZ_IF_CONSTEXPR (RecordBitRow) {
        auto& res_ = getBitRowRef(res);
        res_.first_block = 0;
        res_.last_block = 0;
        res_.prev_score = s2.size();
        res_.vecs.emplace_back(VP, VN);
    }

    return res;
}

#ifdef RAPIDFUZZ_SIMD
template <typename VecType, typename InputIt, int _lto_hack = RAPIDFUZZ_LTO_HACK>
void levenshtein_hyrroe2003_simd(Range<size_t*> scores, const detail::BlockPatternMatchVector& block,
                                 const std::vector<size_t>& s1_lengths, const Range<InputIt>& s2,
                                 size_t score_cutoff) noexcept
{
#    ifdef RAPIDFUZZ_AVX2
    using namespace simd_avx2;
#    else
    using namespace simd_sse2;
#    endif
    static constexpr size_t alignment = native_simd<VecType>::alignment;
    static constexpr size_t vec_width = native_simd<VecType>::size;
    static constexpr size_t vecs = native_simd<uint64_t>::size;
    assert(block.size() % vecs == 0);

    native_simd<VecType> zero(VecType(0));
    native_simd<VecType> one(1);
    size_t result_index = 0;

    for (size_t cur_vec = 0; cur_vec < block.size(); cur_vec += vecs) {
        /* VP is set to 1^m */
        native_simd<VecType> VP(static_cast<VecType>(-1));
        native_simd<VecType> VN(VecType(0));

        alignas(alignment) std::array<VecType, vec_width> currDist_;
        unroll<size_t, vec_width>(
            [&](size_t i) { currDist_[i] = static_cast<VecType>(s1_lengths[result_index + i]); });
        native_simd<VecType> currDist(reinterpret_cast<uint64_t*>(currDist_.data()));
        /* mask used when computing D[m,j] in the paper 10^(m-1) */
        alignas(alignment) std::array<VecType, vec_width> mask_;
        unroll<size_t, vec_width>([&](size_t i) {
            if (s1_lengths[result_index + i] == 0)
                mask_[i] = 0;
            else
                mask_[i] = static_cast<VecType>(UINT64_C(1) << (s1_lengths[result_index + i] - 1));
        });
        native_simd<VecType> mask(reinterpret_cast<uint64_t*>(mask_.data()));

        for (const auto& ch : s2) {
            /* Step 1: Computing D0 */
            alignas(alignment) std::array<uint64_t, vecs> stored;
            unroll<size_t, vecs>([&](size_t i) { stored[i] = block.get(cur_vec + i, ch); });

            native_simd<VecType> X(stored.data());
            auto D0 = (((X & VP) + VP) ^ VP) | X | VN;

            /* Step 2: Computing HP and HN */
            auto HP = VN | ~(D0 | VP);
            auto HN = D0 & VP;

            /* Step 3: Computing the value D[m,j] */
            currDist += andnot(one, (HP & mask) == zero);
            currDist -= andnot(one, (HN & mask) == zero);

            /* Step 4: Computing Vp and VN */
            HP = (HP << 1) | one;
            HN = (HN << 1);

            VP = HN | ~(D0 | HP);
            VN = HP & D0;
        }

        alignas(alignment) std::array<VecType, vec_width> distances;
        currDist.store(distances.data());

        unroll<size_t, vec_width>([&](size_t i) {
            size_t score = 0;
            /* strings of length 0 are not handled correctly */
            if (s1_lengths[result_index] == 0) {
                score = s2.size();
            }
            /* calculate score under consideration of wraparounds in parallel counter */
            else {
                RAPIDFUZZ_IF_CONSTEXPR (std::numeric_limits<VecType>::max() <
                                        std::numeric_limits<size_t>::max())
                {
                    size_t min_dist = abs_diff(s1_lengths[result_index], s2.size());
                    size_t wraparound_score = static_cast<size_t>(std::numeric_limits<VecType>::max()) + 1;

                    score = (min_dist / wraparound_score) * wraparound_score;
                    VecType remainder = static_cast<VecType>(min_dist % wraparound_score);

                    if (distances[i] < remainder) score += wraparound_score;
                }

                score += distances[i];
            }
            scores[result_index] = (score <= score_cutoff) ? score : score_cutoff + 1;
            result_index++;
        });
    }
}
#endif

template <typename InputIt1, typename InputIt2>
size_t levenshtein_hyrroe2003_small_band(const BlockPatternMatchVector& PM, const Range<InputIt1>& s1,
                                         const Range<InputIt2>& s2, size_t max)
{
    /* VP is set to 1^m. */
    uint64_t VP = ~UINT64_C(0) << (64 - max - 1);
    uint64_t VN = 0;

    const auto words = PM.size();
    size_t currDist = max;
    uint64_t diagonal_mask = UINT64_C(1) << 63;
    uint64_t horizontal_mask = UINT64_C(1) << 62;
    ptrdiff_t start_pos = static_cast<ptrdiff_t>(max) + 1 - 64;

    /* score can decrease along the horizontal, but not along the diagonal */
    size_t break_score = 2 * max + s2.size() - s1.size();

    /* Searching */
    size_t i = 0;
    if (s1.size() > max) {
        for (; i < s1.size() - max; ++i, ++start_pos) {
            /* Step 1: Computing D0 */
            uint64_t PM_j = 0;
            if (start_pos < 0) {
                PM_j = PM.get(0, s2[i]) << (-start_pos);
            }
            else {
                size_t word = static_cast<size_t>(start_pos) / 64;
                size_t word_pos = static_cast<size_t>(start_pos) % 64;

                PM_j = PM.get(word, s2[i]) >> word_pos;

                if (word + 1 < words && word_pos != 0) PM_j |= PM.get(word + 1, s2[i]) << (64 - word_pos);
            }
            uint64_t X = PM_j;
            uint64_t D0 = (((X & VP) + VP) ^ VP) | X | VN;

            /* Step 2: Computing HP and HN */
            uint64_t HP = VN | ~(D0 | VP);
            uint64_t HN = D0 & VP;

            /* Step 3: Computing the value D[m,j] */
            currDist += !bool(D0 & diagonal_mask);

            if (currDist > break_score) return max + 1;

            /* Step 4: Computing Vp and VN */
            VP = HN | ~((D0 >> 1) | HP);
            VN = (D0 >> 1) & HP;
        }
    }

    for (; i < s2.size(); ++i, ++start_pos) {
        /* Step 1: Computing D0 */
        uint64_t PM_j = 0;
        if (start_pos < 0) {
            PM_j = PM.get(0, s2[i]) << (-start_pos);
        }
        else {
            size_t word = static_cast<size_t>(start_pos) / 64;
            size_t word_pos = static_cast<size_t>(start_pos) % 64;

            PM_j = PM.get(word, s2[i]) >> word_pos;

            if (word + 1 < words && word_pos != 0) PM_j |= PM.get(word + 1, s2[i]) << (64 - word_pos);
        }
        uint64_t X = PM_j;
        uint64_t D0 = (((X & VP) + VP) ^ VP) | X | VN;

        /* Step 2: Computing HP and HN */
        uint64_t HP = VN | ~(D0 | VP);
        uint64_t HN = D0 & VP;

        /* Step 3: Computing the value D[m,j] */
        currDist += bool(HP & horizontal_mask);
        currDist -= bool(HN & horizontal_mask);
        horizontal_mask >>= 1;

        if (currDist > break_score) return max + 1;

        /* Step 4: Computing Vp and VN */
        VP = HN | ~((D0 >> 1) | HP);
        VN = (D0 >> 1) & HP;
    }

    return (currDist <= max) ? currDist : max + 1;
}

template <bool RecordMatrix, typename InputIt1, typename InputIt2>
auto levenshtein_hyrroe2003_small_band(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                                       size_t max) -> LevenshteinResult<RecordMatrix, false>
{
    assert(max <= s1.size());
    assert(max <= s2.size());
    assert(s2.size() >= s1.size() - max);

    /* VP is set to 1^m. Shifting by bitwidth would be undefined behavior */
    uint64_t VP = ~UINT64_C(0) << (64 - max - 1);
    uint64_t VN = 0;

    LevenshteinResult<RecordMatrix, false> res;
    res.dist = max;
    RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
        auto& res_ = getMatrixRef(res);
        res_.VP = ShiftedBitMatrix<uint64_t>(s2.size(), 1, ~UINT64_C(0));
        res_.VN = ShiftedBitMatrix<uint64_t>(s2.size(), 1, 0);

        ptrdiff_t start_offset = static_cast<ptrdiff_t>(max) + 2 - 64;
        for (size_t i = 0; i < s2.size(); ++i) {
            res_.VP.set_offset(i, start_offset + static_cast<ptrdiff_t>(i));
            res_.VN.set_offset(i, start_offset + static_cast<ptrdiff_t>(i));
        }
    }

    uint64_t diagonal_mask = UINT64_C(1) << 63;
    uint64_t horizontal_mask = UINT64_C(1) << 62;

    /* score can decrease along the horizontal, but not along the diagonal */
    size_t break_score = 2 * max + s2.size() - (s1.size());
    HybridGrowingHashmap<typename Range<InputIt1>::value_type, std::pair<ptrdiff_t, uint64_t>> PM;

    auto iter_s1 = s1.begin();
    for (ptrdiff_t j = -static_cast<ptrdiff_t>(max); j < 0; ++iter_s1, ++j) {
        auto& x = PM[*iter_s1];
        x.second = shr64(x.second, j - x.first) | (UINT64_C(1) << 63);
        x.first = j;
    }

    /* Searching */
    size_t i = 0;
    auto iter_s2 = s2.begin();
    for (; i < s1.size() - max; ++iter_s2, ++iter_s1, ++i) {
        /* Step 1: Computing D0 */
        /* update bitmasks online */
        uint64_t PM_j = 0;
        {
            auto& x = PM[*iter_s1];
            x.second = shr64(x.second, static_cast<ptrdiff_t>(i) - x.first) | (UINT64_C(1) << 63);
            x.first = static_cast<ptrdiff_t>(i);
        }
        {
            auto x = PM.get(*iter_s2);
            PM_j = shr64(x.second, static_cast<ptrdiff_t>(i) - x.first);
        }

        uint64_t X = PM_j;
        uint64_t D0 = (((X & VP) + VP) ^ VP) | X | VN;

        /* Step 2: Computing HP and HN */
        uint64_t HP = VN | ~(D0 | VP);
        uint64_t HN = D0 & VP;

        /* Step 3: Computing the value D[m,j] */
        res.dist += !bool(D0 & diagonal_mask);

        if (res.dist > break_score) {
            res.dist = max + 1;
            return res;
        }

        /* Step 4: Computing Vp and VN */
        VP = HN | ~((D0 >> 1) | HP);
        VN = (D0 >> 1) & HP;

        RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
            auto& res_ = getMatrixRef(res);
            res_.VP[i][0] = VP;
            res_.VN[i][0] = VN;
        }
    }

    for (; i < s2.size(); ++iter_s2, ++i) {
        /* Step 1: Computing D0 */
        /* update bitmasks online */
        uint64_t PM_j = 0;
        if (iter_s1 != s1.end()) {
            auto& x = PM[*iter_s1];
            x.second = shr64(x.second, static_cast<ptrdiff_t>(i) - x.first) | (UINT64_C(1) << 63);
            x.first = static_cast<ptrdiff_t>(i);
            ++iter_s1;
        }
        {
            auto x = PM.get(*iter_s2);
            PM_j = shr64(x.second, static_cast<ptrdiff_t>(i) - x.first);
        }

        uint64_t X = PM_j;
        uint64_t D0 = (((X & VP) + VP) ^ VP) | X | VN;

        /* Step 2: Computing HP and HN */
        uint64_t HP = VN | ~(D0 | VP);
        uint64_t HN = D0 & VP;

        /* Step 3: Computing the value D[m,j] */
        res.dist += bool(HP & horizontal_mask);
        res.dist -= bool(HN & horizontal_mask);
        horizontal_mask >>= 1;

        if (res.dist > break_score) {
            res.dist = max + 1;
            return res;
        }

        /* Step 4: Computing Vp and VN */
        VP = HN | ~((D0 >> 1) | HP);
        VN = (D0 >> 1) & HP;

        RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
            auto& res_ = getMatrixRef(res);
            res_.VP[i][0] = VP;
            res_.VN[i][0] = VN;
        }
    }

    if (res.dist > max) res.dist = max + 1;

    return res;
}

/**
 * @param stop_row specifies the row to record when using RecordBitRow
 */
template <bool RecordMatrix, bool RecordBitRow, typename InputIt1, typename InputIt2>
auto levenshtein_hyrroe2003_block(const BlockPatternMatchVector& PM, const Range<InputIt1>& s1,
                                  const Range<InputIt2>& s2, size_t max = std::numeric_limits<size_t>::max(),
                                  size_t stop_row = std::numeric_limits<size_t>::max())
    -> LevenshteinResult<RecordMatrix, RecordBitRow>
{
    LevenshteinResult<RecordMatrix, RecordBitRow> res;
    if (max < abs_diff(s1.size(), s2.size())) {
        res.dist = max + 1;
        return res;
    }

    size_t word_size = sizeof(uint64_t) * 8;
    size_t words = PM.size();
    std::vector<LevenshteinRow> vecs(words);
    std::vector<size_t> scores(words);
    uint64_t Last = UINT64_C(1) << ((s1.size() - 1) % word_size);

    for (size_t i = 0; i < words - 1; ++i)
        scores[i] = (i + 1) * word_size;

    scores[words - 1] = s1.size();

    RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
        auto& res_ = getMatrixRef(res);
        size_t full_band = std::min(s1.size(), 2 * max + 1);
        size_t full_band_words = std::min(words, full_band / word_size + 2);
        res_.VP = ShiftedBitMatrix<uint64_t>(s2.size(), full_band_words, ~UINT64_C(0));
        res_.VN = ShiftedBitMatrix<uint64_t>(s2.size(), full_band_words, 0);
    }

    RAPIDFUZZ_IF_CONSTEXPR (RecordBitRow) {
        auto& res_ = getBitRowRef(res);
        res_.first_block = 0;
        res_.last_block = 0;
        res_.prev_score = 0;
    }

    max = std::min(max, std::max(s1.size(), s2.size()));

    /* first_block is the index of the first block in Ukkonen band. */
    size_t first_block = 0;
    /* last_block is the index of the last block in Ukkonen band. */
    size_t last_block =
        std::min(words, ceil_div(std::min(max, (max + s1.size() - s2.size()) / 2) + 1, word_size)) - 1;

    /* Searching */
    auto iter_s2 = s2.begin();
    for (size_t row = 0; row < s2.size(); ++iter_s2, ++row) {
        uint64_t HP_carry = 1;
        uint64_t HN_carry = 0;

        RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
            auto& res_ = getMatrixRef(res);
            res_.VP.set_offset(row, static_cast<ptrdiff_t>(first_block * word_size));
            res_.VN.set_offset(row, static_cast<ptrdiff_t>(first_block * word_size));
        }

        auto advance_block = [&](size_t word) {
            /* Step 1: Computing D0 */
            uint64_t PM_j = PM.get(word, *iter_s2);
            uint64_t VN = vecs[word].VN;
            uint64_t VP = vecs[word].VP;

            uint64_t X = PM_j | HN_carry;
            uint64_t D0 = (((X & VP) + VP) ^ VP) | X | VN;

            /* Step 2: Computing HP and HN */
            uint64_t HP = VN | ~(D0 | VP);
            uint64_t HN = D0 & VP;

            uint64_t HP_carry_temp = HP_carry;
            uint64_t HN_carry_temp = HN_carry;
            if (word < words - 1) {
                HP_carry = HP >> 63;
                HN_carry = HN >> 63;
            }
            else {
                HP_carry = bool(HP & Last);
                HN_carry = bool(HN & Last);
            }

            /* Step 4: Computing Vp and VN */
            HP = (HP << 1) | HP_carry_temp;
            HN = (HN << 1) | HN_carry_temp;

            vecs[word].VP = HN | ~(D0 | HP);
            vecs[word].VN = HP & D0;

            RAPIDFUZZ_IF_CONSTEXPR (RecordMatrix) {
                auto& res_ = getMatrixRef(res);
                res_.VP[row][word - first_block] = vecs[word].VP;
                res_.VN[row][word - first_block] = vecs[word].VN;
            }

            return static_cast<int64_t>(HP_carry) - static_cast<int64_t>(HN_carry);
        };

        auto get_row_num = [&](size_t word) {
            if (word + 1 == words) return s1.size() - 1;
            return (word + 1) * word_size - 1;
        };

        for (size_t word = first_block; word <= last_block /* - 1*/; word++) {
            /* Step 3: Computing the value D[m,j] */
            scores[word] = static_cast<size_t>(static_cast<ptrdiff_t>(scores[word]) + advance_block(word));
        }

        max = static_cast<size_t>(
            std::min(static_cast<ptrdiff_t>(max),
                     static_cast<ptrdiff_t>(scores[last_block]) +
                         std::max(static_cast<ptrdiff_t>(s2.size()) - static_cast<ptrdiff_t>(row) - 1,
                                  static_cast<ptrdiff_t>(s1.size()) -
                                      (static_cast<ptrdiff_t>((1 + last_block) * word_size - 1) - 1))));

        /*---------- Adjust number of blocks according to Ukkonen ----------*/
        // todo on the last word instead of word_size often s1.size() % 64 should be used

        /* Band adjustment: last_block */
        /*  If block is not beneath band, calculate next block. Only next because others are certainly beneath
         * band. */
        if (last_block + 1 < words) {
            ptrdiff_t cond = static_cast<ptrdiff_t>(max + 2 * word_size + row + s1.size()) -
                             static_cast<ptrdiff_t>(scores[last_block] + 2 + s2.size());
            if (static_cast<ptrdiff_t>(get_row_num(last_block)) < cond) {
                last_block++;
                vecs[last_block].VP = ~UINT64_C(0);
                vecs[last_block].VN = 0;

                size_t chars_in_block = (last_block + 1 == words) ? ((s1.size() - 1) % word_size + 1) : 64;
                scores[last_block] = scores[last_block - 1] + chars_in_block -
                                     opt_static_cast<size_t>(HP_carry) + opt_static_cast<size_t>(HN_carry);
                // todo probably wrong types
                scores[last_block] = static_cast<size_t>(static_cast<ptrdiff_t>(scores[last_block]) +
                                                         advance_block(last_block));
            }
        }

        for (; last_block >= first_block; --last_block) {
            /* in band if score <= k where score >= score_last - word_size + 1 */
            bool in_band_cond1 = scores[last_block] < max + word_size;

            /* in band if row <= max - score - len2 + len1 + i
             * if the condition is met for the first cell in the block, it
             * is met for all other cells in the blocks as well
             *
             * this uses a more loose condition similar to edlib:
             * https://github.com/Martinsos/edlib
             */
            ptrdiff_t cond = static_cast<ptrdiff_t>(max + 2 * word_size + row + s1.size() + 1) -
                             static_cast<ptrdiff_t>(scores[last_block] + 2 + s2.size());
            bool in_band_cond2 = static_cast<ptrdiff_t>(get_row_num(last_block)) <= cond;

            if (in_band_cond1 && in_band_cond2) break;
        }

        /* Band adjustment: first_block */
        for (; first_block <= last_block; ++first_block) {
            /* in band if score <= k where score >= score_last - word_size + 1 */
            bool in_band_cond1 = scores[first_block] < max + word_size;

            /* in band if row >= score - max - len2 + len1 + i
             * if this condition is met for the last cell in the block, it
             * is met for all other cells in the blocks as well
             */
            ptrdiff_t cond = static_cast<ptrdiff_t>(scores[first_block] + s1.size() + row) -
                             static_cast<ptrdiff_t>(max + s2.size());
            bool in_band_cond2 = static_cast<ptrdiff_t>(get_row_num(first_block)) >= cond;

            if (in_band_cond1 && in_band_cond2) break;
        }

        /* distance is larger than max, so band stops to exist */
        if (last_block < first_block) {
            res.dist = max + 1;
            return res;
        }

        RAPIDFUZZ_IF_CONSTEXPR (RecordBitRow) {
            if (row == stop_row) {
                auto& res_ = getBitRowRef(res);
                if (first_block == 0)
                    res_.prev_score = stop_row + 1;
                else {
                    /* count backwards to find score at last position in previous block */
                    size_t relevant_bits = std::min((first_block + 1) * 64, s1.size()) % 64;
                    uint64_t mask = ~UINT64_C(0);
                    if (relevant_bits) mask >>= 64 - relevant_bits;

                    res_.prev_score = scores[first_block] + popcount(vecs[first_block].VN & mask) -
                                      popcount(vecs[first_block].VP & mask);
                }

                res_.first_block = first_block;
                res_.last_block = last_block;
                res_.vecs = std::move(vecs);

                /* unknown so make sure it is <= max */
                res_.dist = 0;
                return res;
            }
        }
    }

    res.dist = scores[words - 1];

    if (res.dist > max) res.dist = max + 1;

    return res;
}

template <typename InputIt1, typename InputIt2>
size_t uniform_levenshtein_distance(const BlockPatternMatchVector& block, Range<InputIt1> s1,
                                    Range<InputIt2> s2, size_t score_cutoff, size_t score_hint)
{
    /* upper bound */
    score_cutoff = std::min(score_cutoff, std::max(s1.size(), s2.size()));
    if (score_hint < 31) score_hint = 31;

    // when no differences are allowed a direct comparision is sufficient
    if (score_cutoff == 0) return s1 != s2;

    if (score_cutoff < abs_diff(s1.size(), s2.size())) return score_cutoff + 1;

    // important to catch, since this causes block to be empty -> raises exception on access
    if (s1.empty()) return (s2.size() <= score_cutoff) ? s2.size() : score_cutoff + 1;

    /* do this first, since we can not remove any affix in encoded form
     * todo actually we could at least remove the common prefix and just shift the band
     */
    if (score_cutoff >= 4) {
        // todo could safe up to 25% even without max when ignoring irrelevant paths
        // in the upper and lower corner
        size_t full_band = std::min(s1.size(), 2 * score_cutoff + 1);

        if (s1.size() < 65)
            return levenshtein_hyrroe2003<false, false>(block, s1, s2, score_cutoff).dist;
        else if (full_band <= 64)
            return levenshtein_hyrroe2003_small_band(block, s1, s2, score_cutoff);

        while (score_hint < score_cutoff) {
            full_band = std::min(s1.size(), 2 * score_hint + 1);

            size_t score;
            if (full_band <= 64)
                score = levenshtein_hyrroe2003_small_band(block, s1, s2, score_hint);
            else
                score = levenshtein_hyrroe2003_block<false, false>(block, s1, s2, score_hint).dist;

            if (score <= score_hint) return score;

            if (std::numeric_limits<size_t>::max() / 2 < score_hint) break;

            score_hint *= 2;
        }

        return levenshtein_hyrroe2003_block<false, false>(block, s1, s2, score_cutoff).dist;
    }

    /* common affix does not effect Levenshtein distance */
    remove_common_affix(s1, s2);
    if (s1.empty() || s2.empty()) return s1.size() + s2.size();

    return levenshtein_mbleven2018(s1, s2, score_cutoff);
}

template <typename InputIt1, typename InputIt2>
size_t uniform_levenshtein_distance(Range<InputIt1> s1, Range<InputIt2> s2, size_t score_cutoff,
                                    size_t score_hint)
{
    /* Swapping the strings so the second string is shorter */
    if (s1.size() < s2.size()) return uniform_levenshtein_distance(s2, s1, score_cutoff, score_hint);

    /* upper bound */
    score_cutoff = std::min(score_cutoff, std::max(s1.size(), s2.size()));
    if (score_hint < 31) score_hint = 31;

    // when no differences are allowed a direct comparision is sufficient
    if (score_cutoff == 0) return s1 != s2;

    // at least length difference insertions/deletions required
    if (score_cutoff < (s1.size() - s2.size())) return score_cutoff + 1;

    /* common affix does not effect Levenshtein distance */
    remove_common_affix(s1, s2);
    if (s1.empty() || s2.empty()) return s1.size() + s2.size();

    if (score_cutoff < 4) return levenshtein_mbleven2018(s1, s2, score_cutoff);

    // todo could safe up to 25% even without score_cutoff when ignoring irrelevant paths
    // in the upper and lower corner
    size_t full_band = std::min(s1.size(), 2 * score_cutoff + 1);

    /* when the short strings has less then 65 elements Hyyrös' algorithm can be used */
    if (s2.size() < 65)
        return levenshtein_hyrroe2003<false, false>(PatternMatchVector(s2), s2, s1, score_cutoff).dist;
    else if (full_band <= 64)
        return levenshtein_hyrroe2003_small_band<false>(s1, s2, score_cutoff).dist;
    else {
        BlockPatternMatchVector PM(s1);
        while (score_hint < score_cutoff) {
            // todo use small band implementation if possible
            size_t score = levenshtein_hyrroe2003_block<false, false>(PM, s1, s2, score_hint).dist;

            if (score <= score_hint) return score;

            if (std::numeric_limits<size_t>::max() / 2 < score_hint) break;

            score_hint *= 2;
        }

        return levenshtein_hyrroe2003_block<false, false>(PM, s1, s2, score_cutoff).dist;
    }
}

/**
 * @brief recover alignment from bitparallel Levenshtein matrix
 */
template <typename InputIt1, typename InputIt2>
void recover_alignment(Editops& editops, const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                       const LevenshteinResult<true, false>& matrix, size_t src_pos, size_t dest_pos,
                       size_t editop_pos)
{
    size_t dist = matrix.dist;
    size_t col = s1.size();
    size_t row = s2.size();

    while (row && col) {
        /* Deletion */
        if (matrix.VP.test_bit(row - 1, col - 1)) {
            assert(dist > 0);
            dist--;
            col--;
            editops[editop_pos + dist].type = EditType::Delete;
            editops[editop_pos + dist].src_pos = col + src_pos;
            editops[editop_pos + dist].dest_pos = row + dest_pos;
        }
        else {
            row--;

            /* Insertion */
            if (row && matrix.VN.test_bit(row - 1, col - 1)) {
                assert(dist > 0);
                dist--;
                editops[editop_pos + dist].type = EditType::Insert;
                editops[editop_pos + dist].src_pos = col + src_pos;
                editops[editop_pos + dist].dest_pos = row + dest_pos;
            }
            /* Match/Mismatch */
            else {
                col--;

                /* Replace (Matches are not recorded) */
                if (s1[col] != s2[row]) {
                    assert(dist > 0);
                    dist--;
                    editops[editop_pos + dist].type = EditType::Replace;
                    editops[editop_pos + dist].src_pos = col + src_pos;
                    editops[editop_pos + dist].dest_pos = row + dest_pos;
                }
            }
        }
    }

    while (col) {
        dist--;
        col--;
        editops[editop_pos + dist].type = EditType::Delete;
        editops[editop_pos + dist].src_pos = col + src_pos;
        editops[editop_pos + dist].dest_pos = row + dest_pos;
    }

    while (row) {
        dist--;
        row--;
        editops[editop_pos + dist].type = EditType::Insert;
        editops[editop_pos + dist].src_pos = col + src_pos;
        editops[editop_pos + dist].dest_pos = row + dest_pos;
    }
}

template <typename InputIt1, typename InputIt2>
void levenshtein_align(Editops& editops, const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                       size_t max = std::numeric_limits<size_t>::max(), size_t src_pos = 0,
                       size_t dest_pos = 0, size_t editop_pos = 0)
{
    /* upper bound */
    max = std::min(max, std::max(s1.size(), s2.size()));
    size_t full_band = std::min(s1.size(), 2 * max + 1);

    LevenshteinResult<true, false> matrix;
    if (s1.empty() || s2.empty())
        matrix.dist = s1.size() + s2.size();
    else if (s1.size() <= 64)
        matrix = levenshtein_hyrroe2003<true, false>(PatternMatchVector(s1), s1, s2);
    else if (full_band <= 64)
        matrix = levenshtein_hyrroe2003_small_band<true>(s1, s2, max);
    else
        matrix = levenshtein_hyrroe2003_block<true, false>(BlockPatternMatchVector(s1), s1, s2, max);

    assert(matrix.dist <= max);
    if (matrix.dist != 0) {
        if (editops.size() == 0) editops.resize(matrix.dist);

        recover_alignment(editops, s1, s2, matrix, src_pos, dest_pos, editop_pos);
    }
}

template <typename InputIt1, typename InputIt2>
LevenshteinResult<false, true> levenshtein_row(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                                               size_t max, size_t stop_row)
{
    return levenshtein_hyrroe2003_block<false, true>(BlockPatternMatchVector(s1), s1, s2, max, stop_row);
}

template <typename InputIt1, typename InputIt2>
size_t levenshtein_distance(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                            LevenshteinWeightTable weights = {1, 1, 1},
                            size_t score_cutoff = std::numeric_limits<size_t>::max(),
                            size_t score_hint = std::numeric_limits<size_t>::max())
{
    if (weights.insert_cost == weights.delete_cost) {
        /* when insertions + deletions operations are free there can not be any edit distance */
        if (weights.insert_cost == 0) return 0;

        /* uniform Levenshtein multiplied with the common factor */
        if (weights.insert_cost == weights.replace_cost) {
            // score_cutoff can make use of the common divisor of the three weights
            size_t new_score_cutoff = ceil_div(score_cutoff, weights.insert_cost);
            size_t new_score_hint = ceil_div(score_hint, weights.insert_cost);
            size_t distance = uniform_levenshtein_distance(s1, s2, new_score_cutoff, new_score_hint);
            distance *= weights.insert_cost;
            return (distance <= score_cutoff) ? distance : score_cutoff + 1;
        }
        /*
         * when replace_cost >= insert_cost + delete_cost no substitutions are performed
         * therefore this can be implemented as InDel distance multiplied with the common factor
         */
        else if (weights.replace_cost >= weights.insert_cost + weights.delete_cost) {
            // score_cutoff can make use of the common divisor of the three weights
            size_t new_score_cutoff = ceil_div(score_cutoff, weights.insert_cost);
            size_t distance = rapidfuzz::indel_distance(s1, s2, new_score_cutoff);
            distance *= weights.insert_cost;
            return (distance <= score_cutoff) ? distance : score_cutoff + 1;
        }
    }

    return generalized_levenshtein_distance(s1, s2, weights, score_cutoff);
}
struct HirschbergPos {
    size_t left_score;
    size_t right_score;
    size_t s1_mid;
    size_t s2_mid;
};

template <typename InputIt1, typename InputIt2>
HirschbergPos find_hirschberg_pos(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                                  size_t max = std::numeric_limits<size_t>::max())
{
    assert(s1.size() > 1);
    assert(s2.size() > 1);

    HirschbergPos hpos = {};
    size_t left_size = s2.size() / 2;
    size_t right_size = s2.size() - left_size;
    hpos.s2_mid = left_size;
    size_t s1_len = s1.size();
    size_t best_score = std::numeric_limits<size_t>::max();
    size_t right_first_pos = 0;
    size_t right_last_pos = 0;
    // todo: we could avoid this allocation by counting up the right score twice
    // not sure whats faster though
    std::vector<size_t> right_scores;
    {
        auto right_row = levenshtein_row(s1.reversed(), s2.reversed(), max, right_size - 1);
        if (right_row.dist > max) return find_hirschberg_pos(s1, s2, max * 2);

        right_first_pos = right_row.first_block * 64;
        right_last_pos = std::min(s1_len, right_row.last_block * 64 + 64);

        right_scores.resize(right_last_pos - right_first_pos + 1, 0);
        assume(right_scores.size() != 0);
        right_scores[0] = right_row.prev_score;

        for (size_t i = right_first_pos; i < right_last_pos; ++i) {
            size_t col_pos = i % 64;
            size_t col_word = i / 64;
            uint64_t col_mask = UINT64_C(1) << col_pos;

            right_scores[i - right_first_pos + 1] = right_scores[i - right_first_pos];
            right_scores[i - right_first_pos + 1] -= bool(right_row.vecs[col_word].VN & col_mask);
            right_scores[i - right_first_pos + 1] += bool(right_row.vecs[col_word].VP & col_mask);
        }
    }

    auto left_row = levenshtein_row(s1, s2, max, left_size - 1);
    if (left_row.dist > max) return find_hirschberg_pos(s1, s2, max * 2);

    auto left_first_pos = left_row.first_block * 64;
    auto left_last_pos = std::min(s1_len, left_row.last_block * 64 + 64);

    size_t left_score = left_row.prev_score;
    // take boundary into account
    if (s1_len >= left_first_pos + right_first_pos) {
        size_t right_index = s1_len - left_first_pos - right_first_pos;
        if (right_index < right_scores.size()) {
            best_score = right_scores[right_index] + left_score;
            hpos.left_score = left_score;
            hpos.right_score = right_scores[right_index];
            hpos.s1_mid = left_first_pos;
        }
    }

    for (size_t i = left_first_pos; i < left_last_pos; ++i) {
        size_t col_pos = i % 64;
        size_t col_word = i / 64;
        uint64_t col_mask = UINT64_C(1) << col_pos;

        left_score -= bool(left_row.vecs[col_word].VN & col_mask);
        left_score += bool(left_row.vecs[col_word].VP & col_mask);

        if (s1_len < i + 1 + right_first_pos) continue;

        size_t right_index = s1_len - i - 1 - right_first_pos;
        if (right_index >= right_scores.size()) continue;

        if (right_scores[right_index] + left_score < best_score) {
            best_score = right_scores[right_index] + left_score;
            hpos.left_score = left_score;
            hpos.right_score = right_scores[right_index];
            hpos.s1_mid = i + 1;
        }
    }

    if (hpos.left_score + hpos.right_score > max)
        return find_hirschberg_pos(s1, s2, max * 2);
    else {
        assert(levenshtein_distance(s1, s2) == hpos.left_score + hpos.right_score);
        return hpos;
    }
}

template <typename InputIt1, typename InputIt2>
void levenshtein_align_hirschberg(Editops& editops, Range<InputIt1> s1, Range<InputIt2> s2,
                                  size_t src_pos = 0, size_t dest_pos = 0, size_t editop_pos = 0,
                                  size_t max = std::numeric_limits<size_t>::max())
{
    /* prefix and suffix are no-ops, which do not need to be added to the editops */
    StringAffix affix = remove_common_affix(s1, s2);
    src_pos += affix.prefix_len;
    dest_pos += affix.prefix_len;

    max = std::min(max, std::max(s1.size(), s2.size()));
    size_t full_band = std::min(s1.size(), 2 * max + 1);

    size_t matrix_size = 2 * full_band * s2.size() / 8;
    if (matrix_size < 1024 * 1024 || s1.size() < 65 || s2.size() < 10) {
        levenshtein_align(editops, s1, s2, max, src_pos, dest_pos, editop_pos);
    }
    /* Hirschbergs algorithm */
    else {
        auto hpos = find_hirschberg_pos(s1, s2, max);

        if (editops.size() == 0) editops.resize(hpos.left_score + hpos.right_score);

        levenshtein_align_hirschberg(editops, s1.subseq(0, hpos.s1_mid), s2.subseq(0, hpos.s2_mid), src_pos,
                                     dest_pos, editop_pos, hpos.left_score);
        levenshtein_align_hirschberg(editops, s1.subseq(hpos.s1_mid), s2.subseq(hpos.s2_mid),
                                     src_pos + hpos.s1_mid, dest_pos + hpos.s2_mid,
                                     editop_pos + hpos.left_score, hpos.right_score);
    }
}

class Levenshtein : public DistanceBase<Levenshtein, size_t, 0, std::numeric_limits<int64_t>::max(),
                                        LevenshteinWeightTable> {
    friend DistanceBase<Levenshtein, size_t, 0, std::numeric_limits<int64_t>::max(), LevenshteinWeightTable>;
    friend NormalizedMetricBase<Levenshtein, LevenshteinWeightTable>;

    template <typename InputIt1, typename InputIt2>
    static size_t maximum(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                          LevenshteinWeightTable weights)
    {
        return levenshtein_maximum(s1.size(), s2.size(), weights);
    }

    template <typename InputIt1, typename InputIt2>
    static size_t _distance(const Range<InputIt1>& s1, const Range<InputIt2>& s2,
                            LevenshteinWeightTable weights, size_t score_cutoff, size_t score_hint)
    {
        return levenshtein_distance(s1, s2, weights, score_cutoff, score_hint);
    }
};

template <typename InputIt1, typename InputIt2>
Editops levenshtein_editops(const Range<InputIt1>& s1, const Range<InputIt2>& s2, size_t score_hint)
{
    Editops editops;
    if (score_hint < 31) score_hint = 31;

    size_t score_cutoff = std::max(s1.size(), s2.size());
    /* score_hint currently leads to calculating the levenshtein distance twice
     * 1) to find the real distance
     * 2) to find the alignment
     * this is only worth it when at least 50% of the runtime could be saved
     * todo: maybe there is a way to join these two calculations in the future
     * so it is worth it in more cases
     */
    if (std::numeric_limits<size_t>::max() / 2 > score_hint && 2 * score_hint < score_cutoff)
        score_cutoff = Levenshtein::distance(s1, s2, {1, 1, 1}, score_cutoff, score_hint);

    levenshtein_align_hirschberg(editops, s1, s2, 0, 0, 0, score_cutoff);

    editops.set_src_len(s1.size());
    editops.set_dest_len(s2.size());
    return editops;
}

} // namespace detail
} // namespace rapidfuzz