1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
"""
This benchmark suite has the following goals:
- Help to detect performance regression in a new version
- Validate that an optimization change makes RapidFuzz faster and doesn't lead to major performance regressions
- Compare multiple implementations of the same algorithms in different libraries
- Showcase performance which ideally would be representative of performances of applications running
on production
"""
from __future__ import annotations
import json
import math
import os
import random
import string
import subprocess
import sys
import timeit
from multiprocessing import Process, Value
from pathlib import Path
from urllib.request import urlopen
import click
import matplotlib.pyplot as plt
import pandas as pd
from packaging.version import Version
from tqdm import tqdm
def benchmark(result, setup, func, queries, choices):
timer = timeit.Timer(func, setup=setup, globals={"queries": queries, "choices": choices})
number = 1
while True:
timings = timer.repeat(repeat=7, number=number)
min_timing = min(timings)
# hopefully this reduces derivations in the benchmarks a bit
if min_timing < 0.05:
multiplicator = max(2, 0.05 / min_timing)
number = math.ceil(number * multiplicator)
else:
result.value = min_timing / number
return
# todo not sure how to handle ranges optimally here
# e.g. someone might want to
# - benchmark against all versions compatible
# - only the latest patch of each major
# - a custom range
# - only the installed version
def get_rapidfuzz_versions(version):
url = "https://pypi.org/pypi/rapidfuzz/json"
data = json.load(urlopen(url))
versions = list(data["releases"].keys())
versions.sort(key=Version, reverse=True)
if version == "latest_patches":
filtered_versions = []
last_ver = None
for version in versions:
ver = Version(version)
if last_ver is not None and last_ver.major == ver.major and last_ver.minor == ver.minor:
continue
last_ver = ver
filtered_versions.append(ver)
versions = filtered_versions
return versions
def run_benchmark(datasets, setup, func) -> bool:
results = []
for dataset in tqdm(datasets["data"]):
queries = [dataset[0]]
choices = dataset[1:]
result = Value("f", 0.0)
# running this in a different process ensures, that imports do not "leak" out
# this is relevant, since for regressions tests we install different versions of the module
# during runtime
process = Process(target=benchmark, args=(result, setup, func, queries, choices))
process.start()
process.join()
# something went wrong
if result.value == 0.0:
return []
results.append(result.value / len(choices))
return results
def run_benchmarks_rapidfuzz(rapidfuzz_version, func_name, dataset, result_df):
SCORERS = {
"Jaro": "from rapidfuzz.distance.metrics_cpp import jaro_similarity as scorer",
"JaroWinkler": "from rapidfuzz.distance.metrics_cpp import jaro_winkler_similarity as scorer",
"OSA": "from rapidfuzz.distance.metrics_cpp import osa_distance as scorer",
"Levenshtein": "from rapidfuzz.distance.metrics_cpp import levenshtein_distance as scorer",
"Indel": "from rapidfuzz.distance.metrics_cpp import indel_distance as scorer",
"DamerauLevenshtein": "from rapidfuzz.distance.metrics_cpp import damerau_levenshtein_distance as scorer",
"Hamming": "from rapidfuzz.distance.metrics_cpp import hamming_distance as scorer",
}
setup = SCORERS[func_name]
func = "[[scorer(a, b) for a in queries] for b in choices]"
if rapidfuzz_version == "current":
print("Benchmarking rapidfuzz")
result_df["rapidfuzz"] = run_benchmark(dataset, setup, func)
else:
rapidfuzz_versions = get_rapidfuzz_versions(rapidfuzz_version)
os.environ["RAPIDFUZZ_BUILD_EXTENSION"] = "1"
for version in rapidfuzz_versions:
print(f"Benchmarking rapidfuzz=={version}")
res = subprocess.run(
[sys.executable, "-m", "pip", "install", f"rapidfuzz=={version}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
check=False,
)
# older versions are likely not installable
if res.returncode:
break
# likely broken install on old version
results = run_benchmark(dataset, setup, func)
if not results:
break
result_df[f"rapidfuzz=={version}"] = results
def run_benchmarks_jellyfish(func_name, result_df, dataset):
setup = "import jellyfish"
JELLYFISH_SCORERS = {
"Jaro": "jaro_similarity",
"JaroWinkler": "jaro_winkler_similarity",
"Levenshtein": "levenshtein_distance",
"DamerauLevenshtein": "damerau_levenshtein_distance",
"Hamming": "hamming_distance",
}
if func_name not in JELLYFISH_SCORERS:
return
print("Benchmarking jellyfish")
func = f"[[jellyfish.{JELLYFISH_SCORERS[func_name]}(a, b) for a in queries] for b in choices]"
result_df["jellyfish"] = run_benchmark(dataset, setup, func)
def run_benchmarks_polyleven(func_name, result_df, dataset):
if func_name != "Levenshtein":
return
print("Benchmarking polyleven")
setup = "import polyleven"
func = "[[polyleven.levenshtein(a, b) for a in queries] for b in choices]"
result_df["polyleven"] = run_benchmark(dataset, setup, func)
def run_benchmarks_edlib(func_name, result_df, dataset):
if func_name != "Levenshtein":
return
print("Benchmarking edlib")
setup = "import edlib"
func = "[[edlib.align(a, b) for a in queries] for b in choices]"
result_df["edlib"] = run_benchmark(dataset, setup, func)
print("Benchmarking edlib(k=max)")
func = "[[edlib.align(a, b, k=max(len(a), len(b))) for a in queries] for b in choices]"
result_df["edlib(k=max)"] = run_benchmark(dataset, setup, func)
def run_benchmarks_editdistance(func_name, result_df, dataset):
if func_name != "Levenshtein":
return
print("Benchmarking editdistance")
setup = "import editdistance"
func = "[[editdistance.eval(a, b) for a in queries] for b in choices]"
result_df["editdistance"] = run_benchmark(dataset, setup, func)
def run_benchmarks_pyxdameraulevenshtein(func_name, result_df, dataset):
if func_name != "OSA":
return
print("Benchmarking pyxdameraulevenshtein")
setup = "import pyxdameraulevenshtein"
func = "[[pyxdameraulevenshtein.damerau_levenshtein_distance(a, b) for a in queries] for b in choices]"
result_df["pyxdameraulevenshtein"] = run_benchmark(dataset, setup, func)
AVAILABLE_BENCHMARKS = [
"Jaro",
"JaroWinkler",
"OSA",
"Levenshtein",
"Indel",
"DamerauLevenshtein",
]
@click.group
def cli():
pass
@cli.command()
@click.option("--rapidfuzz_version", default="current", help="versions of rapidfuzz to benchmark")
@click.option(
"--func",
default="Levenshtein",
type=click.Choice(AVAILABLE_BENCHMARKS, case_sensitive=False),
help="function to benchmark",
)
def bench(rapidfuzz_version, func):
temp_dir = Path(__file__).parent / "temp"
temp_dir.mkdir(exist_ok=True)
with open(temp_dir / "dataset.json") as f:
dataset = json.load(f)
result_df = pd.DataFrame(data={"x_axis": dataset["x_axis"]})
run_benchmarks_rapidfuzz(rapidfuzz_version, func, dataset, result_df)
# third party libs
# run_benchmarks_jellyfish(func, result_df, dataset)
run_benchmarks_polyleven(func, result_df, dataset)
run_benchmarks_edlib(func, result_df, dataset)
# run_benchmarks_editdistance(func, result_df, dataset)
run_benchmarks_pyxdameraulevenshtein(func, result_df, dataset)
result_df.to_csv(temp_dir / "result.csv", sep=",", index=False)
@cli.group()
def generate_dataset():
pass
@generate_dataset.command()
@click.option("--start", default=0)
@click.option("--end", default=512)
@click.option("--step", default=4)
@click.option("--count", default=100)
def length_based(start, end, step, count):
temp_dir = Path(__file__).parent / "temp"
temp_dir.mkdir(exist_ok=True)
random.seed(18)
characters = string.ascii_letters + string.digits + string.whitespace + string.punctuation
dataset = {"x_label": "string length [in characters]", "x_axis": [], "data": []}
for i in range(start, end, step):
data = ["".join(random.choice(characters) for _ in range(i)) for _ in range(count + 1)]
dataset["data"].append(data)
dataset["x_axis"].append(i)
with open(temp_dir / "dataset.json", "w") as f:
json.dump(dataset, f)
@cli.command()
def show():
temp_dir = Path(__file__).parent / "temp"
temp_dir.mkdir(exist_ok=True)
with open(temp_dir / "dataset.json") as f:
dataset = json.load(f)
results = pd.read_csv("temp/result.csv")
results.loc[:, (results.columns != "x_axis")] *= 1000 * 1000
ax = results.plot(x="x_axis")
# plt.xticks(list(range(0, 64*20+1, 64)))
plt.title("Performance comparison of the \nDamerauLevenshtein similarity in different libraries")
plt.xlabel(dataset["x_label"])
plt.ylabel("runtime [μs]")
ax.set_xlim(xmin=0)
# ax.set_ylim(bottom=0)
plt.grid()
plt.show()
if __name__ == "__main__":
cli()
|