File: tutorial.md

package info (click to toggle)
rapidjson 1.1.0+dfsg2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 4,028 kB
  • sloc: cpp: 18,839; ansic: 2,434; python: 235; xml: 182; sh: 83; makefile: 8
file content (536 lines) | stat: -rw-r--r-- 21,947 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Tutorial

This tutorial introduces the basics of the Document Object Model(DOM) API.

As shown in [Usage at a glance](@ref index), a JSON can be parsed into DOM, and then the DOM can be queried and modified easily, and finally be converted back to JSON.

[TOC]

# Value & Document {#ValueDocument}

Each JSON value is stored in a type called `Value`. A `Document`, representing the DOM, contains the root `Value` of the DOM tree. All public types and functions of RapidJSON are defined in the `rapidjson` namespace.

# Query Value {#QueryValue}

In this section, we will use excerpt of `example/tutorial/tutorial.cpp`.

Assumes we have a JSON stored in a C string (`const char* json`):
~~~~~~~~~~js
{
    "hello": "world",
    "t": true ,
    "f": false,
    "n": null,
    "i": 123,
    "pi": 3.1416,
    "a": [1, 2, 3, 4]
}
~~~~~~~~~~

Parse it into a `Document`:
~~~~~~~~~~cpp
#include "rapidjson/document.h"

using namespace rapidjson;

// ...
Document document;
document.Parse(json);
~~~~~~~~~~

The JSON is now parsed into `document` as a *DOM tree*:

![DOM in the tutorial](diagram/tutorial.png)

Since the update to RFC 7159, the root of a conforming JSON document can be any JSON value.  In earlier RFC 4627, only objects or arrays were allowed as root values. In this case, the root is an object.
~~~~~~~~~~cpp
assert(document.IsObject());
~~~~~~~~~~

Let's query whether a `"hello"` member exists in the root object. Since a `Value` can contain different types of value, we may need to verify its type and use suitable API to obtain the value. In this example, `"hello"` member associates with a JSON string.
~~~~~~~~~~cpp
assert(document.HasMember("hello"));
assert(document["hello"].IsString());
printf("hello = %s\n", document["hello"].GetString());
~~~~~~~~~~

~~~~~~~~~~
world
~~~~~~~~~~

JSON true/false values are represented as `bool`.
~~~~~~~~~~cpp
assert(document["t"].IsBool());
printf("t = %s\n", document["t"].GetBool() ? "true" : "false");
~~~~~~~~~~

~~~~~~~~~~
true
~~~~~~~~~~

JSON null can be queryed by `IsNull()`.
~~~~~~~~~~cpp
printf("n = %s\n", document["n"].IsNull() ? "null" : "?");
~~~~~~~~~~

~~~~~~~~~~
null
~~~~~~~~~~

JSON number type represents all numeric values. However, C++ needs more specific type for manipulation.

~~~~~~~~~~cpp
assert(document["i"].IsNumber());

// In this case, IsUint()/IsInt64()/IsUInt64() also return true.
assert(document["i"].IsInt());          
printf("i = %d\n", document["i"].GetInt());
// Alternative (int)document["i"]

assert(document["pi"].IsNumber());
assert(document["pi"].IsDouble());
printf("pi = %g\n", document["pi"].GetDouble());
~~~~~~~~~~

~~~~~~~~~~
i = 123
pi = 3.1416
~~~~~~~~~~

JSON array contains a number of elements.
~~~~~~~~~~cpp
// Using a reference for consecutive access is handy and faster.
const Value& a = document["a"];
assert(a.IsArray());
for (SizeType i = 0; i < a.Size(); i++) // Uses SizeType instead of size_t
        printf("a[%d] = %d\n", i, a[i].GetInt());
~~~~~~~~~~

~~~~~~~~~~
a[0] = 1
a[1] = 2
a[2] = 3
a[3] = 4
~~~~~~~~~~

Note that, RapidJSON does not automatically convert values between JSON types. If a value is a string, it is invalid to call `GetInt()`, for example. In debug mode it will fail an assertion. In release mode, the behavior is undefined.

In the following, details about querying individual types are discussed.

## Query Array {#QueryArray}

By default, `SizeType` is typedef of `unsigned`. In most systems, array is limited to store up to 2^32-1 elements.

You may access the elements in array by integer literal, for example, `a[0]`, `a[1]`, `a[2]`.

Array is similar to `std::vector`, instead of using indices, you may also use iterator to access all the elements.
~~~~~~~~~~cpp
for (Value::ConstValueIterator itr = a.Begin(); itr != a.End(); ++itr)
    printf("%d ", itr->GetInt());
~~~~~~~~~~

And other familiar query functions:
* `SizeType Capacity() const`
* `bool Empty() const`

### Range-based For Loop (New in v1.1.0)

When C++11 is enabled, you can use range-based for loop to access all elements in an array.

~~~~~~~~~~cpp
for (auto& v : a.GetArray())
    printf("%d ", v.GetInt());
~~~~~~~~~~

## Query Object {#QueryObject}

Similar to array, we can access all object members by iterator:

~~~~~~~~~~cpp
static const char* kTypeNames[] = 
    { "Null", "False", "True", "Object", "Array", "String", "Number" };

for (Value::ConstMemberIterator itr = document.MemberBegin();
    itr != document.MemberEnd(); ++itr)
{
    printf("Type of member %s is %s\n",
        itr->name.GetString(), kTypeNames[itr->value.GetType()]);
}
~~~~~~~~~~

~~~~~~~~~~
Type of member hello is String
Type of member t is True
Type of member f is False
Type of member n is Null
Type of member i is Number
Type of member pi is Number
Type of member a is Array
~~~~~~~~~~

Note that, when `operator[](const char*)` cannot find the member, it will fail an assertion.

If we are unsure whether a member exists, we need to call `HasMember()` before calling `operator[](const char*)`. However, this incurs two lookup. A better way is to call `FindMember()`, which can check the existence of member and obtain its value at once:

~~~~~~~~~~cpp
Value::ConstMemberIterator itr = document.FindMember("hello");
if (itr != document.MemberEnd())
    printf("%s\n", itr->value.GetString());
~~~~~~~~~~

### Range-based For Loop (New in v1.1.0)

When C++11 is enabled, you can use range-based for loop to access all members in an object.

~~~~~~~~~~cpp
for (auto& m : document.GetObject())
    printf("Type of member %s is %s\n",
        m.name.GetString(), kTypeNames[m.value.GetType()]);
~~~~~~~~~~

## Querying Number {#QueryNumber}

JSON provide a single numerical type called Number. Number can be integer or real numbers. RFC 4627 says the range of Number is specified by parser.

As C++ provides several integer and floating point number types, the DOM tries to handle these with widest possible range and good performance.

When a Number is parsed, it is stored in the DOM as either one of the following type:

Type       | Description
-----------|---------------------------------------
`unsigned` | 32-bit unsigned integer
`int`      | 32-bit signed integer
`uint64_t` | 64-bit unsigned integer
`int64_t`  | 64-bit signed integer
`double`   | 64-bit double precision floating point

When querying a number, you can check whether the number can be obtained as target type:

Checking          | Obtaining
------------------|---------------------
`bool IsNumber()` | N/A
`bool IsUint()`   | `unsigned GetUint()`
`bool IsInt()`    | `int GetInt()`
`bool IsUint64()` | `uint64_t GetUint64()`
`bool IsInt64()`  | `int64_t GetInt64()`
`bool IsDouble()` | `double GetDouble()`

Note that, an integer value may be obtained in various ways without conversion. For example, A value `x` containing 123 will make `x.IsInt() == x.IsUint() == x.IsInt64() == x.IsUint64() == true`. But a value `y` containing -3000000000 will only makes `x.IsInt64() == true`.

When obtaining the numeric values, `GetDouble()` will convert internal integer representation to a `double`. Note that, `int` and `unsigned` can be safely convert to `double`, but `int64_t` and `uint64_t` may lose precision (since mantissa of `double` is only 52-bits).

## Query String {#QueryString}

In addition to `GetString()`, the `Value` class also contains `GetStringLength()`. Here explains why.

According to RFC 4627, JSON strings can contain Unicode character `U+0000`, which must be escaped as `"\u0000"`. The problem is that, C/C++ often uses null-terminated string, which treats ``\0'` as the terminator symbol.

To conform RFC 4627, RapidJSON supports string containing `U+0000`. If you need to handle this, you can use `GetStringLength()` API to obtain the correct length of string.

For example, after parsing a the following JSON to `Document d`:

~~~~~~~~~~js
{ "s" :  "a\u0000b" }
~~~~~~~~~~
The correct length of the value `"a\u0000b"` is 3. But `strlen()` returns 1.

`GetStringLength()` can also improve performance, as user may often need to call `strlen()` for allocating buffer.

Besides, `std::string` also support a constructor:

~~~~~~~~~~cpp
string(const char* s, size_t count);
~~~~~~~~~~

which accepts the length of string as parameter. This constructor supports storing null character within the string, and should also provide better performance.

## Comparing values

You can use `==` and `!=` to compare values. Two values are equal if and only if they are have same type and contents. You can also compare values with primitive types. Here is an example.

~~~~~~~~~~cpp
if (document["hello"] == document["n"]) /*...*/;    // Compare values
if (document["hello"] == "world") /*...*/;          // Compare value with literal string
if (document["i"] != 123) /*...*/;                  // Compare with integers
if (document["pi"] != 3.14) /*...*/;                // Compare with double.
~~~~~~~~~~

Array/object compares their elements/members in order. They are equal if and only if their whole subtrees are equal.

Note that, currently if an object contains duplicated named member, comparing equality with any object is always `false`.

# Create/Modify Values {#CreateModifyValues}

There are several ways to create values. After a DOM tree is created and/or modified, it can be saved as JSON again using `Writer`.

## Change Value Type {#ChangeValueType}
When creating a Value or Document by default constructor, its type is Null. To change its type, call `SetXXX()` or assignment operator, for example:

~~~~~~~~~~cpp
Document d; // Null
d.SetObject();

Value v;    // Null
v.SetInt(10);
v = 10;     // Shortcut, same as above
~~~~~~~~~~

### Overloaded Constructors
There are also overloaded constructors for several types:

~~~~~~~~~~cpp
Value b(true);    // calls Value(bool)
Value i(-123);    // calls Value(int)
Value u(123u);    // calls Value(unsigned)
Value d(1.5);     // calls Value(double)
~~~~~~~~~~

To create empty object or array, you may use `SetObject()`/`SetArray()` after default constructor, or using the `Value(Type)` in one shot:

~~~~~~~~~~cpp
Value o(kObjectType);
Value a(kArrayType);
~~~~~~~~~~

## Move Semantics {#MoveSemantics}

A very special decision during design of RapidJSON is that, assignment of value does not copy the source value to destination value. Instead, the value from source is moved to the destination. For example,

~~~~~~~~~~cpp
Value a(123);
Value b(456);
b = a;         // a becomes a Null value, b becomes number 123.
~~~~~~~~~~

![Assignment with move semantics.](diagram/move1.png)

Why? What is the advantage of this semantics?

The simple answer is performance. For fixed size JSON types (Number, True, False, Null), copying them is fast and easy. However, For variable size JSON types (String, Array, Object), copying them will incur a lot of overheads. And these overheads are often unnoticed. Especially when we need to create temporary object, copy it to another variable, and then destruct it.

For example, if normal *copy* semantics was used:

~~~~~~~~~~cpp
Document d;
Value o(kObjectType);
{
    Value contacts(kArrayType);
    // adding elements to contacts array.
    // ...
    o.AddMember("contacts", contacts, d.GetAllocator());  // deep clone contacts (may be with lots of allocations)
    // destruct contacts.
}
~~~~~~~~~~

![Copy semantics makes a lots of copy operations.](diagram/move2.png)

The object `o` needs to allocate a buffer of same size as contacts, makes a deep clone of it, and then finally contacts is destructed. This will incur a lot of unnecessary allocations/deallocations and memory copying.

There are solutions to prevent actual copying these data, such as reference counting and garbage collection(GC).

To make RapidJSON simple and fast, we chose to use *move* semantics for assignment. It is similar to `std::auto_ptr` which transfer ownership during assignment. Move is much faster and simpler, it just destructs the original value, `memcpy()` the source to destination, and finally sets the source as Null type.

So, with move semantics, the above example becomes:

~~~~~~~~~~cpp
Document d;
Value o(kObjectType);
{
    Value contacts(kArrayType);
    // adding elements to contacts array.
    o.AddMember("contacts", contacts, d.GetAllocator());  // just memcpy() of contacts itself to the value of new member (16 bytes)
    // contacts became Null here. Its destruction is trivial.
}
~~~~~~~~~~

![Move semantics makes no copying.](diagram/move3.png)

This is called move assignment operator in C++11. As RapidJSON supports C++03, it adopts move semantics using assignment operator, and all other modifying function like `AddMember()`, `PushBack()`.

### Move semantics and temporary values {#TemporaryValues}

Sometimes, it is convenient to construct a Value in place, before passing it to one of the "moving" functions, like `PushBack()` or `AddMember()`.  As temporary objects can't be converted to proper Value references, the convenience function `Move()` is available:

~~~~~~~~~~cpp
Value a(kArrayType);
Document::AllocatorType& allocator = document.GetAllocator();
// a.PushBack(Value(42), allocator);       // will not compile
a.PushBack(Value().SetInt(42), allocator); // fluent API
a.PushBack(Value(42).Move(), allocator);   // same as above
~~~~~~~~~~

## Create String {#CreateString}
RapidJSON provide two strategies for storing string.

1. copy-string: allocates a buffer, and then copy the source data into it.
2. const-string: simply store a pointer of string.

Copy-string is always safe because it owns a copy of the data. Const-string can be used for storing string literal, and in-situ parsing which we will mentioned in Document section.

To make memory allocation customizable, RapidJSON requires user to pass an instance of allocator, whenever an operation may require allocation. This design is needed to prevent storing a allocator (or Document) pointer per Value.

Therefore, when we assign a copy-string, we call this overloaded `SetString()` with allocator:

~~~~~~~~~~cpp
Document document;
Value author;
char buffer[10];
int len = sprintf(buffer, "%s %s", "Milo", "Yip"); // dynamically created string.
author.SetString(buffer, len, document.GetAllocator());
memset(buffer, 0, sizeof(buffer));
// author.GetString() still contains "Milo Yip" after buffer is destroyed
~~~~~~~~~~

In this example, we get the allocator from a `Document` instance. This is a common idiom when using RapidJSON. But you may use other instances of allocator.

Besides, the above `SetString()` requires length. This can handle null characters within a string. There is another `SetString()` overloaded function without the length parameter. And it assumes the input is null-terminated and calls a `strlen()`-like function to obtain the length.

Finally, for string literal or string with safe life-cycle can use const-string version of `SetString()`, which lacks allocator parameter.  For string literals (or constant character arrays), simply passing the literal as parameter is safe and efficient:

~~~~~~~~~~cpp
Value s;
s.SetString("rapidjson");    // can contain null character, length derived at compile time
s = "rapidjson";             // shortcut, same as above
~~~~~~~~~~

For character pointer, the RapidJSON requires to mark it as safe before using it without copying. This can be achieved by using the `StringRef` function:

~~~~~~~~~cpp
const char * cstr = getenv("USER");
size_t cstr_len = ...;                 // in case length is available
Value s;
// s.SetString(cstr);                  // will not compile
s.SetString(StringRef(cstr));          // ok, assume safe lifetime, null-terminated
s = StringRef(cstr);                   // shortcut, same as above
s.SetString(StringRef(cstr,cstr_len)); // faster, can contain null character
s = StringRef(cstr,cstr_len);          // shortcut, same as above

~~~~~~~~~

## Modify Array {#ModifyArray}
Value with array type provides similar APIs as `std::vector`.

* `Clear()`
* `Reserve(SizeType, Allocator&)`
* `Value& PushBack(Value&, Allocator&)`
* `template <typename T> GenericValue& PushBack(T, Allocator&)`
* `Value& PopBack()`
* `ValueIterator Erase(ConstValueIterator pos)`
* `ValueIterator Erase(ConstValueIterator first, ConstValueIterator last)`

Note that, `Reserve(...)` and `PushBack(...)` may allocate memory for the array elements, therefore require an allocator.

Here is an example of `PushBack()`:

~~~~~~~~~~cpp
Value a(kArrayType);
Document::AllocatorType& allocator = document.GetAllocator();

for (int i = 5; i <= 10; i++)
    a.PushBack(i, allocator);   // allocator is needed for potential realloc().

// Fluent interface
a.PushBack("Lua", allocator).PushBack("Mio", allocator);
~~~~~~~~~~

Differs from STL, `PushBack()`/`PopBack()` returns the array reference itself. This is called _fluent interface_.

If you want to add a non-constant string or a string without sufficient lifetime (see [Create String](#CreateString)) to the array, you need to create a string Value by using the copy-string API.  To avoid the need for an intermediate variable, you can use a [temporary value](#TemporaryValues) in place:

~~~~~~~~~~cpp
// in-place Value parameter
contact.PushBack(Value("copy", document.GetAllocator()).Move(), // copy string
                 document.GetAllocator());

// explicit parameters
Value val("key", document.GetAllocator()); // copy string
contact.PushBack(val, document.GetAllocator());
~~~~~~~~~~

## Modify Object {#ModifyObject}
Object is a collection of key-value pairs (members). Each key must be a string value. To modify an object, either add or remove members. THe following APIs are for adding members:

* `Value& AddMember(Value&, Value&, Allocator& allocator)`
* `Value& AddMember(StringRefType, Value&, Allocator&)`
* `template <typename T> Value& AddMember(StringRefType, T value, Allocator&)`

Here is an example.

~~~~~~~~~~cpp
Value contact(kObject);
contact.AddMember("name", "Milo", document.GetAllocator());
contact.AddMember("married", true, document.GetAllocator());
~~~~~~~~~~

The name parameter with `StringRefType` is similar to the interface of `SetString` function for string values. These overloads are used to avoid the need for copying the `name` string, as constant key names are very common in JSON objects.

If you need to create a name from a non-constant string or a string without sufficient lifetime (see [Create String](#CreateString)), you need to create a string Value by using the copy-string API.  To avoid the need for an intermediate variable, you can use a [temporary value](#TemporaryValues) in place:

~~~~~~~~~~cpp
// in-place Value parameter
contact.AddMember(Value("copy", document.GetAllocator()).Move(), // copy string
                  Value().Move(),                                // null value
                  document.GetAllocator());

// explicit parameters
Value key("key", document.GetAllocator()); // copy string name
Value val(42);                             // some value
contact.AddMember(key, val, document.GetAllocator());
~~~~~~~~~~

For removing members, there are several choices: 

* `bool RemoveMember(const Ch* name)`: Remove a member by search its name (linear time complexity).
* `bool RemoveMember(const Value& name)`: same as above but `name` is a Value.
* `MemberIterator RemoveMember(MemberIterator)`: Remove a member by iterator (_constant_ time complexity).
* `MemberIterator EraseMember(MemberIterator)`: similar to the above but it preserves order of members (linear time complexity).
* `MemberIterator EraseMember(MemberIterator first, MemberIterator last)`: remove a range of members, preserves order (linear time complexity).

`MemberIterator RemoveMember(MemberIterator)` uses a "move-last" trick to achieve constant time complexity. Basically the member at iterator is destructed, and then the last element is moved to that position. So the order of the remaining members are changed.

## Deep Copy Value {#DeepCopyValue}
If we really need to copy a DOM tree, we can use two APIs for deep copy: constructor with allocator, and `CopyFrom()`.

~~~~~~~~~~cpp
Document d;
Document::AllocatorType& a = d.GetAllocator();
Value v1("foo");
// Value v2(v1); // not allowed

Value v2(v1, a);                      // make a copy
assert(v1.IsString());                // v1 untouched
d.SetArray().PushBack(v1, a).PushBack(v2, a);
assert(v1.IsNull() && v2.IsNull());   // both moved to d

v2.CopyFrom(d, a);                    // copy whole document to v2
assert(d.IsArray() && d.Size() == 2); // d untouched
v1.SetObject().AddMember("array", v2, a);
d.PushBack(v1, a);
~~~~~~~~~~

## Swap Values {#SwapValues}

`Swap()` is also provided.

~~~~~~~~~~cpp
Value a(123);
Value b("Hello");
a.Swap(b);
assert(a.IsString());
assert(b.IsInt());
~~~~~~~~~~

Swapping two DOM trees is fast (constant time), despite the complexity of the trees.

# What's next {#WhatsNext}

This tutorial shows the basics of DOM tree query and manipulation. There are several important concepts in RapidJSON:

1. [Streams](doc/stream.md) are channels for reading/writing JSON, which can be a in-memory string, or file stream, etc. User can also create their streams.
2. [Encoding](doc/encoding.md) defines which character encoding is used in streams and memory. RapidJSON also provide Unicode conversion/validation internally.
3. [DOM](doc/dom.md)'s basics are already covered in this tutorial. Uncover more advanced features such as *in situ* parsing, other parsing options and advanced usages.
4. [SAX](doc/sax.md) is the foundation of parsing/generating facility in RapidJSON. Learn how to use `Reader`/`Writer` to implement even faster applications. Also try `PrettyWriter` to format the JSON.
5. [Performance](doc/performance.md) shows some in-house and third-party benchmarks.
6. [Internals](doc/internals.md) describes some internal designs and techniques of RapidJSON.

You may also refer to the [FAQ](doc/faq.md), API documentation, examples and unit tests.