1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
//
// RapMap - Rapid and accurate mapping of short reads to transcriptomes using
// quasi-mapping.
// Copyright (C) 2015, 2016, 2017 Rob Patro, Avi Srivastava, Hirak Sarkar
//
// This file is part of RapMap.
//
// RapMap is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// RapMap is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with RapMap. If not, see <http://www.gnu.org/licenses/>.
//
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <iterator>
#include <memory>
#include <mutex>
#include <random>
#include <type_traits>
#include <unordered_map>
#include <map>
#include <vector>
#include <clocale>
// avoid duplicate definition
#ifdef HAVE_SSTREAM
#undef HAVE_SSTREAM
#endif //HAVE_SSTREAM
#include "tclap/CmdLine.h"
#include <cereal/archives/binary.hpp>
#include <cereal/archives/json.hpp>
#include <cereal/types/string.hpp>
#include <cereal/types/unordered_map.hpp>
#include <cereal/types/utility.hpp>
#include <cereal/types/vector.hpp>
#include "RapMapUtils.hpp"
#include "BooMap.hpp"
#include "FrugalBooMap.hpp"
#include "xxhash.h"
#include "spdlog/spdlog.h"
#include "FastxParser.hpp"
#include "divsufsort.h"
#include "divsufsort64.h"
#include "RapMapFileSystem.hpp"
#include "ScopedTimer.hpp"
#include "bit_array.h"
#include "rank9b.h"
#include "IndexHeader.hpp"
#include "xxhash.h"
// sha functionality
// #include "picosha2.h"
#include "digestpp/digestpp.hpp"
#include "nonstd/string_view.hpp"
#include <chrono>
using single_parser = fastx_parser::FastxParser<fastx_parser::ReadSeq>;
using TranscriptID = uint32_t;
using TranscriptIDVector = std::vector<TranscriptID>;
using KmerIDMap = std::vector<TranscriptIDVector>;
using namespace combinelib::kmers;
bool buildSA(const std::string& outputDir, nonstd::string_view concatText, size_t tlen,
std::vector<int64_t>& SA) {
// IndexT is the signed index type
// UIndexT is the unsigned index type
using IndexT = int64_t;
using UIndexT = uint64_t;
bool success{false};
auto log = spdlog::get("jointLog");
std::ofstream saStream(outputDir + "sa.bin", std::ios::binary);
{
ScopedTimer timer;
SA.resize(tlen, 0);
//IndexT textLen = static_cast<IndexT>(tlen);
log->info("Building suffix array . . . ");
auto ret = divsufsort64(
reinterpret_cast<unsigned char*>(const_cast<char*>(concatText.data())),
SA.data(), tlen);
success = (ret == 0);
if (success) {
std::cerr << "success\n";
{
ScopedTimer timer2;
std::cerr << "saving to disk . . . ";
cereal::BinaryOutputArchive saArchive(saStream);
saArchive(SA);
std::cerr << "done\n";
}
} else {
std::cerr << "FAILURE: return code from libdivsufsort64() was " << ret
<< "\n";
saStream.close();
std::exit(1);
}
std::cerr << "done\n";
}
saStream.close();
return success;
}
// IndexT is the index type.
// int32_t for "small" suffix arrays
// int64_t for "large" ones
template <typename IndexT>
bool buildPerfectHash(const std::string& outputDir, nonstd::string_view concatText,
size_t tlenIn, uint32_t k, std::vector<IndexT>& SA,
uint32_t numHashThreads) {
auto log = spdlog::get("jointLog");
//BooMap<uint64_t, rapmap::utils::SAInterval<IndexT>> intervals;
PerfectHashT<uint64_t, rapmap::utils::SAInterval<IndexT>> intervals;
intervals.setSAPtr(&SA);
intervals.setTextPtr(concatText.data(), concatText.length());
// The start and stop of the current interval
IndexT start = 0, stop = 0;
IndexT tlen = static_cast<IndexT>(tlenIn);
// An iterator to the beginning of the text
//auto textB = concatText.begin();
//auto textE = concatText.end();
// The current k-mer as a string
rapmap::utils::my_mer mer;
//bool currentValid{false};
std::string currentKmer;
std::string nextKmer;
while (stop < tlen) {
// Check if the string starting at the
// current position is valid (i.e. doesn't contain $)
// and is <= k bases from the end of the string
nextKmer = concatText.substr(SA[stop], k).to_string();
if (nextKmer.length() == k and
nextKmer.find_first_of('$') == std::string::npos) {
// If this is a new k-mer, then hash the current k-mer
if (nextKmer != currentKmer) {
if (currentKmer.length() == k and
currentKmer.find_first_of('$') == std::string::npos) {
mer = rapmap::utils::my_mer(currentKmer);
auto bits = mer.word(0);//get_bits(0, 2 * k);
intervals.add(std::move(bits), {start, stop});
// push_back(std::make_pair<uint64_t,
// rapmap::utils::SAInterval<IndexT>>(std::move(bits), {start,
// stop}));
}
currentKmer = nextKmer;
start = stop;
}
} else {
// If this isn't a valid suffix (contains a $)
// If the previous interval was valid, put it
// in the hash.
if (currentKmer.length() == k and
currentKmer.find_first_of('$') == std::string::npos) {
mer = rapmap::utils::my_mer(currentKmer);
auto bits = mer.word(0);//get_bits(0, 2 * k);
// intervals.push_back(std::make_pair<uint64_t,
// rapmap::utils::SAInterval<IndexT>>(std::move(bits), {start, stop}));
intervals.add(std::move(bits), {start, stop});
}
// The current interval is invalid and empty
currentKmer = nextKmer;
start = stop;
}
if (stop % 1000000 == 0) {
fmt::print(std::cerr, "\r\rprocessed {:n} positions", stop);
}
// We always update the end position
++stop;
}
if (start < tlen) {
if (currentKmer.length() == k and
currentKmer.find_first_of('$') == std::string::npos) {
mer = rapmap::utils::my_mer(currentKmer);
auto bits = mer.word(0);//get_bits(0, 2 * k);
// intervals.push_back(std::make_pair<uint64_t,
// rapmap::utils::SAInterval<IndexT>>(std::move(bits), {start, stop}));
intervals.add(std::move(bits), {start, stop});
}
}
// std::cerr << "\nthere are " << intervals.size() << " intervals of the
// selected depth\n";
log->info("building perfect hash function");
intervals.build(numHashThreads);
log->info("done.");
std::string outputPrefix = outputDir + "hash_info";
std::cout << "saving the perfect hash and SA intervals to disk ... ";
intervals.save(outputPrefix);
std::cout << "done.\n";
return true;
}
bool buildSA(const std::string& outputDir, nonstd::string_view concatText, size_t tlen,
std::vector<int32_t>& SA) {
auto log = spdlog::get("jointLog");
// IndexT is the signed index type
// UIndexT is the unsigned index type
using IndexT = int32_t;
using UIndexT = uint32_t;
bool success{false};
std::ofstream saStream(outputDir + "sa.bin", std::ios::binary);
{
ScopedTimer timer;
SA.resize(tlen, 0);
//IndexT textLen = static_cast<IndexT>(tlen);
log->info("Building suffix array . . . ");
auto ret = divsufsort(
reinterpret_cast<unsigned char*>(const_cast<char*>(concatText.data())),
SA.data(), tlen);
success = (ret == 0);
if (success) {
std::cerr << "success\n";
{
ScopedTimer timer2;
std::cerr << "saving to disk . . . ";
cereal::BinaryOutputArchive saArchive(saStream);
saArchive(SA);
std::cerr << "done\n";
}
} else {
std::cerr << "FAILURE: return code from libdivsufsort() was " << ret
<< "\n";
saStream.close();
std::exit(1);
}
std::cerr << "done\n";
}
saStream.close();
return success;
}
// IndexT is the index type.
// int32_t for "small" suffix arrays
// int64_t for "large" ones
template <typename IndexT>
bool buildHash(const std::string& outputDir, nonstd::string_view concatText,
size_t tlenIn, uint32_t k, std::vector<IndexT>& SA) {
auto log = spdlog::get("jointLog");
// Now, build the k-mer lookup table
// The base type should always be uint64_t
using WordT = rapmap::utils::my_mer::base_type;
RegHashT<WordT, rapmap::utils::SAInterval<IndexT>,
rapmap::utils::KmerKeyHasher> khash;
//RegHashT<uint64_t, IndexT, rapmap::utils::KmerKeyHasher> overflowhash;
//std::cerr << "sizeof(SAInterval<IndexT>) = " << sizeof(rapmap::utils::SAInterval<IndexT>) << '\n';
//khash.set_empty_key(std::numeric_limits<uint64_t>::max());
// The start and stop of the current interval
IndexT start = 0, stop = 0;
IndexT tlen = static_cast<IndexT>(tlenIn);
// An iterator to the beginning of the text
//auto textB = concatText.begin();
//auto textE = concatText.end();
// The current k-mer as a string
rapmap::utils::my_mer mer;
//bool currentValid{false};
std::string currentKmer;
std::string nextKmer;
while (stop < tlen) {
// Check if the string starting at the
// current position is valid (i.e. doesn't contain $)
// and is <= k bases from the end of the string
nextKmer = concatText.substr(SA[stop], k).to_string();
if (nextKmer.length() == k and
nextKmer.find_first_of('$') == std::string::npos) {
// If this is a new k-mer, then hash the current k-mer
if (nextKmer != currentKmer) {
if (currentKmer.length() == k and
currentKmer.find_first_of('$') == std::string::npos) {
mer = currentKmer;
auto bits = mer.word(0);
auto hashIt = khash.find(bits);
if (hashIt == khash.end()) {
if (start > 1) {
if (concatText.substr(SA[start - 1], k) ==
concatText.substr(SA[start], k)) {
std::cerr << "T[SA[" << start - 1 << "]:" << k
<< "] = " << concatText.substr(SA[start - 1], k)
<< " = T[SA[" << start << "]:" << k << "]\n";
std::cerr << "start = " << start << ", stop = " << stop << "\n";
std::cerr << "[fatal (1)] THIS SHOULD NOT HAPPEN\n";
std::exit(1);
}
}
if (start == stop) {
std::cerr << "[fatal (2)] Interval is empty! (start = " << start
<< ") = (stop = " << stop << ")\n";
}
if (start == stop) {
std::cerr << "[fatal (3)] Interval is empty! (start = " << start
<< ") = (stop = " << stop << ")\n";
}
khash[bits] = {start, stop};
/*
IndexT len = stop - start;
bool overflow = (len >= std::numeric_limits<uint8_t>::max());
uint8_t blen = overflow ? std::numeric_limits<uint8_t>::max() :
static_cast<uint8_t>(len);
khash[bits] = {start, blen};
if (overflow) {
overflowhash[bits] = len;
}
*/
} else {
std::cerr << "\nERROR (1): trying to add same suffix "
<< currentKmer << " (len = " << currentKmer.length()
<< ") multiple times!\n";
auto prevInt = hashIt->second;
std::cerr << "existing interval is [" << prevInt.begin() << ", "
<< prevInt.end() << ")\n";
for (auto x = prevInt.begin(); x < prevInt.end(); ++x) {
auto suff = concatText.substr(SA[x], k);
for (auto c : suff) {
std::cerr << "*" << c << "*";
}
std::cerr << " (len = " << suff.length() << ")\n";
}
std::cerr << "new interval is [" << start << ", " << stop << ")\n";
for (auto x = start; x < stop; ++x) {
auto suff = concatText.substr(SA[x], k);
for (auto c : suff) {
std::cerr << "*" << c << "*";
}
std::cerr << "\n";
}
}
}
currentKmer = nextKmer;
start = stop;
}
} else {
// If this isn't a valid suffix (contains a $)
// If the previous interval was valid, put it
// in the hash.
if (currentKmer.length() == k and
currentKmer.find_first_of('$') == std::string::npos) {
mer = currentKmer.c_str();
auto bits = mer.word(0);
auto hashIt = khash.find(bits);
if (hashIt == khash.end()) {
if (start > 2) {
if (concatText.substr(SA[start - 1], k) ==
concatText.substr(SA[start], k)) {
std::cerr << "T[SA[" << start - 1 << "]:" << k
<< "] = " << concatText.substr(SA[start - 1], k)
<< " = T[SA[" << start << "]:" << k << "]\n";
std::cerr << "start = " << start << ", stop = " << stop << "\n";
std::cerr << "[fatal (4)] THIS SHOULD NOT HAPPEN\n";
std::exit(1);
}
}
khash[bits] = {start, stop};
/*
IndexT len = stop - start;
bool overflow = (len >= std::numeric_limits<uint8_t>::max());
uint8_t blen = overflow ? std::numeric_limits<uint8_t>::max() :
static_cast<uint8_t>(len);
khash[bits] = {start, blen};
if (overflow) {
overflowhash[bits] = len;
}
*/
} else {
std::cerr << "\nERROR (2): trying to add same suffix " << currentKmer
<< "multiple times!\n";
auto prevInt = hashIt->second;
std::cerr << "existing interval is [" << prevInt.begin() << ", "
<< prevInt.end() << ")\n";
for (auto x = prevInt.begin(); x < prevInt.end(); ++x) {
std::cerr << concatText.substr(SA[x], k) << "\n";
}
std::cerr << "new interval is [" << start << ", " << stop << ")\n";
for (auto x = start; x < stop; ++x) {
std::cerr << concatText.substr(SA[x], k) << "\n";
}
}
}
// The current interval is invalid and empty
currentKmer = nextKmer;
start = stop;
}
if (stop % 1000000 == 0) {
fmt::print(std::cerr, "\r\rprocessed {:n} positions", stop);
}
// We always update the end position
++stop;
}
if (start < tlen) {
if (currentKmer.length() == k and
currentKmer.find_first_of('$') == std::string::npos) {
mer = currentKmer.c_str();
khash[mer.word(0)] = {start, stop};
/*
IndexT len = stop - start;
bool overflow = (len >= std::numeric_limits<uint8_t>::max());
uint8_t blen = overflow ? std::numeric_limits<uint8_t>::max() :
static_cast<uint8_t>(len);
khash[mer.get_bits(0, 2 * k)] = {start, blen};
if (overflow) {
overflowhash[mer.get_bits(0, 2 * k)] = len;
}
*/
}
}
log->info("khash had {:n} keys", khash.size());
std::ofstream hashStream(outputDir + "hash.bin", std::ios::binary);
{
ScopedTimer timer;
log->info("saving hash to disk . . . ");
khash.serialize(typename spp_utils::pod_hash_serializer<WordT, rapmap::utils::SAInterval<IndexT>>(),
&hashStream);
log->info("done");
}
hashStream.close();
return true;
}
// To use the parser in the following, we get "jobs" until none is
// available. A job behaves like a pointer to the type
// jellyfish::sequence_list (see whole_sequence_parser.hpp).
template <typename ParserT> //, typename CoverageCalculator>
void indexTranscriptsSA(ParserT* parser,
std::string& outputDir,
bool noClipPolyA, bool usePerfectHash,
uint32_t numHashThreads,
bool keepDuplicates,
std::string& sepStr,
std::mutex& iomutex,
std::shared_ptr<spdlog::logger> log) {
// Create a random uniform distribution
std::default_random_engine eng(271828);
std::uniform_int_distribution<> dis(0, 3);
// Hashers for getting txome signature
digestpp::sha256 seqHasher256;
digestpp::sha256 nameHasher256;
digestpp::sha512 seqHasher512;
digestpp::sha512 nameHasher512;
//picosha2::hash256_one_by_one seqHasher; seqHasher.init();
//picosha2::hash256_one_by_one nameHasher; nameHasher.init();
uint32_t n{0};
uint32_t k = rapmap::utils::my_mer::k();
std::vector<std::string> transcriptNames;
std::vector<int64_t> transcriptStarts;
// std::vector<uint32_t> positionIDs;
constexpr char bases[] = {'A', 'C', 'G', 'T'};
uint32_t polyAClipLength{10};
uint32_t numPolyAsClipped{0};
uint32_t numNucleotidesReplaced{0};
std::string polyA(polyAClipLength, 'A');
using TranscriptList = std::vector<uint32_t>;
using KmerBinT = uint64_t;
bool clipPolyA = !noClipPolyA;
struct DupInfo {
uint64_t txId;
uint64_t txOffset;
uint32_t txLen;
};
// http://biology.stackexchange.com/questions/21329/whats-the-longest-transcript-known
// longest human transcript is Titin (108861), so this gives us a *lot* of
// leeway before
// we issue any warning.
size_t tooLong = 200000;
//size_t numDistinctKmers{0};
//size_t numKmers{0};
size_t currIndex{0};
size_t numDups{0};
std::map<XXH64_hash_t, std::vector<DupInfo>> potentialDuplicates;
spp::sparse_hash_map<uint64_t, std::vector<std::string>> duplicateNames;
log->info("[Step 1 of 4] : counting k-mers");
// rsdic::RSDicBuilder rsdb;
std::vector<uint64_t>
onePos; // Positions in the bit array where we should write a '1'
// remember the initial lengths (e.g., before clipping etc., of all transcripts)
std::vector<uint32_t> completeLengths;
// the stream of transcript sequence
fmt::MemoryWriter txpSeqStream;
{
ScopedTimer timer;
// Get the read group by which this thread will
// communicate with the parser (*once per-thread*)
auto rg = parser->getReadGroup();
while (parser->refill(rg)) {
for (auto& read : rg) { // for each sequence
std::string& readStr = read.seq;
readStr.erase(
std::remove_if(readStr.begin(), readStr.end(),
[](const char a) -> bool { return !(isprint(a)); }),
readStr.end());
seqHasher256.absorb(readStr.begin(), readStr.end());
seqHasher512.absorb(readStr.begin(), readStr.end());
uint32_t readLen = readStr.size();
uint32_t completeLen = readLen;
// get the hash to check for collisions before we change anything.
auto txStringHash = XXH64(reinterpret_cast<void*>(const_cast<char*>(readStr.data())), readLen, 0);
// First, replace non ATCG nucleotides
for (size_t b = 0; b < readLen; ++b) {
readStr[b] = ::toupper(readStr[b]);
int c = codeForChar(readStr[b]);
// Replace non-ACGT bases with pseudo-random bases
if (notValidNuc(c)) {
char rbase = bases[dis(eng)];
c = codeForChar(rbase);
readStr[b] = rbase;
++numNucleotidesReplaced;
}
}
// Now, do Kallisto-esque clipping of polyA tails
if (clipPolyA) {
if (readStr.size() > polyAClipLength and
readStr.substr(readStr.length() - polyAClipLength) == polyA) {
auto newEndPos = readStr.find_last_not_of("Aa");
// If it was all As
if (newEndPos == std::string::npos) {
log->warn("Entry with header [{}] appeared to be all A's; it "
"will be removed from the index!",
read.name);
readStr.resize(0);
} else {
readStr.resize(newEndPos + 1);
}
++numPolyAsClipped;
}
}
readLen = readStr.size();
// If the transcript was completely removed during clipping, don't
// include it in the index.
if (readStr.size() > 0) {
// If we're suspicious the user has fed in a *genome* rather
// than a transcriptome, say so here.
if (readStr.size() >= tooLong) {
log->warn("Entry with header [{}] was longer than {} nucleotides. "
"Are you certain that "
"we are indexing a transcriptome and not a genome?",
read.name, tooLong);
} else if (readStr.size() < k) {
log->warn("Entry with header [{}], had length less than "
"the k-mer length of {} (perhaps after poly-A clipping)",
read.name, k);
}
uint32_t txpIndex = n++;
// The name of the current transcript
auto& recHeader = read.name;
auto processedName = recHeader.substr(0, recHeader.find_first_of(sepStr));
// Add this transcript, indexed by it's sequence's hash value
// to the potential duplicate list.
bool didCollide{false};
auto dupIt = potentialDuplicates.find(txStringHash);
if (dupIt != potentialDuplicates.end()) {
auto& dupList = dupIt->second;
for (auto& dupInfo : dupList) {
// they must be of the same length
if (readLen == dupInfo.txLen) {
bool collision = (readStr.compare(0, readLen, txpSeqStream.data() + dupInfo.txOffset, readLen) == 0);
if (collision) {
++numDups;
didCollide = true;
duplicateNames[dupInfo.txId].push_back(processedName);
continue;
} // if collision
} // if readLen == dupInfo.txLen
} // for dupInfo : dupList
} // if we had a potential duplicate
if (!keepDuplicates and didCollide) {
// roll back the txp index & skip the rest of this loop
n--;
continue;
}
// If there was no collision, then add the transcript
transcriptNames.emplace_back(processedName);
nameHasher256.absorb(processedName.begin(), processedName.end());
nameHasher512.absorb(processedName.begin(), processedName.end());
// The position at which this transcript starts
transcriptStarts.push_back(currIndex);
// The un-molested length of this transcript
completeLengths.push_back(completeLen);
// If we made it here, we were not an actual duplicate, so add this transcript
// for future duplicate checking.
if (!keepDuplicates or (keepDuplicates and !didCollide)) {
potentialDuplicates[txStringHash].push_back({txpIndex, currIndex, readLen});
}
txpSeqStream << readStr;
txpSeqStream << '$';
currIndex += readLen + 1;
onePos.push_back(currIndex - 1);
} else {
log->warn("Discarding entry with header [{}], since it had length 0 "
"(perhaps after poly-A clipping)",
read.name);
}
}
if (n % 10000 == 0) {
fmt::print(std::cerr, "\r\rcounted k-mers for {:n} transcripts", n);
}
}
}
fmt::print(std::cerr, "\n");
if (numDups > 0) {
if (!keepDuplicates) {
log->warn("Removed {} transcripts that were sequence duplicates of indexed transcripts.", numDups);
log->warn("If you wish to retain duplicate transcripts, please use the `--keepDuplicates` flag");
} else {
log->warn("There were {} transcripts that would need to be removed to avoid duplicates.", numDups);
}
}
// Stop the parser here
parser->stop();
std::ofstream dupClusterStream(outputDir + "duplicate_clusters.tsv");
{
dupClusterStream << "RetainedTxp" << '\t' << "DuplicateTxp" << '\n';
for (auto kvIt = duplicateNames.begin(); kvIt != duplicateNames.end(); ++kvIt) {
auto& retainedName = transcriptNames[kvIt->first];
for (auto& droppedName : kvIt->second) {
dupClusterStream << retainedName << '\t' << droppedName << '\n';
}
}
}
dupClusterStream.close();
log->info("Replaced {:n} non-ATCG nucleotides", numNucleotidesReplaced);
log->info("Clipped poly-A tails from {:n} transcripts", numPolyAsClipped);
// Put the concatenated text in a string
nonstd::string_view concatText(txpSeqStream.data(), txpSeqStream.size());
// And clear the stream
// txpSeqStream.clear();
// Build the suffix array
size_t tlen = concatText.length();
size_t maxInt = std::numeric_limits<int32_t>::max();
bool largeIndex = (tlen + 1 > maxInt);
// Make our dense bit arrray
BIT_ARRAY* bitArray = bit_array_create(concatText.length());
for (auto p : onePos) {
bit_array_set_bit(bitArray, p);
}
onePos.clear();
onePos.shrink_to_fit();
std::string rsFileName = outputDir + "rsd.bin";
FILE* rsFile = fopen(rsFileName.c_str(), "w");
{
ScopedTimer timer;
log->info("Building rank-select dictionary and saving to disk");
bit_array_save(bitArray, rsFile);
log->info("done");
}
fclose(rsFile);
bit_array_free(bitArray);
std::ofstream seqStream(outputDir + "txpInfo.bin", std::ios::binary);
{
ScopedTimer timer;
log->info("Writing sequence data to file . . . ");
cereal::BinaryOutputArchive seqArchive(seqStream);
seqArchive(transcriptNames);
if (largeIndex) {
seqArchive(transcriptStarts);
} else {
std::vector<int32_t> txpStarts(transcriptStarts.size(), 0);
size_t numTranscriptStarts = transcriptStarts.size();
for (size_t i = 0; i < numTranscriptStarts; ++i) {
txpStarts[i] = static_cast<int32_t>(transcriptStarts[i]);
}
transcriptStarts.clear();
transcriptStarts.shrink_to_fit();
{ seqArchive(txpStarts); }
}
// Save number of chars + the data
seqArchive( cereal::make_size_tag( static_cast<size_t>(concatText.size()) ) );
seqArchive( cereal::binary_data( concatText.data(), concatText.size() * sizeof(char) ) );
//seqArchive(concatText);
seqArchive(completeLengths);
log->info("done");
}
seqStream.close();
// clear stuff we no longer need
// positionIDs.clear();
// positionIDs.shrink_to_fit();
transcriptStarts.clear();
transcriptStarts.shrink_to_fit();
transcriptNames.clear();
transcriptNames.shrink_to_fit();
// done clearing
if (largeIndex) {
largeIndex = true;
log->info("Building 64-bit suffix array "
"(length of generalized text is {:n})", tlen);
using IndexT = int64_t;
std::vector<IndexT> SA;
bool success = buildSA(outputDir, concatText, tlen, SA);
if (!success) {
log->error("Could not build the suffix array!");
std::exit(1);
}
if (usePerfectHash) {
success = buildPerfectHash<IndexT>(outputDir, concatText, tlen, k, SA,
numHashThreads);
} else {
success = buildHash<IndexT>(outputDir, concatText, tlen, k, SA);
}
if (!success) {
log->error("[fatal] Could not build the suffix interval hash!");
std::exit(1);
}
} else {
log->info("Building 32-bit suffix array "
"(length of generalized text is {:n})", tlen);
using IndexT = int32_t;
std::vector<IndexT> SA;
bool success = buildSA(outputDir, concatText, tlen, SA);
if (!success) {
log->error("Could not build the suffix array!");
std::exit(1);
}
if (usePerfectHash) {
success = buildPerfectHash<IndexT>(outputDir, concatText, tlen, k, SA,
numHashThreads);
} else {
success = buildHash<IndexT>(outputDir, concatText, tlen, k, SA);
}
if (!success) {
log->error("Could not build the suffix interval hash!");
std::exit(1);
}
}
//seqHasher.finish();
//nameHasher.finish();
std::string indexVersion = "q5";
IndexHeader header(IndexType::QUASI,
indexVersion,
true, k, largeIndex,
usePerfectHash);
// Set the hash info
std::string seqHash256 = seqHasher256.hexdigest();
std::string nameHash256 = nameHasher256.hexdigest();
std::string seqHash512 = seqHasher512.hexdigest();
std::string nameHash512 = nameHasher512.hexdigest();
header.setSeqHash256(seqHash256);
header.setNameHash256(nameHash256);
header.setSeqHash512(seqHash512);
header.setNameHash512(nameHash512);
//std::string seqHash;
//std::string nameHash;
//picosha2::get_hash_hex_string(seqHasher, seqHash);
//picosha2::get_hash_hex_string(nameHasher, nameHash);
//header.setSeqHash(seqHash);
//header.setNameHash(nameHash);
// Finally (since everything presumably succeeded) write the header
std::ofstream headerStream(outputDir + "header.json");
{
cereal::JSONOutputArchive archive(headerStream);
archive(header);
}
headerStream.close();
}
int rapMapSAIndex(int argc, char* argv[]) {
TCLAP::CmdLine cmd("RapMap Indexer");
TCLAP::ValueArg<std::string> transcripts("t", "transcripts",
"The transcript file to be indexed",
true, "", "path");
TCLAP::ValueArg<std::string> index(
"i", "index", "The location where the index should be written", true, "",
"path");
TCLAP::ValueArg<uint32_t> kval("k", "klen", "The length of k-mer to index",
false, 31, "positive integer less than 32");
TCLAP::SwitchArg keepDuplicatesSwitch("", "keepDuplicates", "Retain and index transcripts, even if they are exact sequence-level duplicates of others.",
false);
TCLAP::ValueArg<std::string> customSeps("s", "headerSep", "Instead of a space or tab, break the header at the first "
"occurrence of this string, and name the transcript as the token before "
"the first separator", false, " \t", "string");
TCLAP::SwitchArg noClip(
"n", "noClip",
"Don't clip poly-A tails from the ends of target sequences", false);
TCLAP::SwitchArg perfectHash(
"p", "perfectHash", "Use a perfect hash instead of sparse hash --- "
"somewhat slows construction, but uses less memory",
false);
/*
TCLAP::SwitchArg perfectHash(
"f", "frugalPerfectHash", "Use a frugal variant of the perfect hash --- "
"this will considerably slow construction, and somewhat slow lookup, but "
"hash construction and the subsequent mapping will require the least memory."
false);
*/
TCLAP::ValueArg<uint32_t> numHashThreads(
"x", "numThreads",
"Use this many threads to build the perfect hash function", false, 4,
"positive integer <= # cores");
cmd.add(transcripts);
cmd.add(index);
cmd.add(kval);
cmd.add(keepDuplicatesSwitch);
cmd.add(noClip);
cmd.add(perfectHash);
cmd.add(customSeps);
cmd.add(numHashThreads);
cmd.parse(argc, argv);
// stupid parsing for now
std::string transcriptFile(transcripts.getValue());
std::vector<std::string> transcriptFiles({transcriptFile});
std::string sepStr = customSeps.getValue();
uint32_t k = kval.getValue();
if (k % 2 == 0) {
std::cerr << "Error: k must be an odd value, you chose " << k << '\n';
std::exit(1);
} else if (k > 31) {
std::cerr << "Error: k must not be larger than 31, you chose " << k << '\n';
std::exit(1);
}
rapmap::utils::my_mer::k(k);
std::string indexDir = index.getValue();
if (indexDir.back() != '/') {
indexDir += '/';
}
bool dirExists = rapmap::fs::DirExists(indexDir.c_str());
bool dirIsFile = rapmap::fs::FileExists(indexDir.c_str());
if (dirIsFile) {
std::cerr << "The requested index directory already exists as a file.";
std::exit(1);
}
if (!dirExists) {
rapmap::fs::MakeDir(indexDir.c_str());
}
std::string logPath = indexDir + "quasi_index.log";
auto fileSink = std::make_shared<spdlog::sinks::simple_file_sink_st>(logPath);
auto consoleSink = std::make_shared<spdlog::sinks::ansicolor_stderr_sink_mt>();
auto consoleLog = spdlog::create("stderrLog", {consoleSink});
auto fileLog = spdlog::create("fileLog", {fileSink});
std::vector<spdlog::sink_ptr> sinks{consoleSink, fileSink};
auto jointLog = spdlog::create("jointLog", std::begin(sinks), std::end(sinks));
size_t numThreads{1};
std::unique_ptr<single_parser> transcriptParserPtr{nullptr};
size_t numProd = 1;
transcriptParserPtr.reset(
new single_parser(transcriptFiles, numThreads, numProd));
transcriptParserPtr->start();
bool noClipPolyA = noClip.getValue();
bool usePerfectHash = perfectHash.getValue();
bool keepDuplicates = keepDuplicatesSwitch.getValue();
uint32_t numPerfectHashThreads = numHashThreads.getValue();
std::mutex iomutex;
indexTranscriptsSA(transcriptParserPtr.get(), indexDir, noClipPolyA,
usePerfectHash, numPerfectHashThreads, keepDuplicates, sepStr, iomutex, jointLog);
// Output info about the reference
std::ofstream refInfoStream(indexDir + "refInfo.json");
{
cereal::JSONOutputArchive archive(refInfoStream);
archive(cereal::make_nvp("ReferenceFiles", transcriptFiles));
}
refInfoStream.close();
return 0;
}
|