File: bit_array.c

package info (click to toggle)
rapmap 0.12.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,388 kB
  • sloc: cpp: 38,057; ansic: 2,754; sh: 209; python: 82; makefile: 15
file content (3160 lines) | stat: -rw-r--r-- 83,040 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
/*
 bit_array.c
 project: bit array C library
 url: https://github.com/noporpoise/BitArray/
 maintainer: Isaac Turner <turner.isaac@gmail.com>
 license: Public Domain, no warranty
 date: Aug 2014
*/

// 64 bit words
// Array length can be zero
// Unused top bits must be zero

#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <limits.h> // ULONG_MAX
#include <errno.h>
#include <signal.h> // needed for abort()
#include <string.h> // memset()
#include <assert.h>
#include <time.h> // needed for seeding rand()
#include <unistd.h>  // need for getpid() for seeding rand number
#include <ctype.h>  // need for tolower()
#include <errno.h>  // perror()
#include <sys/time.h> // for seeding random

// Windows includes
#if defined(_WIN32)
#include <intrin.h>
#endif

#include "bit_array.h"
#include "bit_macros.h"

//
// Tables of constants
//

// byte reverse look up table
static const word_t reverse_table[256] =
{
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
  0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
  0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
  0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
  0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
  0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
  0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
  0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
  0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
  0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
  0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
  0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
  0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
  0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
  0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
  0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
  0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF,
};

// Morton table for interleaving bytes
static const word_t morton_table0[256] =
{
  0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
  0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
  0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
  0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
  0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
  0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
  0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
  0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
  0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
  0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
  0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
  0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
  0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
  0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
  0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
  0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
  0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
  0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
  0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
  0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
  0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
  0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
  0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
  0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
  0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
  0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
  0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
  0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
  0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
  0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
  0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
  0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555,
};

// Morton table for interleaving bytes, shifted left 1 bit
static const word_t morton_table1[256] =
{
  0x0000, 0x0002, 0x0008, 0x000A, 0x0020, 0x0022, 0x0028, 0x002A,
  0x0080, 0x0082, 0x0088, 0x008A, 0x00A0, 0x00A2, 0x00A8, 0x00AA,
  0x0200, 0x0202, 0x0208, 0x020A, 0x0220, 0x0222, 0x0228, 0x022A,
  0x0280, 0x0282, 0x0288, 0x028A, 0x02A0, 0x02A2, 0x02A8, 0x02AA,
  0x0800, 0x0802, 0x0808, 0x080A, 0x0820, 0x0822, 0x0828, 0x082A,
  0x0880, 0x0882, 0x0888, 0x088A, 0x08A0, 0x08A2, 0x08A8, 0x08AA,
  0x0A00, 0x0A02, 0x0A08, 0x0A0A, 0x0A20, 0x0A22, 0x0A28, 0x0A2A,
  0x0A80, 0x0A82, 0x0A88, 0x0A8A, 0x0AA0, 0x0AA2, 0x0AA8, 0x0AAA,
  0x2000, 0x2002, 0x2008, 0x200A, 0x2020, 0x2022, 0x2028, 0x202A,
  0x2080, 0x2082, 0x2088, 0x208A, 0x20A0, 0x20A2, 0x20A8, 0x20AA,
  0x2200, 0x2202, 0x2208, 0x220A, 0x2220, 0x2222, 0x2228, 0x222A,
  0x2280, 0x2282, 0x2288, 0x228A, 0x22A0, 0x22A2, 0x22A8, 0x22AA,
  0x2800, 0x2802, 0x2808, 0x280A, 0x2820, 0x2822, 0x2828, 0x282A,
  0x2880, 0x2882, 0x2888, 0x288A, 0x28A0, 0x28A2, 0x28A8, 0x28AA,
  0x2A00, 0x2A02, 0x2A08, 0x2A0A, 0x2A20, 0x2A22, 0x2A28, 0x2A2A,
  0x2A80, 0x2A82, 0x2A88, 0x2A8A, 0x2AA0, 0x2AA2, 0x2AA8, 0x2AAA,
  0x8000, 0x8002, 0x8008, 0x800A, 0x8020, 0x8022, 0x8028, 0x802A,
  0x8080, 0x8082, 0x8088, 0x808A, 0x80A0, 0x80A2, 0x80A8, 0x80AA,
  0x8200, 0x8202, 0x8208, 0x820A, 0x8220, 0x8222, 0x8228, 0x822A,
  0x8280, 0x8282, 0x8288, 0x828A, 0x82A0, 0x82A2, 0x82A8, 0x82AA,
  0x8800, 0x8802, 0x8808, 0x880A, 0x8820, 0x8822, 0x8828, 0x882A,
  0x8880, 0x8882, 0x8888, 0x888A, 0x88A0, 0x88A2, 0x88A8, 0x88AA,
  0x8A00, 0x8A02, 0x8A08, 0x8A0A, 0x8A20, 0x8A22, 0x8A28, 0x8A2A,
  0x8A80, 0x8A82, 0x8A88, 0x8A8A, 0x8AA0, 0x8AA2, 0x8AA8, 0x8AAA,
  0xA000, 0xA002, 0xA008, 0xA00A, 0xA020, 0xA022, 0xA028, 0xA02A,
  0xA080, 0xA082, 0xA088, 0xA08A, 0xA0A0, 0xA0A2, 0xA0A8, 0xA0AA,
  0xA200, 0xA202, 0xA208, 0xA20A, 0xA220, 0xA222, 0xA228, 0xA22A,
  0xA280, 0xA282, 0xA288, 0xA28A, 0xA2A0, 0xA2A2, 0xA2A8, 0xA2AA,
  0xA800, 0xA802, 0xA808, 0xA80A, 0xA820, 0xA822, 0xA828, 0xA82A,
  0xA880, 0xA882, 0xA888, 0xA88A, 0xA8A0, 0xA8A2, 0xA8A8, 0xA8AA,
  0xAA00, 0xAA02, 0xAA08, 0xAA0A, 0xAA20, 0xAA22, 0xAA28, 0xAA2A,
  0xAA80, 0xAA82, 0xAA88, 0xAA8A, 0xAAA0, 0xAAA2, 0xAAA8, 0xAAAA,
};

//
// Macros
//

// WORD_SIZE is the number of bits per word
// sizeof gives size in bytes (8 bits per byte)
#define WORD_SIZE 64
// #define WORD_SIZE (sizeof(word_t) * 8)

// POPCOUNT is number of bits set

#if defined(_WIN32)

// See http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
static word_t __inline windows_popcount(word_t w)
{
  w = w - ((w >> 1) & (word_t)~(word_t)0/3);
  w = (w & (word_t)~(word_t)0/15*3) + ((w >> 2) & (word_t)~(word_t)0/15*3);
  w = (w + (w >> 4)) & (word_t)~(word_t)0/255*15;
  c = (word_t)(w * ((word_t)~(word_t)0/255)) >> (sizeof(word_t) - 1) * 8;
}

static word_t __inline windows_parity(word_t w)
{
  w ^= w >> 1;
  w ^= w >> 2;
  w = (w & 0x1111111111111111UL) * 0x1111111111111111UL;
  return (w >> 60) & 1;
}

#define POPCOUNT(x) windows_popcountl(x)
#define PARITY(x) windows_parity(x)
#else
#define POPCOUNT(x) (unsigned)__builtin_popcountll(x)
#define PARITY(x) (unsigned)__builtin_parityll(x)
#endif

#define MIN(a, b)  (((a) <= (b)) ? (a) : (b))
#define MAX(a, b)  (((a) >= (b)) ? (a) : (b))

// Make this a power of two
#define INIT_CAPACITY_WORDS 2

// word of all 1s
#define WORD_MAX  (~(word_t)0)

#define SET_REGION(arr,start,len)    _set_region((arr),(start),(len),FILL_REGION)
#define CLEAR_REGION(arr,start,len)  _set_region((arr),(start),(len),ZERO_REGION)
#define TOGGLE_REGION(arr,start,len) _set_region((arr),(start),(len),SWAP_REGION)

// Have we initialised with srand() ?
static char rand_initiated = 0;

static void _seed_rand()
{
  if(!rand_initiated)
  {
    // Initialise random number generator
    struct timeval time;
    gettimeofday(&time, NULL);
    srand((((time.tv_sec ^ getpid()) * 1000001) + time.tv_usec));
    rand_initiated = 1;
  }
}

//
// Common internal functions
//

#define bits_in_top_word(nbits) ((nbits) ? bitset64_idx((nbits) - 1) + 1 : 0)

// Mostly used for debugging
static inline void _print_word(word_t word, FILE* out)
{
  word_offset_t i;
  for(i = 0; i < WORD_SIZE; i++)
  {
    fprintf(out, "%c", ((word >> i) & (word_t)0x1) == 0 ? '0' : '1');
  }
}

// prints right to left
static inline char* _word_to_str(word_t word, char str[WORD_SIZE+1])
  __attribute__((unused));

static inline char* _word_to_str(word_t word, char str[WORD_SIZE+1])
{
  word_offset_t i;
  for(i = 0; i < WORD_SIZE; i++)
  {
    str[WORD_SIZE-i-1] = ((word >> i) & (word_t)0x1) == 0 ? '0' : '1';
  }
  str[WORD_SIZE] = '\0';
  return str;
}

// Used in debugging
#ifdef DEBUG
  #define DEBUG_PRINT(msg,...) printf("[%s:%i] "msg, __FILE__, __LINE__, ##__VA_ARGS__);
  #define DEBUG_VALIDATE(a) validate_bitarr((a), __FILE__, __LINE__)
#else
  #define DEBUG_PRINT(msg,...)
  #define DEBUG_VALIDATE(a)
#endif

void validate_bitarr(BIT_ARRAY *arr, const char *file, int lineno)
{
  // Check top word is masked
  word_addr_t tw = arr->num_of_words == 0 ? 0 : arr->num_of_words - 1;
  bit_index_t top_bits = bits_in_top_word(arr->num_of_bits);
  int err = 0;

  if(arr->words[tw] > bitmask64(top_bits))
  {
    _print_word(arr->words[tw], stderr);
    fprintf(stderr, "\n[%s:%i] Expected %i bits in top word[%i]\n",
            file, lineno, (int)top_bits, (int)tw);
    err = 1;
  }

  // Check num of words is correct
  word_addr_t num_words = roundup_bits2words64(arr->num_of_bits);
  if(num_words != arr->num_of_words)
  {
    fprintf(stderr, "\n[%s:%i] num of words wrong "
                    "[bits: %i, word: %i, actual words: %i]\n", file, lineno,
            (int)arr->num_of_bits, (int)num_words, (int)arr->num_of_words);
    err = 1;
  }

  if(err) abort();
}

// Reverse a word
static inline word_t _reverse_word(word_t word)
{
  word_t reverse = (reverse_table[(word)       & 0xff] << 56) |
                   (reverse_table[(word >>  8) & 0xff] << 48) |
                   (reverse_table[(word >> 16) & 0xff] << 40) |
                   (reverse_table[(word >> 24) & 0xff] << 32) |
                   (reverse_table[(word >> 32) & 0xff] << 24) |
                   (reverse_table[(word >> 40) & 0xff] << 16) |
                   (reverse_table[(word >> 48) & 0xff] << 8) |
                   (reverse_table[(word >> 56) & 0xff]);

  return reverse;
}

static inline void _mask_top_word(BIT_ARRAY* bitarr)
{
  // Mask top word
  word_addr_t num_of_words = MAX(1, bitarr->num_of_words);
  word_offset_t bits_active = bits_in_top_word(bitarr->num_of_bits);
  bitarr->words[num_of_words-1] &= bitmask64(bits_active);
}

//
// Get and set words (internal use only -- no bounds checking)
//

static inline word_t _get_word(const BIT_ARRAY* bitarr, bit_index_t start)
{
  word_addr_t word_index = bitset64_wrd(start);
  word_offset_t word_offset = bitset64_idx(start);

  word_t result = bitarr->words[word_index] >> word_offset;

  word_offset_t bits_taken = WORD_SIZE - word_offset;

  // word_offset is now the number of bits we need from the next word
  // Check the next word has at least some bits
  if(word_offset > 0 && start + bits_taken < bitarr->num_of_bits)
  {
    result |= bitarr->words[word_index+1] << (WORD_SIZE - word_offset);
  }

  return result;
}

// Set 64 bits from a particular start position
// Doesn't extend bit array
static inline void _set_word(BIT_ARRAY* bitarr, bit_index_t start, word_t word)
{
  word_addr_t word_index = bitset64_wrd(start);
  word_offset_t word_offset = bitset64_idx(start);

  if(word_offset == 0)
  {
    bitarr->words[word_index] = word;
  }
  else
  {
    bitarr->words[word_index]
      = (word << word_offset) |
        (bitarr->words[word_index] & bitmask64(word_offset));

    if(word_index+1 < bitarr->num_of_words)
    {
      bitarr->words[word_index+1]
        = (word >> (WORD_SIZE - word_offset)) |
          (bitarr->words[word_index+1] & (WORD_MAX << word_offset));
    }
  }

  // Mask top word
  _mask_top_word(bitarr);
  DEBUG_VALIDATE(bitarr);
}

static inline void _set_byte(BIT_ARRAY *bitarr, bit_index_t start, uint8_t byte)
{
  word_t w = _get_word(bitarr, start);
  _set_word(bitarr, start, (w & ~(word_t)0xff) | byte);
}

// 4 bits
static inline void _set_nibble(BIT_ARRAY *bitarr, bit_index_t start,
                               uint8_t nibble)
{
  word_t w = _get_word(bitarr, start);
  _set_word(bitarr, start, (w & ~(word_t)0xf) | nibble);
}

// Wrap around
static inline word_t _get_word_cyclic(const BIT_ARRAY* bitarr, bit_index_t start)
{
  word_t word = _get_word(bitarr, start);

  bit_index_t bits_taken = bitarr->num_of_bits - start;

  if(bits_taken < WORD_SIZE)
  {
    word |= (bitarr->words[0] << bits_taken);

    if(bitarr->num_of_bits < (bit_index_t)WORD_SIZE)
    {
      // Mask word to prevent repetition of the same bits
      word = word & bitmask64(bitarr->num_of_bits);
    }
  }

  return word;
}

// Wrap around
static inline void _set_word_cyclic(BIT_ARRAY* bitarr,
                                    bit_index_t start, word_t word)
{
  _set_word(bitarr, start, word);

  bit_index_t bits_set = bitarr->num_of_bits - start;

  if(bits_set < WORD_SIZE && start > 0)
  {
    word >>= bits_set;

    // Prevent overwriting the bits we've just set
    // by setting 'start' as the upper bound for the number of bits to write
    word_offset_t bits_remaining = MIN(WORD_SIZE - bits_set, start);
    word_t mask = bitmask64(bits_remaining);

    bitarr->words[0] = bitmask_merge(word, bitarr->words[0], mask);
  }
}

//
// Fill a region (internal use only)
//

// FillAction is fill with 0 or 1 or toggle
typedef enum {ZERO_REGION, FILL_REGION, SWAP_REGION} FillAction;

static inline void _set_region(BIT_ARRAY* bitarr, bit_index_t start,
                               bit_index_t length, FillAction action)
{
  if(length == 0) return;

  word_addr_t first_word = bitset64_wrd(start);
  word_addr_t last_word = bitset64_wrd(start+length-1);
  word_offset_t foffset = bitset64_idx(start);
  word_offset_t loffset = bitset64_idx(start+length-1);

  if(first_word == last_word)
  {
    word_t mask = bitmask64(length) << foffset;

    switch(action)
    {
      case ZERO_REGION: bitarr->words[first_word] &= ~mask; break;
      case FILL_REGION: bitarr->words[first_word] |=  mask; break;
      case SWAP_REGION: bitarr->words[first_word] ^=  mask; break;
    }
  }
  else
  {
    // Set first word
    switch(action)
    {
      case ZERO_REGION: bitarr->words[first_word] &=  bitmask64(foffset); break;
      case FILL_REGION: bitarr->words[first_word] |= ~bitmask64(foffset); break;
      case SWAP_REGION: bitarr->words[first_word] ^= ~bitmask64(foffset); break;
    }

    word_addr_t i;

    // Set whole words
    switch(action)
    {
      case ZERO_REGION:
        for(i = first_word + 1; i < last_word; i++)
          bitarr->words[i] = (word_t)0;
        break;
      case FILL_REGION:
        for(i = first_word + 1; i < last_word; i++)
          bitarr->words[i] = WORD_MAX;
        break;
      case SWAP_REGION:
        for(i = first_word + 1; i < last_word; i++)
          bitarr->words[i] ^= WORD_MAX;
        break;
    }

    // Set last word
    switch(action)
    {
      case ZERO_REGION: bitarr->words[last_word] &= ~bitmask64(loffset+1); break;
      case FILL_REGION: bitarr->words[last_word] |=  bitmask64(loffset+1); break;
      case SWAP_REGION: bitarr->words[last_word] ^=  bitmask64(loffset+1); break;
    }
  }
}



//
// Constructor
//

// If cannot allocate memory, set errno to ENOMEM, return NULL
BIT_ARRAY* bit_array_alloc(BIT_ARRAY* bitarr, bit_index_t nbits)
{
  bitarr->num_of_bits = nbits;
  bitarr->num_of_words = roundup_bits2words64(nbits);
  bitarr->capacity_in_words = MAX(8, roundup2pow(bitarr->num_of_words));
  bitarr->words = (word_t*)calloc(bitarr->capacity_in_words, sizeof(word_t));

  if(bitarr->words == NULL) {
    errno = ENOMEM;
    return NULL;
  }
  return bitarr;
}

void bit_array_dealloc(BIT_ARRAY* bitarr)
{
  free(bitarr->words);
  memset(bitarr, 0, sizeof(BIT_ARRAY));
}

// If cannot allocate memory, set errno to ENOMEM, return NULL
BIT_ARRAY* bit_array_create(bit_index_t nbits)
{
  BIT_ARRAY* bitarr = (BIT_ARRAY*)malloc(sizeof(BIT_ARRAY));

  // error if could not allocate enough memory
  if(bitarr == NULL || bit_array_alloc(bitarr, nbits) == NULL)
  {
    if(bitarr != NULL) free(bitarr);
    errno = ENOMEM;
    return NULL;
  }

  DEBUG_PRINT("Creating BIT_ARRAY (bits: %lu; allocated words: %lu; "
              "using words: %lu; WORD_SIZE: %i)\n",
              (unsigned long)nbits, (unsigned long)bitarr->capacity_in_words,
              (unsigned long)roundup_bits2words64(nbits), (int)WORD_SIZE);

  DEBUG_VALIDATE(bitarr);

  return bitarr;
}

//
// Destructor
//
void bit_array_free(BIT_ARRAY* bitarr)
{
  if(bitarr->words != NULL)
    free(bitarr->words);

  free(bitarr);
}

bit_index_t bit_array_length(const BIT_ARRAY* bit_arr)
{
  return bit_arr->num_of_bits;
}

// Change the size of a bit array. Enlarging an array will add zeros
// to the end of it. Returns 1 on success, 0 on failure (e.g. not enough memory)
char bit_array_resize(BIT_ARRAY* bitarr, bit_index_t new_num_of_bits)
{
  word_addr_t old_num_of_words = bitarr->num_of_words;
  word_addr_t new_num_of_words = roundup_bits2words64(new_num_of_bits);

  bitarr->num_of_bits = new_num_of_bits;
  bitarr->num_of_words = new_num_of_words;

  DEBUG_PRINT("Resize: old_num_of_words: %i; new_num_of_words: %i capacity: %i\n",
              (int)old_num_of_words, (int)new_num_of_words,
              (int)bitarr->capacity_in_words);

  if(new_num_of_words > bitarr->capacity_in_words)
  {
    // Need to change the amount of memory used
    word_addr_t old_capacity_in_words = bitarr->capacity_in_words;
    size_t old_capacity_in_bytes = old_capacity_in_words * sizeof(word_t);

    bitarr->capacity_in_words = roundup2pow(new_num_of_words);
    bitarr->capacity_in_words = MAX(8, bitarr->capacity_in_words);

    size_t new_capacity_in_bytes = bitarr->capacity_in_words * sizeof(word_t);
    bitarr->words = (word_t*)realloc(bitarr->words, new_capacity_in_bytes);

    if(bitarr->words == NULL)
    {
      // error - could not allocate enough memory
      perror("resize realloc");
      errno = ENOMEM;
      return 0;
    }

    // Need to zero new memory
    size_t num_bytes_to_zero = new_capacity_in_bytes - old_capacity_in_bytes;
    memset(bitarr->words + old_capacity_in_words, 0, num_bytes_to_zero);

    DEBUG_PRINT("zeroing from word %i for %i bytes\n", (int)old_capacity_in_words,
                (int)num_bytes_to_zero);
  }
  else if(new_num_of_words < old_num_of_words)
  {
    // Shrunk -- need to zero old memory
    size_t num_bytes_to_zero = (old_num_of_words - new_num_of_words)*sizeof(word_t);

    memset(bitarr->words + new_num_of_words, 0, num_bytes_to_zero);
  }

  // Mask top word
  _mask_top_word(bitarr);
  DEBUG_VALIDATE(bitarr);
  return 1;
}

void bit_array_resize_critical(BIT_ARRAY* bitarr, bit_index_t num_of_bits)
{
  bit_index_t old_num_of_bits = bitarr->num_of_bits;

  if(!bit_array_resize(bitarr, num_of_bits))
  {
    fprintf(stderr, "Ran out of memory resizing [%lu -> %lu]",
            (unsigned long)old_num_of_bits, (unsigned long)num_of_bits);
    abort();
  }
}

// If bitarr length < num_bits, resizes to num_bits
char bit_array_ensure_size(BIT_ARRAY* bitarr, bit_index_t ensure_num_of_bits)
{
  if(bitarr->num_of_bits < ensure_num_of_bits)
  {
    return bit_array_resize(bitarr, ensure_num_of_bits);
  }

  return 1;
}

void bit_array_ensure_size_critical(BIT_ARRAY* bitarr, bit_index_t num_of_bits)
{
  if(num_of_bits > bitarr->num_of_bits)
  {
    bit_array_resize_critical(bitarr, num_of_bits);
  }
}

static inline
void _bit_array_ensure_nwords(BIT_ARRAY* bitarr, word_addr_t nwords,
                              const char *file, int lineno, const char *func)
{
  size_t newmem, oldmem;
  if(bitarr->capacity_in_words < nwords) {
    oldmem = bitarr->capacity_in_words * sizeof(word_t);
    bitarr->capacity_in_words = roundup2pow(nwords);
    newmem = bitarr->capacity_in_words * sizeof(word_t);
    bitarr->words = (word_t*)realloc(bitarr->words, newmem);

    if(bitarr->words == NULL) {
      fprintf(stderr, "[%s:%i:%s()] Ran out of memory resizing [%zu -> %zu]",
              file, lineno, func, oldmem, newmem);
      abort();
    }

    DEBUG_PRINT("Ensure nwords realloc %zu -> %zu\n", oldmem, newmem);
  }
}


//
// Get, set, clear, assign and toggle individual bits
//

// Get the value of a bit (returns 0 or 1)
char bit_array_get_bit(const BIT_ARRAY* bitarr, bit_index_t b)
{
  assert(b < bitarr->num_of_bits);
  return bit_array_get(bitarr, b);
}

// set a bit (to 1) at position b
void bit_array_set_bit(BIT_ARRAY* bitarr, bit_index_t b)
{
  assert(b < bitarr->num_of_bits);
  bit_array_set(bitarr,b);
  DEBUG_VALIDATE(bitarr);
}

// clear a bit (to 0) at position b
void bit_array_clear_bit(BIT_ARRAY* bitarr, bit_index_t b)
{
  assert(b < bitarr->num_of_bits);
  bit_array_clear(bitarr, b);
  DEBUG_VALIDATE(bitarr);
}

// If bit is 0 -> 1, if bit is 1 -> 0.  AKA 'flip'
void bit_array_toggle_bit(BIT_ARRAY* bitarr, bit_index_t b)
{
  assert(b < bitarr->num_of_bits);
  bit_array_toggle(bitarr, b);
  DEBUG_VALIDATE(bitarr);
}

// If char c != 0, set bit; otherwise clear bit
void bit_array_assign_bit(BIT_ARRAY* bitarr, bit_index_t b, char c)
{
  assert(b < bitarr->num_of_bits);
  bit_array_assign(bitarr, b, c ? 1 : 0);
  DEBUG_VALIDATE(bitarr);
}

//
// Get, set etc with resize
//

// Get the value of a bit (returns 0 or 1)
char bit_array_rget(BIT_ARRAY* bitarr, bit_index_t b)
{
  bit_array_ensure_size_critical(bitarr, b+1);
  return bit_array_get(bitarr, b);
}

// set a bit (to 1) at position b
void bit_array_rset(BIT_ARRAY* bitarr, bit_index_t b)
{
  bit_array_ensure_size_critical(bitarr, b+1);
  bit_array_set(bitarr,b);
  DEBUG_VALIDATE(bitarr);
}

// clear a bit (to 0) at position b
void bit_array_rclear(BIT_ARRAY* bitarr, bit_index_t b)
{
  bit_array_ensure_size_critical(bitarr, b+1);
  bit_array_clear(bitarr, b);
  DEBUG_VALIDATE(bitarr);
}

// If bit is 0 -> 1, if bit is 1 -> 0.  AKA 'flip'
void bit_array_rtoggle(BIT_ARRAY* bitarr, bit_index_t b)
{
  bit_array_ensure_size_critical(bitarr, b+1);
  bit_array_toggle(bitarr, b);
  DEBUG_VALIDATE(bitarr);
}

// If char c != 0, set bit; otherwise clear bit
void bit_array_rassign(BIT_ARRAY* bitarr, bit_index_t b, char c)
{
  bit_array_ensure_size_critical(bitarr, b+1);
  bit_array_assign(bitarr, b, c ? 1 : 0);
  DEBUG_VALIDATE(bitarr);
}

//
// Set, clear and toggle several bits at once
//

// Set multiple bits at once.
// e.g. set bits 1, 20 & 31: bit_array_set_bits(bitarr, 3, 1,20,31);
void bit_array_set_bits(BIT_ARRAY* bitarr, size_t n, ...)
{
  size_t i;
  va_list argptr;
  va_start(argptr, n);

  for(i = 0; i < n; i++)
  {
    unsigned int bit_index = va_arg(argptr, unsigned int);
    bit_array_set_bit(bitarr, bit_index);
  }

  va_end(argptr);
  DEBUG_VALIDATE(bitarr);
}

// Clear multiple bits at once.
// e.g. clear bits 1, 20 & 31: bit_array_clear_bits(bitarr, 3, 1,20,31);
void bit_array_clear_bits(BIT_ARRAY* bitarr, size_t n, ...)
{
  size_t i;
  va_list argptr;
  va_start(argptr, n);

  for(i = 0; i < n; i++)
  {
    unsigned int bit_index = va_arg(argptr, unsigned int);
    bit_array_clear_bit(bitarr, bit_index);
  }

  va_end(argptr);
  DEBUG_VALIDATE(bitarr);
}

// Toggle multiple bits at once
// e.g. toggle bits 1, 20 & 31: bit_array_toggle_bits(bitarr, 3, 1,20,31);
void bit_array_toggle_bits(BIT_ARRAY* bitarr, size_t n, ...)
{
  size_t i;
  va_list argptr;
  va_start(argptr, n);

  for(i = 0; i < n; i++)
  {
    unsigned int bit_index = va_arg(argptr, unsigned int);
    bit_array_toggle_bit(bitarr, bit_index);
  }

  va_end(argptr);
  DEBUG_VALIDATE(bitarr);
}


//
// Set, clear and toggle all bits in a region
//

// Set all the bits in a region
void bit_array_set_region(BIT_ARRAY* bitarr, bit_index_t start, bit_index_t len)
{
  assert(start + len <= bitarr->num_of_bits);
  SET_REGION(bitarr, start, len);
  DEBUG_VALIDATE(bitarr);
}


// Clear all the bits in a region
void bit_array_clear_region(BIT_ARRAY* bitarr, bit_index_t start, bit_index_t len)
{
  assert(start + len <= bitarr->num_of_bits);
  CLEAR_REGION(bitarr, start, len);
  DEBUG_VALIDATE(bitarr);
}

// Toggle all the bits in a region
void bit_array_toggle_region(BIT_ARRAY* bitarr, bit_index_t start, bit_index_t len)
{
  assert(start + len <= bitarr->num_of_bits);
  TOGGLE_REGION(bitarr, start, len);
  DEBUG_VALIDATE(bitarr);
}


//
// Set, clear and toggle all bits at once
//

// set all elements of data to one
void bit_array_set_all(BIT_ARRAY* bitarr)
{
  bit_index_t num_of_bytes = bitarr->num_of_words * sizeof(word_t);
  memset(bitarr->words, 0xFF, num_of_bytes);
  _mask_top_word(bitarr);
  DEBUG_VALIDATE(bitarr);
}

// set all elements of data to zero
void bit_array_clear_all(BIT_ARRAY* bitarr)
{
  memset(bitarr->words, 0, bitarr->num_of_words * sizeof(word_t));
  DEBUG_VALIDATE(bitarr);
}

// Set all 1 bits to 0, and all 0 bits to 1. AKA flip
void bit_array_toggle_all(BIT_ARRAY* bitarr)
{
  word_addr_t i;
  for(i = 0; i < bitarr->num_of_words; i++)
  {
    bitarr->words[i] ^= WORD_MAX;
  }

  _mask_top_word(bitarr);
  DEBUG_VALIDATE(bitarr);
}

//
// Get a word at a time
//

uint64_t bit_array_get_word64(const BIT_ARRAY* bitarr, bit_index_t start)
{
  assert(start < bitarr->num_of_bits);
  return (uint64_t)_get_word(bitarr, start);
}

uint32_t bit_array_get_word32(const BIT_ARRAY* bitarr, bit_index_t start)
{
  assert(start < bitarr->num_of_bits);
  return (uint32_t)_get_word(bitarr, start);
}

uint16_t bit_array_get_word16(const BIT_ARRAY* bitarr, bit_index_t start)
{
  assert(start < bitarr->num_of_bits);
  return (uint16_t)_get_word(bitarr, start);
}

uint8_t bit_array_get_word8(const BIT_ARRAY* bitarr, bit_index_t start)
{
  assert(start < bitarr->num_of_bits);
  return (uint8_t)_get_word(bitarr, start);
}

uint64_t bit_array_get_wordn(const BIT_ARRAY* bitarr, bit_index_t start, int n)
{
  assert(start < bitarr->num_of_bits);
  assert(n <= 64);
  return (uint64_t)(_get_word(bitarr, start) & bitmask64(n));
}

//
// Set a word at a time
//

void bit_array_set_word64(BIT_ARRAY* bitarr, bit_index_t start, uint64_t word)
{
  assert(start < bitarr->num_of_bits);
  _set_word(bitarr, start, (word_t)word);
}

void bit_array_set_word32(BIT_ARRAY* bitarr, bit_index_t start, uint32_t word)
{
  assert(start < bitarr->num_of_bits);
  word_t w = _get_word(bitarr, start);
  _set_word(bitarr, start, (w & ~(word_t)0xffffffff) | word);
}

void bit_array_set_word16(BIT_ARRAY* bitarr, bit_index_t start, uint16_t word)
{
  assert(start < bitarr->num_of_bits);
  word_t w = _get_word(bitarr, start);
  _set_word(bitarr, start, (w & ~(word_t)0xffff) | word);
}

void bit_array_set_word8(BIT_ARRAY* bitarr, bit_index_t start, uint8_t byte)
{
  assert(start < bitarr->num_of_bits);
  _set_byte(bitarr, start, byte);
}

void bit_array_set_wordn(BIT_ARRAY* bitarr, bit_index_t start, uint64_t word, int n)
{
  assert(start < bitarr->num_of_bits);
  assert(n <= 64);
  word_t w = _get_word(bitarr, start), m = bitmask64(n);
  _set_word(bitarr, start, bitmask_merge(word,w,m));
}

//
// Number of bits set
//

// Get the number of bits set (hamming weight)
bit_index_t bit_array_num_bits_set(const BIT_ARRAY* bitarr)
{
  word_addr_t i;

  bit_index_t num_of_bits_set = 0;

  for(i = 0; i < bitarr->num_of_words; i++)
  {
    if(bitarr->words[i] > 0)
    {
      num_of_bits_set += POPCOUNT(bitarr->words[i]);
    }
  }

  return num_of_bits_set;
}

// Get the number of bits not set (1 - hamming weight)
bit_index_t bit_array_num_bits_cleared(const BIT_ARRAY* bitarr)
{
  return bitarr->num_of_bits - bit_array_num_bits_set(bitarr);
}


// Get the number of bits set in on array and not the other.  This is equivalent
// to hamming weight of the XOR when the two arrays are the same length.
// e.g. 10101 vs 00111 => hamming distance 2 (XOR is 10010)
bit_index_t bit_array_hamming_distance(const BIT_ARRAY* arr1,
                                       const BIT_ARRAY* arr2)
{
  word_addr_t min_words = MIN(arr1->num_of_words, arr2->num_of_words);
  word_addr_t max_words = MAX(arr1->num_of_words, arr2->num_of_words);

  bit_index_t hamming_distance = 0;
  word_addr_t i;

  for(i = 0; i < min_words; i++)
  {
    hamming_distance += POPCOUNT(arr1->words[i] ^ arr2->words[i]);
  }

  if(min_words != max_words)
  {
    const BIT_ARRAY* long_arr
      = (arr1->num_of_words > arr2->num_of_words ? arr1 : arr2);

    for(i = min_words; i < max_words; i++)
    {
      hamming_distance += POPCOUNT(long_arr->words[i]);
    }
  }

  return hamming_distance;
}

// Parity - returns 1 if odd number of bits set, 0 if even
char bit_array_parity(const BIT_ARRAY* bitarr)
{
  word_addr_t w;
  unsigned int parity = 0;

  for(w = 0; w < bitarr->num_of_words; w++)
  {
    parity ^= PARITY(bitarr->words[w]);
  }

  return (char)parity;
}

//
// Find indices of set/clear bits
//

// Find the index of the next bit that is set/clear, at or after `offset`
// Returns 1 if such a bit is found, otherwise 0
// Index is stored in the integer pointed to by `result`
// If no such bit is found, value at `result` is not changed
#define _next_bit_func_def(FUNC,GET) \
char FUNC(const BIT_ARRAY* bitarr, bit_index_t offset, bit_index_t* result) \
{ \
  assert(offset < bitarr->num_of_bits); \
  if(bitarr->num_of_bits == 0 || offset >= bitarr->num_of_bits) { return 0; } \
 \
  /* Find first word that is greater than zero */ \
  word_addr_t i = bitset64_wrd(offset); \
  word_t w = GET(bitarr->words[i]) & ~bitmask64(bitset64_idx(offset)); \
 \
  while(1) { \
    if(w > 0) { \
      bit_index_t pos = i * WORD_SIZE + trailing_zeros(w); \
      if(pos < bitarr->num_of_bits) { *result = pos; return 1; } \
      else { return 0; } \
    } \
    i++; \
    if(i >= bitarr->num_of_words) break; \
    w = GET(bitarr->words[i]); \
  } \
 \
  return 0; \
}

// Find the index of the previous bit that is set/clear, before `offset`.
// Returns 1 if such a bit is found, otherwise 0
// Index is stored in the integer pointed to by `result`
// If no such bit is found, value at `result` is not changed
#define _prev_bit_func_def(FUNC,GET) \
char FUNC(const BIT_ARRAY* bitarr, bit_index_t offset, bit_index_t* result) \
{ \
  assert(offset <= bitarr->num_of_bits); \
  if(bitarr->num_of_bits == 0 || offset == 0) { return 0; } \
 \
  /* Find prev word that is greater than zero */ \
  word_addr_t i = bitset64_wrd(offset-1); \
  word_t w = GET(bitarr->words[i]) & bitmask64(bitset64_idx(offset-1)+1); \
 \
  if(w > 0) { *result = (i+1) * WORD_SIZE - leading_zeros(w) - 1; return 1; } \
 \
  /* i is unsigned so have to use break when i == 0 */ \
  for(--i; i != BIT_INDEX_MAX; i--) { \
    w = GET(bitarr->words[i]); \
    if(w > 0) { \
      *result = (i+1) * WORD_SIZE - leading_zeros(w) - 1; \
      return 1; \
    } \
  } \
 \
  return 0; \
}

#define GET_WORD(x) (x)
#define NEG_WORD(x) (~(x))
_next_bit_func_def(bit_array_find_next_set_bit,  GET_WORD);
_next_bit_func_def(bit_array_find_next_clear_bit,NEG_WORD);
_prev_bit_func_def(bit_array_find_prev_set_bit,  GET_WORD);
_prev_bit_func_def(bit_array_find_prev_clear_bit,NEG_WORD);

// Find the index of the first bit that is set.
// Returns 1 if a bit is set, otherwise 0
// Index of first set bit is stored in the integer pointed to by result
// If no bits are set, value at `result` is not changed
char bit_array_find_first_set_bit(const BIT_ARRAY* bitarr, bit_index_t* result)
{
  return bit_array_find_next_set_bit(bitarr, 0, result);
}

// same same
char bit_array_find_first_clear_bit(const BIT_ARRAY* bitarr, bit_index_t* result)
{
  return bit_array_find_next_clear_bit(bitarr, 0, result);
}

// Find the index of the last bit that is set.
// Returns 1 if a bit is set, otherwise 0
// Index of last set bit is stored in the integer pointed to by `result`
// If no bits are set, value at `result` is not changed
char bit_array_find_last_set_bit(const BIT_ARRAY* bitarr, bit_index_t* result)
{
  return bit_array_find_prev_set_bit(bitarr, bitarr->num_of_bits, result);
}

// same same
char bit_array_find_last_clear_bit(const BIT_ARRAY* bitarr, bit_index_t* result)
{
  return bit_array_find_prev_clear_bit(bitarr, bitarr->num_of_bits, result);
}

//
// "Sorting" bits
//

// Put all the 0s before all the 1s
void bit_array_sort_bits(BIT_ARRAY* bitarr)
{
  bit_index_t num_of_bits_set = bit_array_num_bits_set(bitarr);
  bit_index_t num_of_bits_cleared = bitarr->num_of_bits - num_of_bits_set;
  bit_array_set_all(bitarr);
  CLEAR_REGION(bitarr, 0, num_of_bits_cleared);
  DEBUG_VALIDATE(bitarr);
}

// Put all the 1s before all the 0s
void bit_array_sort_bits_rev(BIT_ARRAY* bitarr)
{
  bit_index_t num_of_bits_set = bit_array_num_bits_set(bitarr);
  bit_array_clear_all(bitarr);
  SET_REGION(bitarr, 0, num_of_bits_set);
  DEBUG_VALIDATE(bitarr);
}


//
// Strings and printing
//

// Construct a BIT_ARRAY from a substring with given on and off characters.
void bit_array_from_substr(BIT_ARRAY* bitarr, bit_index_t offset,
                           const char *str, size_t len,
                           const char *on, const char *off,
                           char left_to_right)
{
  bit_array_ensure_size(bitarr, offset + len);
  bit_array_clear_region(bitarr, offset, len);

  // BitArray region is now all 0s -- just set the 1s
  size_t i;
  bit_index_t j;

  for(i = 0; i < len; i++)
  {
    if(strchr(on, str[i]) != NULL)
    {
      j = offset + (left_to_right ? i : len - i - 1);
      bit_array_set(bitarr, j);
    }
    else { assert(strchr(off, str[i]) != NULL); }
  }

  DEBUG_VALIDATE(bitarr);
}

// From string method
void bit_array_from_str(BIT_ARRAY* bitarr, const char* str)
{
  bit_array_from_substr(bitarr, 0, str, strlen(str), "1", "0", 1);
}

// Takes a char array to write to.  `str` must be bitarr->num_of_bits+1 in length
// Terminates string with '\0'
char* bit_array_to_str(const BIT_ARRAY* bitarr, char* str)
{
  bit_index_t i;

  for(i = 0; i < bitarr->num_of_bits; i++)
  {
    str[i] = bit_array_get(bitarr, i) ? '1' : '0';
  }

  str[bitarr->num_of_bits] = '\0';

  return str;
}

char* bit_array_to_str_rev(const BIT_ARRAY* bitarr, char* str)
{
  bit_index_t i;

  for(i = 0; i < bitarr->num_of_bits; i++)
  {
    str[i] = bit_array_get(bitarr, bitarr->num_of_bits-i-1) ? '1' : '0';
  }

  str[bitarr->num_of_bits] = '\0';

  return str;
}


// Get a string representations for a given region, using given on/off characters.
// Note: does not null-terminate
void bit_array_to_substr(const BIT_ARRAY* bitarr,
                         bit_index_t start, bit_index_t length,
                         char* str, char on, char off,
                         char left_to_right)
{
  assert(start + length <= bitarr->num_of_bits);

  bit_index_t i, j;
  bit_index_t end = start + length - 1;

  for(i = 0; i < length; i++)
  {
    j = (left_to_right ? start + i : end - i);
    str[i] = bit_array_get(bitarr, j) ? on : off;
  }

//  str[length] = '\0';
}

// Print this array to a file stream.  Prints '0's and '1'.  Doesn't print newline.
void bit_array_print(const BIT_ARRAY* bitarr, FILE* fout)
{
  bit_index_t i;

  for(i = 0; i < bitarr->num_of_bits; i++)
  {
    fprintf(fout, "%c", bit_array_get(bitarr, i) ? '1' : '0');
  }
}

// Print a string representations for a given region, using given on/off characters.
void bit_array_print_substr(const BIT_ARRAY* bitarr,
                            bit_index_t start, bit_index_t length,
                            FILE* fout, char on, char off,
                            char left_to_right)
{
  assert(start + length <= bitarr->num_of_bits);

  bit_index_t i, j;
  bit_index_t end = start + length - 1;

  for(i = 0; i < length; i++)
  {
    j = (left_to_right ? start + i : end - i);
    fprintf(fout, "%c", bit_array_get(bitarr, j) ? on : off);
  }
}

//
// Decimal
//

// Get bit array as decimal str (e.g. 0b1101 -> "13")
// len is the length of str char array -- will write at most len-1 chars
// returns the number of characters needed
// return is the same as strlen(str)
size_t bit_array_to_decimal(const BIT_ARRAY *bitarr, char *str, size_t len)
{
  size_t i = 0;

  if(bit_array_cmp_uint64(bitarr, 0) == 0)
  {
    if(len >= 2)
    {
      *str = '0';
      *(str+1) = '\0';
    }

    return 1;
  }

  BIT_ARRAY *tmp = bit_array_clone(bitarr);
  uint64_t rem;

  str[len-1] = '\0';

  while(bit_array_cmp_uint64(tmp, 0) != 0)
  {
    bit_array_div_uint64(tmp, 10, &rem);

    if(i < len-1)
    {
      str[len-2-i] = '0' + rem;
    }

    i++;
  }

  if(i < len-1)
  {
    // Moves null-terminator as well
    memmove(str, str+len-i-1, i+1);
  }

  bit_array_free(tmp);

  return i;
}

// Get bit array from decimal str (e.g. "13" -> 0b1101)
// Returns number of characters used
size_t bit_array_from_decimal(BIT_ARRAY *bitarr, const char* decimal)
{
  bit_array_clear_all(bitarr);
  size_t i = 0;

  if(decimal[0] == '\0' || decimal[0] < '0' || decimal[0] > '9')
  {
    return 0;
  }

  bit_array_add_uint64(bitarr, decimal[i] - '0');
  i++;

  while(decimal[i] != '\0' && decimal[i] >= '0' && decimal[i] <= '9')
  {
    bit_array_mul_uint64(bitarr, 10);
    bit_array_add_uint64(bitarr, decimal[i] - '0');
    i++;
  }

  return i;
}

//
// Hexidecimal
//

char bit_array_hex_to_nibble(char c, uint8_t *b)
{
  c = tolower(c);

  if(c >= '0' && c <= '9')
  {
    *b = c - '0';
    return 1;
  }
  else if(c >= 'a' && c <= 'f')
  {
    *b = 0xa + (c - 'a');
    return 1;
  }
  else
  {
    return 0;
  }
}

char bit_array_nibble_to_hex(uint8_t b, char uppercase)
{
  if(b <= 9)
  {
    return '0' + b;
  }
  else
  {
    return (uppercase ? 'A' : 'a') + (b - 0xa);
  }
}

// Loads array from hex string
// Returns the number of bits loaded (will be chars rounded up to multiple of 4)
// (0 on failure)
bit_index_t bit_array_from_hex(BIT_ARRAY* bitarr, bit_index_t offset,
                               const char* str, size_t len)
{
  if(str[0] == '0' && tolower(str[1]) == 'x')
  {
    str += 2;
    len -= 2;
  }

  size_t i;
  for(i = 0; i < len; i++, offset += 4)
  {
    uint8_t b;
    if(bit_array_hex_to_nibble(str[i], &b))
    {
      bit_array_ensure_size(bitarr, offset + 4);
      _set_nibble(bitarr, offset, b);
    }
    else
    {
      break;
    }
  }

  return 4 * i;
}

// Returns number of characters written
size_t bit_array_to_hex(const BIT_ARRAY* bitarr,
                        bit_index_t start, bit_index_t length,
                        char* str, char uppercase)
{
  assert(start + length <= bitarr->num_of_bits);

  size_t k = 0;
  bit_index_t offset, end = start + length;

  for(offset = start; offset + WORD_SIZE <= end; offset += WORD_SIZE)
  {
    word_t w = _get_word(bitarr, offset);

    word_offset_t j;
    for(j = 0; j < 64; j += 4)
    {
      str[k++] = bit_array_nibble_to_hex((w>>j) & 0xf, uppercase);
    }
  }

  if(offset < end)
  {
    // Remaining full nibbles (4 bits)
    word_t w = _get_word(bitarr, offset);

    for(; offset + 4 <= end; offset += 4)
    {
      str[k++] = bit_array_nibble_to_hex(w & 0xf, uppercase);
      w >>= 4;
    }

    if(offset < end)
    {
      // Remaining bits
      str[k++] = bit_array_nibble_to_hex(w & bitmask64(end - offset), uppercase);
    }
  }

  str[k] = '\0';

  // Return number of characters written
  return k;
}

// Print bit array as hex
size_t bit_array_print_hex(const BIT_ARRAY* bitarr,
                           bit_index_t start, bit_index_t length,
                           FILE* fout, char uppercase)
{
  assert(start + length <= bitarr->num_of_bits);

  size_t k = 0;
  bit_index_t offset, end = start + length;

  for(offset = start; offset + WORD_SIZE <= end; offset += WORD_SIZE)
  {
    word_t w = _get_word(bitarr, offset);

    word_offset_t j;
    for(j = 0; j < 64; j += 4)
    {
      fprintf(fout, "%c", bit_array_nibble_to_hex((w>>j) & 0xf, uppercase));
      k++;
    }
  }

  if(offset < end)
  {
    // Remaining full nibbles (4 bits)
    word_t w = _get_word(bitarr, offset);

    for(; offset + 4 <= end; offset += 4)
    {
      fprintf(fout, "%c", bit_array_nibble_to_hex(w & 0xf, uppercase));
      w >>= 4;
      k++;
    }

    if(offset < end)
    {
      // Remaining bits
      char hex = bit_array_nibble_to_hex(w & bitmask64(end - offset), uppercase);
      fprintf(fout, "%c", hex);
      k++;
    }
  }

  return k;
}

//
// Clone and copy
//

// Returns NULL if cannot malloc
BIT_ARRAY* bit_array_clone(const BIT_ARRAY* bitarr)
{
  BIT_ARRAY* cpy = bit_array_create(bitarr->num_of_bits);

  if(cpy == NULL)
  {
    return NULL;
  }

  // Copy across bits
  memcpy(cpy->words, bitarr->words, bitarr->num_of_words * sizeof(word_t));

  DEBUG_VALIDATE(cpy);
  return cpy;
}

// destination and source may be the same bit_array
// and src/dst regions may overlap
static void _array_copy(BIT_ARRAY* dst, bit_index_t dstindx,
                        const BIT_ARRAY* src, bit_index_t srcindx,
                        bit_index_t length)
{
  DEBUG_PRINT("bit_array_copy(dst: %zu, src: %zu, length: %zu)\n",
              (size_t)dstindx, (size_t)srcindx, (size_t)length);

  // Num of full words to copy
  word_addr_t num_of_full_words = length / WORD_SIZE;
  word_addr_t i;

  word_offset_t bits_in_last_word = bits_in_top_word(length);

  if(dst == src && srcindx > dstindx)
  {
    // Work left to right
    DEBUG_PRINT("work left to right\n");

    for(i = 0; i < num_of_full_words; i++)
    {
      word_t word = _get_word(src, srcindx+i*WORD_SIZE);
      _set_word(dst, dstindx+i*WORD_SIZE, word);
    }

    if(bits_in_last_word > 0)
    {
      word_t src_word = _get_word(src, srcindx+i*WORD_SIZE);
      word_t dst_word = _get_word(dst, dstindx+i*WORD_SIZE);

      word_t mask = bitmask64(bits_in_last_word);
      word_t word = bitmask_merge(src_word, dst_word, mask);

      _set_word(dst, dstindx+num_of_full_words*WORD_SIZE, word);
    }
  }
  else
  {
    // Work right to left
    DEBUG_PRINT("work right to left\n");

    for(i = 0; i < num_of_full_words; i++)
    {
      word_t word = _get_word(src, srcindx+length-(i+1)*WORD_SIZE);
      _set_word(dst, dstindx+length-(i+1)*WORD_SIZE, word);
    }

    DEBUG_PRINT("Copy %i,%i to %i\n", (int)srcindx, (int)bits_in_last_word,
                                      (int)dstindx);

    if(bits_in_last_word > 0)
    {
      word_t src_word = _get_word(src, srcindx);
      word_t dst_word = _get_word(dst, dstindx);

      word_t mask = bitmask64(bits_in_last_word);
      word_t word = bitmask_merge(src_word, dst_word, mask);
      _set_word(dst, dstindx, word);
    }
  }

  _mask_top_word(dst);
}

// destination and source may be the same bit_array
// and src/dst regions may overlap
void bit_array_copy(BIT_ARRAY* dst, bit_index_t dstindx,
                    const BIT_ARRAY* src, bit_index_t srcindx,
                    bit_index_t length)
{
  assert(srcindx + length <= src->num_of_bits);
  assert(dstindx <= dst->num_of_bits);
  _array_copy(dst, dstindx, src, srcindx, length);
  DEBUG_VALIDATE(dst);
}

// Clone `src` into `dst`. Resizes `dst`.
void bit_array_copy_all(BIT_ARRAY* dst, const BIT_ARRAY* src)
{
  bit_array_resize_critical(dst, src->num_of_bits);
  memmove(dst->words, src->words, src->num_of_words * sizeof(word_t));
  DEBUG_VALIDATE(dst);
}


//
// Logic operators
//

// Destination can be the same as one or both of the sources
void bit_array_and(BIT_ARRAY* dst, const BIT_ARRAY* src1, const BIT_ARRAY* src2)
{
  // Ensure dst array is big enough
  word_addr_t max_bits = MAX(src1->num_of_bits, src2->num_of_bits);
  bit_array_ensure_size_critical(dst, max_bits);

  word_addr_t min_words = MIN(src1->num_of_words, src2->num_of_words);

  word_addr_t i;

  for(i = 0; i < min_words; i++)
  {
    dst->words[i] = src1->words[i] & src2->words[i];
  }

  // Set remaining bits to zero
  for(i = min_words; i < dst->num_of_words; i++)
  {
    dst->words[i] = (word_t)0;
  }

  DEBUG_VALIDATE(dst);
}

// Destination can be the same as one or both of the sources
static void _logical_or_xor(BIT_ARRAY* dst,
                            const BIT_ARRAY* src1,
                            const BIT_ARRAY* src2,
                            char use_xor)
{
  // Ensure dst array is big enough
  bit_array_ensure_size_critical(dst, MAX(src1->num_of_bits, src2->num_of_bits));

  word_addr_t min_words = MIN(src1->num_of_words, src2->num_of_words);
  word_addr_t max_words = MAX(src1->num_of_words, src2->num_of_words);

  word_addr_t i;

  if(use_xor)
  {
    for(i = 0; i < min_words; i++)
      dst->words[i] = src1->words[i] ^ src2->words[i];
  }
  else
  {
    for(i = 0; i < min_words; i++)
      dst->words[i] = src1->words[i] | src2->words[i];
  }

  // Copy remaining bits from longer src array
  if(min_words != max_words)
  {
    const BIT_ARRAY* longer = src1->num_of_words > src2->num_of_words ? src1 : src2;

    for(i = min_words; i < max_words; i++)
    {
      dst->words[i] = longer->words[i];
    }
  }

  // Set remaining bits to zero
  size_t size = (dst->num_of_words - max_words) * sizeof(word_t);
  memset(dst->words + max_words, 0, size);

  DEBUG_VALIDATE(dst);
}

void bit_array_or(BIT_ARRAY* dst, const BIT_ARRAY* src1, const BIT_ARRAY* src2)
{
  _logical_or_xor(dst, src1, src2, 0);
}

// Destination can be the same as one or both of the sources
void bit_array_xor(BIT_ARRAY* dst, const BIT_ARRAY* src1, const BIT_ARRAY* src2)
{
  _logical_or_xor(dst, src1, src2, 1);
}

// If dst is longer than src, top bits are set to 1
void bit_array_not(BIT_ARRAY* dst, const BIT_ARRAY* src)
{
  bit_array_ensure_size_critical(dst, src->num_of_bits);

  word_addr_t i;

  for(i = 0; i < src->num_of_words; i++)
  {
    dst->words[i] = ~(src->words[i]);
  }

  // Set remaining words to 1s
  for(i = src->num_of_words; i < dst->num_of_words; i++)
  {
    dst->words[i] = WORD_MAX;
  }

  _mask_top_word(dst);

  DEBUG_VALIDATE(dst);
}

//
// Comparisons
//

// Compare two bit arrays by value stored, with index 0 being the Least
// Significant Bit (LSB). Arrays do not have to be the same length.
// Example: ..0101 (5) > ...0011 (3) [index 0 is LSB at right hand side]
// Sorts on length if all zeros: (0,0) < (0,0,0)
// returns:
//  >0 iff bitarr1 > bitarr2
//   0 iff bitarr1 == bitarr2
//  <0 iff bitarr1 < bitarr2
int bit_array_cmp(const BIT_ARRAY* bitarr1, const BIT_ARRAY* bitarr2)
{
  word_addr_t i;
  word_t word1, word2;
  word_addr_t min_words = bitarr1->num_of_words;

  // i is unsigned so break when i == 0
  if(bitarr1->num_of_words > bitarr2->num_of_words) {
    min_words = bitarr2->num_of_words;
    for(i = bitarr1->num_of_words-1; ; i--) {
      if(bitarr1->words[i]) return 1;
      if(i == bitarr2->num_of_words) break;
    }
  }
  else if(bitarr1->num_of_words < bitarr2->num_of_words) {
    for(i = bitarr2->num_of_words-1; ; i--) {
      if(bitarr2->words[i]) return 1;
      if(i == bitarr1->num_of_words) break;
    }
  }

  if(min_words == 0) return 0;

  for(i = min_words-1; ; i--)
  {
    word1 = bitarr1->words[i];
    word2 = bitarr2->words[i];
    if(word1 != word2) return (word1 > word2 ? 1 : -1);
    if(i == 0) break;
  }

  if(bitarr1->num_of_bits == bitarr2->num_of_bits) return 0;
  return bitarr1->num_of_bits > bitarr2->num_of_bits ? 1 : -1;
}

// Compare two bit arrays by value stored, with index 0 being the Most
// Significant Bit (MSB). Arrays do not have to be the same length.
// Example: 10.. > 01.. [index 0 is MSB at left hand side]
// Sorts on length if all zeros: (0,0) < (0,0,0)
// returns:
//  >0 iff bitarr1 > bitarr2
//   0 iff bitarr1 == bitarr2
//  <0 iff bitarr1 < bitarr2
int bit_array_cmp_big_endian(const BIT_ARRAY* bitarr1, const BIT_ARRAY* bitarr2)
{
  word_addr_t min_words = MAX(bitarr1->num_of_words, bitarr2->num_of_words);

  word_addr_t i;
  word_t word1, word2;

  for(i = 0; i < min_words; i++) {
    word1 = _reverse_word(bitarr1->words[i]);
    word2 = _reverse_word(bitarr2->words[i]);
    if(word1 != word2) return (word1 > word2 ? 1 : -1);
  }

  // Check remaining words. Only one of these loops will execute
  for(; i < bitarr1->num_of_words; i++)
    if(bitarr1->words[i]) return 1;
  for(; i < bitarr2->num_of_words; i++)
    if(bitarr2->words[i]) return -1;

  if(bitarr1->num_of_bits == bitarr2->num_of_bits) return 0;
  return bitarr1->num_of_bits > bitarr2->num_of_bits ? 1 : -1;
}

// compare bitarr with (bitarr2 << pos)
// bit_array_cmp(bitarr1, bitarr2<<pos)
// returns:
//  >0 iff bitarr1 > bitarr2
//   0 iff bitarr1 == bitarr2
//  <0 iff bitarr1 < bitarr2
int bit_array_cmp_words(const BIT_ARRAY *arr1,
                        bit_index_t pos, const BIT_ARRAY *arr2)
{
  if(arr1->num_of_bits == 0 && arr2->num_of_bits == 0)
  {
    return 0;
  }

  bit_index_t top_bit1 = 0, top_bit2 = 0;

  char arr1_zero = !bit_array_find_last_set_bit(arr1, &top_bit1);
  char arr2_zero = !bit_array_find_last_set_bit(arr2, &top_bit2);

  if(arr1_zero && arr2_zero) return 0;
  if(arr1_zero) return -1;
  if(arr2_zero) return 1;

  bit_index_t top_bit2_offset = top_bit2 + pos;

  if(top_bit1 != top_bit2_offset) {
    return top_bit1 > top_bit2_offset ? 1 : -1;
  }

  word_addr_t i;
  word_t word1, word2;

  for(i = top_bit2 / WORD_SIZE; i > 0; i--)
  {
    word1 = _get_word(arr1, pos + i * WORD_SIZE);
    word2 = arr2->words[i];

    if(word1 > word2) return 1;
    if(word1 < word2) return -1;
  }

  word1 = _get_word(arr1, pos);
  word2 = arr2->words[0];

  if(word1 > word2) return 1;
  if(word1 < word2) return -1;

  // return 1 if arr1[0..pos] != 0, 0 otherwise

  // Whole words
  word_addr_t num_words = pos / WORD_SIZE;

  for(i = 0; i < num_words; i++)
  {
    if(arr1->words[i] > 0)
    {
      return 1;
    }
  }

  word_offset_t bits_remaining = pos - num_words * WORD_SIZE;

  if(arr1->words[num_words] & bitmask64(bits_remaining))
  {
    return 1;
  }

  return 0;
}


//
// Reverse -- coords may wrap around
//

// No bounds checking
// length cannot be zero
static void _reverse_region(BIT_ARRAY* bitarr,
                            bit_index_t start,
                            bit_index_t length)
{
  bit_index_t left = start;
  bit_index_t right = (start + length - WORD_SIZE) % bitarr->num_of_bits;

  while(length >= 2 * WORD_SIZE)
  {
    // Swap entire words
    word_t left_word = _get_word_cyclic(bitarr, left);
    word_t right_word = _get_word_cyclic(bitarr, right);

    // reverse words individually
    left_word = _reverse_word(left_word);
    right_word = _reverse_word(right_word);

    // Swap
    _set_word_cyclic(bitarr, left, right_word);
    _set_word_cyclic(bitarr, right, left_word);

    // Update
    left = (left + WORD_SIZE) % bitarr->num_of_bits;
    right = (right < WORD_SIZE ? right + bitarr->num_of_bits : right) - WORD_SIZE;
    length -= 2 * WORD_SIZE;
  }

  word_t word, rev;

  if(length == 0)
  {
    return;
  }
  else if(length > WORD_SIZE)
  {
    // Words overlap
    word_t left_word = _get_word_cyclic(bitarr, left);
    word_t right_word = _get_word_cyclic(bitarr, right);

    rev = _reverse_word(left_word);
    right_word = _reverse_word(right_word);

    // fill left 64 bits with right word rev
    _set_word_cyclic(bitarr, left, right_word);

    // Now do remaining bits (length is between 1 and 64 bits)
    left += WORD_SIZE;
    length -= WORD_SIZE;

    word = _get_word_cyclic(bitarr, left);
  }
  else
  {
    word = _get_word_cyclic(bitarr, left);
    rev = _reverse_word(word);
  }

  rev >>= WORD_SIZE - length;
  word_t mask = bitmask64(length);

  word = bitmask_merge(rev, word, mask);

  _set_word_cyclic(bitarr, left, word);
}

void bit_array_reverse_region(BIT_ARRAY* bitarr, bit_index_t start, bit_index_t len)
{
  assert(start + len <= bitarr->num_of_bits);
  if(len > 0) _reverse_region(bitarr, start, len);
  DEBUG_VALIDATE(bitarr);
}

void bit_array_reverse(BIT_ARRAY* bitarr)
{
  if(bitarr->num_of_bits > 0) _reverse_region(bitarr, 0, bitarr->num_of_bits);
  DEBUG_VALIDATE(bitarr);
}

//
// Shift left / right
//

// Shift towards MSB / higher index
void bit_array_shift_left(BIT_ARRAY* bitarr, bit_index_t shift_dist, char fill)
{
  if(shift_dist >= bitarr->num_of_bits)
  {
    fill ? bit_array_set_all(bitarr) : bit_array_clear_all(bitarr);
    return;
  }
  else if(shift_dist == 0)
  {
    return;
  }

  FillAction action = fill ? FILL_REGION : ZERO_REGION;

  bit_index_t cpy_length = bitarr->num_of_bits - shift_dist;
  _array_copy(bitarr, shift_dist, bitarr, 0, cpy_length);
  _set_region(bitarr, 0, shift_dist, action);
}

// shift left extend - don't truncate bits when shifting UP, instead
// make room for them.
void bit_array_shift_left_extend(BIT_ARRAY* bitarr, bit_index_t shift_dist,
                                 char fill)
{
   bit_index_t newlen = bitarr->num_of_bits + shift_dist;
   bit_index_t cpy_length = bitarr->num_of_bits;

  if(shift_dist == 0)
  {
    return;
  }

  bit_array_resize_critical(bitarr, newlen);

  FillAction action = fill ? FILL_REGION : ZERO_REGION;
  _array_copy(bitarr, shift_dist, bitarr, 0, cpy_length);
  _set_region(bitarr, 0, shift_dist, action);
}

// Shift towards LSB / lower index
void bit_array_shift_right(BIT_ARRAY* bitarr, bit_index_t shift_dist, char fill)
{
  if(shift_dist >= bitarr->num_of_bits)
  {
    fill ? bit_array_set_all(bitarr) : bit_array_clear_all(bitarr);
    return;
  }
  else if(shift_dist == 0)
  {
    return;
  }

  FillAction action = fill ? FILL_REGION : ZERO_REGION;

  bit_index_t cpy_length = bitarr->num_of_bits - shift_dist;
  bit_array_copy(bitarr, 0, bitarr, shift_dist, cpy_length);

  _set_region(bitarr, cpy_length, shift_dist, action);
}

//
// Cycle
//

// Cycle towards index 0
void bit_array_cycle_right(BIT_ARRAY* bitarr, bit_index_t cycle_dist)
{
  if(bitarr->num_of_bits == 0)
  {
    return;
  }

  cycle_dist = cycle_dist % bitarr->num_of_bits;

  if(cycle_dist == 0)
  {
    return;
  }

  bit_index_t len1 = cycle_dist;
  bit_index_t len2 = bitarr->num_of_bits - cycle_dist;

  _reverse_region(bitarr, 0, len1);
  _reverse_region(bitarr, len1, len2);
  bit_array_reverse(bitarr);
}

// Cycle away from index 0
void bit_array_cycle_left(BIT_ARRAY* bitarr, bit_index_t cycle_dist)
{
  if(bitarr->num_of_bits == 0)
  {
    return;
  }

  cycle_dist = cycle_dist % bitarr->num_of_bits;

  if(cycle_dist == 0)
  {
    return;
  }

  bit_index_t len1 = bitarr->num_of_bits - cycle_dist;
  bit_index_t len2 = cycle_dist;

  _reverse_region(bitarr, 0, len1);
  _reverse_region(bitarr, len1, len2);
  bit_array_reverse(bitarr);
}

//
// Next permutation
//

static word_t _next_permutation(word_t v)
{
  // From http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
  word_t t = v | (v - 1); // t gets v's least significant 0 bits set to 1
  // Next set to 1 the most significant bit to change,
  // set to 0 the least significant ones, and add the necessary 1 bits.
  return (t+1) | (((~t & (t+1)) - 1) >> (trailing_zeros(v) + 1));
}

// Get the next permutation of an array with a fixed size and given number of
// bits set.  Also known as next lexicographic permutation.
// Given a bit array find the next lexicographic orginisation of the bits
// Number of possible combinations given by (size choose bits_set) i.e. nCk
// 00011 -> 00101 -> 00110 -> 01001 -> 01010 ->
// 01100 -> 10001 -> 10010 -> 10100 -> 11000 -> 00011 (back to start)
void bit_array_next_permutation(BIT_ARRAY* bitarr)
{
  if(bitarr->num_of_bits == 0)
  {
    return;
  }

  word_addr_t w;

  char carry = 0;
  word_offset_t top_bits = bitset64_idx(bitarr->num_of_bits);

  for(w = 0; w < bitarr->num_of_words; w++)
  {
    word_t mask
      = (w < bitarr->num_of_words - 1 || top_bits == 0) ? WORD_MAX
                                                        : bitmask64(top_bits);

    if(bitarr->words[w] > 0 &&
       (bitarr->words[w] | (bitarr->words[w]-1)) == mask)
    {
      // Bits in this word cannot be moved forward
      carry = 1;
    }
    else if(carry)
    {
      // 0111 -> 1000, 1000 -> 1001
      word_t tmp = bitarr->words[w] + 1;

      // Count bits previously set
      bit_index_t bits_previously_set = POPCOUNT(bitarr->words[w]);

      // set new word
      bitarr->words[w] = tmp;

      // note: w is unsigned
      // Zero words while counting bits set
      while(w > 0)
      {
        bits_previously_set += POPCOUNT(bitarr->words[w-1]);
        bitarr->words[w-1] = 0;
        w--;
      }

      // Set bits at the beginning
      SET_REGION(bitarr, 0, bits_previously_set - POPCOUNT(tmp));

      carry = 0;
      break;
    }
    else if(bitarr->words[w] > 0)
    {
      bitarr->words[w] = _next_permutation(bitarr->words[w]);
      break;
    }
  }

  if(carry)
  {
    // Loop around
    bit_index_t num_bits_set = bit_array_num_bits_set(bitarr);
    bit_array_clear_all(bitarr);
    SET_REGION(bitarr, 0, num_bits_set);
  }

  DEBUG_VALIDATE(bitarr);
}


//
// Interleave
//

// dst cannot point to the same bit array as src1 or src2
// src1, src2 may point to the same bit array
// abcd 1234 -> a1b2c3d4
// 0011 0000 -> 00001010
// 1111 0000 -> 10101010
// 0101 1010 -> 01100110
void bit_array_interleave(BIT_ARRAY* dst,
                          const BIT_ARRAY* src1,
                          const BIT_ARRAY* src2)
{
  // dst cannot be either src1 or src2
  assert(dst != src1 && dst != src2);
  // Behaviour undefined when src1 length != src2 length",
  assert(src1->num_of_bits == src2->num_of_bits);

  // Need at least src1->num_of_words + src2->num_of_words
  size_t nwords = MIN(src1->num_of_words + src2->num_of_words, 2);
  _bit_array_ensure_nwords(dst, nwords, __FILE__, __LINE__, __func__);
  dst->num_of_bits = src1->num_of_bits + src2->num_of_bits;
  dst->num_of_words = roundup_bits2words64(dst->num_of_bits);

  word_addr_t i, j;

  for(i = 0, j = 0; i < src1->num_of_words; i++)
  {
    word_t a = src1->words[i];
    word_t b = src2->words[i];

    dst->words[j++] =  morton_table0[(a      ) & 0xff] |
                       morton_table1[(b      ) & 0xff] |
                      (morton_table0[(a >>  8) & 0xff] << 16) |
                      (morton_table1[(b >>  8) & 0xff] << 16) |
                      (morton_table0[(a >> 16) & 0xff] << 32) |
                      (morton_table1[(b >> 16) & 0xff] << 32) |
                      (morton_table0[(a >> 24) & 0xff] << 48) |
                      (morton_table1[(b >> 24) & 0xff] << 48);

    dst->words[j++] =  morton_table0[(a >> 32) & 0xff] |
                       morton_table1[(b >> 32) & 0xff] |
                      (morton_table0[(a >> 40) & 0xff] << 16) |
                      (morton_table1[(b >> 40) & 0xff] << 16) |
                      (morton_table0[(a >> 48) & 0xff] << 32) |
                      (morton_table1[(b >> 48) & 0xff] << 32) |
                      (morton_table0[(a >> 56)       ] << 48) |
                      (morton_table1[(b >> 56)       ] << 48);
  }

  DEBUG_VALIDATE(dst);
}

//
// Random
//

// Set bits randomly with probability prob : 0 <= prob <= 1
void bit_array_random(BIT_ARRAY* bitarr, float prob)
{
  assert(prob >= 0 && prob <= 1);

  if(bitarr->num_of_bits == 0)
  {
    return;
  }
  else if(prob == 1)
  {
    bit_array_set_all(bitarr);
    return;
  }

  // rand() generates number between 0 and RAND_MAX inclusive
  // therefore we want to check if rand() <= p
  long p = RAND_MAX * prob;

  _seed_rand();

  word_addr_t w;
  word_offset_t o;

  // Initialise to zero
  memset(bitarr->words, 0, bitarr->num_of_words * sizeof(word_t));

  for(w = 0; w < bitarr->num_of_words - 1; w++)
  {
    for(o = 0; o < WORD_SIZE; o++)
    {
      if(rand() <= p)
      {
        bitarr->words[w] |= ((word_t)0x1 << o);
      }
    }
  }

  // Top word
  word_offset_t bits_in_last_word = bits_in_top_word(bitarr->num_of_bits);
  w = bitarr->num_of_words - 1;

  for(o = 0; o < bits_in_last_word; o++)
  {
    if(rand() <= p)
    {
      bitarr->words[w] |= ((word_t)0x1 << o);
    }
  }

  DEBUG_VALIDATE(bitarr);
}

// Shuffle the bits in an array randomly
void bit_array_shuffle(BIT_ARRAY* bitarr)
{
  if(bitarr->num_of_bits == 0)
    return;

  _seed_rand();

  bit_index_t i, j;

  for(i = bitarr->num_of_bits - 1; i > 0; i--)
  {
    j = (bit_index_t)rand() % i;

    // Swap i and j
    char x = (bitarr->words[bitset64_wrd(i)] >> bitset64_idx(i)) & 0x1;
    char y = (bitarr->words[bitset64_wrd(j)] >> bitset64_idx(j)) & 0x1;

    if(!y)
      bitarr->words[bitset64_wrd(i)] &= ~((word_t)0x1 << bitset64_idx(i));
    else
      bitarr->words[bitset64_wrd(i)] |= (word_t)0x1 << bitset64_idx(i);

    if(!x)
      bitarr->words[bitset64_wrd(j)] &= ~((word_t)0x1 << bitset64_idx(j));
    else
      bitarr->words[bitset64_wrd(j)] |= (word_t)0x1 << bitset64_idx(j);
  }

  DEBUG_VALIDATE(bitarr);
}

//
// Arithmetic
//

// Returns 1 on sucess, 0 if value in array is too big
char bit_array_as_num(const BIT_ARRAY* bitarr, uint64_t* result)
{
  if(bitarr->num_of_bits == 0)
  {
    *result = 0;
    return 1;
  }

  word_addr_t w;

  for(w = bitarr->num_of_words-1; w > 0; w--)
  {
    if(bitarr->words[w] > 0)
    {
      return 0;
    }
  }

  *result = bitarr->words[0];
  return 1;
}


// 1 iff bitarr > value
// 0 iff bitarr == value
// -1 iff bitarr < value
int bit_array_cmp_uint64(const BIT_ARRAY* bitarr, uint64_t value)
{
  uint64_t arr_num = 0;

  // If cannot put bitarr in uint64, it is > value
  if(!bit_array_as_num(bitarr, &arr_num)) return 1;

  if(arr_num > value)      return  1;
  else if(arr_num < value) return -1;
  else                     return  0;
}

// If value is zero, no change is made
void bit_array_add_uint64(BIT_ARRAY* bitarr, uint64_t value)
{
  if(value == 0)
  {
    return;
  }
  else if(bitarr->num_of_bits == 0)
  {
    bit_array_resize_critical(bitarr, WORD_SIZE - leading_zeros(value));
    bitarr->words[0] = (word_t)value;
    return;
  }

  char carry = 0;
  word_addr_t i;

  for(i = 0; i < bitarr->num_of_words; i++)
  {
    if(WORD_MAX - bitarr->words[i] < value)
    {
      carry = 1;
      bitarr->words[i] += value;
    }
    else
    {
      // Carry is absorbed
      bitarr->words[i] += value;
      carry = 0;
      break;
    }
  }

  if(carry)
  {
    // Bit array full, need another bit after all words filled
    bit_array_resize_critical(bitarr, bitarr->num_of_words * WORD_SIZE + 1);

    // Set top word to 1
    bitarr->words[bitarr->num_of_words-1] = 1;
  }
  else
  {
    word_t final_word = bitarr->words[bitarr->num_of_words-1];
    word_offset_t expected_bits = bits_in_top_word(bitarr->num_of_bits);
    word_offset_t actual_bits = WORD_SIZE - leading_zeros(final_word);

    if(actual_bits > expected_bits)
    {
      // num_of_bits has increased -- num_of_words has not
      bitarr->num_of_bits += (actual_bits - expected_bits);
    }
  }
}

// If value is greater than bitarr, bitarr is not changed and 0 is returned
// Returns 1 on success, 0 if value > bitarr
char bit_array_sub_uint64(BIT_ARRAY* bitarr, uint64_t value)
{
  if(value == 0)
  {
    return 1;
  }
  else if(bitarr->words[0] >= value)
  {
    bitarr->words[0] -= value;
    return 1;
  }

  value -= bitarr->words[0];

  word_addr_t i;

  for(i = 1; i < bitarr->num_of_words; i++)
  {
    if(bitarr->words[i] > 0)
    {
      // deduct one
      bitarr->words[i]--;

      for(; i > 0; i--)
      {
        bitarr->words[i] = WORD_MAX;
      }

      // -1 since we've already deducted 1
      bitarr->words[0] = WORD_MAX - value - 1;

      return 1;
    }
  }

  // subtract value is greater than array
  return 0;
}

//
// Arithmetic between bit arrays
//

// src1, src2 and dst can all be the same BIT_ARRAY
static void _arithmetic(BIT_ARRAY* dst,
                        const BIT_ARRAY* src1,
                        const BIT_ARRAY* src2,
                        char subtract)
{
  word_addr_t max_words = MAX(src1->num_of_words, src2->num_of_words);

  // Adding: dst_words >= max(src1 words, src2 words)
  // Subtracting: dst_words is >= src1->num_of_words

  char carry = subtract ? 1 : 0;

  word_addr_t i;
  word_t word1, word2;

  for(i = 0; i < max_words; i++)
  {
    word1 = (i < src1->num_of_words ? src1->words[i] : 0);
    word2 = (i < src2->num_of_words ? src2->words[i] : 0);

    if(subtract)
      word2 = ~word2;

    dst->words[i] = word1 + word2 + carry;
    // Update carry
    carry = WORD_MAX - word1 < word2 || WORD_MAX - word1 - word2 < (word_t)carry;
  }

  if(subtract)
  {
    carry = 0;
  }
  else
  {
    // Check last word
    word_offset_t bits_on_last_word = bits_in_top_word(dst->num_of_bits);

    if(bits_on_last_word < WORD_SIZE)
    {
      word_t mask = bitmask64(bits_on_last_word);

      if(dst->words[max_words-1] > mask)
      {
        // Array has overflowed, increase size
        dst->num_of_bits++;
      }
    }
    else if(carry)
    {
      // Carry onto a new word
      if(dst->num_of_words == max_words)
      {
        // Need to resize for the carry bit
        bit_array_resize_critical(dst, dst->num_of_bits+1);
      }

      dst->words[max_words] = (word_t)1;
    }
  }

  // Zero the rest of dst array
  for(i = max_words+carry; i < dst->num_of_words; i++)
  {
    dst->words[i] = (word_t)0;
  }

  DEBUG_VALIDATE(dst);
}

// src1, src2 and dst can all be the same BIT_ARRAY
// If dst is shorter than either of src1, src2, it is enlarged
void bit_array_add(BIT_ARRAY* dst, const BIT_ARRAY* src1, const BIT_ARRAY* src2)
{
  bit_array_ensure_size_critical(dst, MAX(src1->num_of_bits, src2->num_of_bits));
  _arithmetic(dst, src1, src2, 0);
}

// dst = src1 - src2
// src1, src2 and dst can all be the same BIT_ARRAY
// If dst is shorter than src1, it will be extended to be as long as src1
// src1 must be greater than or equal to src2 (src1 >= src2)
void bit_array_subtract(BIT_ARRAY* dst,
                          const BIT_ARRAY* src1, const BIT_ARRAY* src2)
{
  // subtraction by method of complements:
  // a - b = a + ~b + 1 = src1 + ~src2 +1

  assert(bit_array_cmp(src1, src2) >= 0); // Require src1 >= src2

  bit_array_ensure_size_critical(dst, src1->num_of_bits);
  _arithmetic(dst, src1, src2, 1);
}


// Add `add` to `bitarr` at `pos`
// Bounds checking not needed as out of bounds is valid
void bit_array_add_word(BIT_ARRAY *bitarr, bit_index_t pos, uint64_t add)
{
  DEBUG_VALIDATE(bitarr);

  if(add == 0)
  {
    return;
  }
  else if(pos >= bitarr->num_of_bits)
  {
    // Resize and add!
    bit_index_t num_bits_required = pos + (WORD_SIZE - leading_zeros(add));
    bit_array_resize_critical(bitarr, num_bits_required);
    _set_word(bitarr, pos, (word_t)add);
    return;
  }

  /*
  char str[1000];
  printf(" add_word: %s\n", bit_array_to_str_rev(bitarr, str));
  printf("     word: %s [pos: %i]\n", _word_to_str(add, str), (int)pos);
  */

  word_t w = _get_word(bitarr, pos);
  word_t sum = w + add;
  char carry = WORD_MAX - w < add;

  // Ensure array is big enough
  bit_index_t num_bits_required = pos + (carry ? WORD_SIZE + 1
                                               : (WORD_SIZE - leading_zeros(sum)));

  bit_array_ensure_size(bitarr, num_bits_required);

  _set_word(bitarr, pos, sum);
  pos += WORD_SIZE;

  if(carry)
  {
    word_offset_t offset = pos % WORD_SIZE;
    word_addr_t addr = bitset64_wrd(pos);

    add = (word_t)0x1 << offset;
    carry = (WORD_MAX - bitarr->words[addr] < add);
    sum = bitarr->words[addr] + add;

    num_bits_required = addr * WORD_SIZE +
                        (carry ? WORD_SIZE + 1 : (WORD_SIZE - leading_zeros(sum)));

    bit_array_ensure_size(bitarr, num_bits_required);

    bitarr->words[addr++] = sum;

    if(carry)
    {
      while(addr < bitarr->num_of_words && bitarr->words[addr] == WORD_MAX)
      {
        bitarr->words[addr++] = 0;
      }

      if(addr == bitarr->num_of_words)
      {
        bit_array_resize_critical(bitarr, addr * WORD_SIZE + 1);
      }
      else if(addr == bitarr->num_of_words-1 &&
              bitarr->words[addr] == bitmask64(bits_in_top_word(bitarr->num_of_bits)))
      {
        bit_array_resize_critical(bitarr, bitarr->num_of_bits + 1);
      }

      bitarr->words[addr]++;
    }
  }

  DEBUG_VALIDATE(bitarr);
}

// Add `add` to `bitarr` at `pos`
// Bounds checking not needed as out of bounds is valid
void bit_array_add_words(BIT_ARRAY *bitarr, bit_index_t pos, const BIT_ARRAY *add)
{
  assert(bitarr != add); // bitarr and add cannot point to the same bit array

  bit_index_t add_top_bit_set;

  if(!bit_array_find_last_set_bit(add, &add_top_bit_set))
  {
    // No bits set in add
    return;
  }
  else if(pos >= bitarr->num_of_bits)
  {
    // Just resize and copy!
    bit_index_t num_bits_required = pos + add_top_bit_set + 1;
    bit_array_resize_critical(bitarr, num_bits_required);
    _array_copy(bitarr, pos, add, 0, add->num_of_bits);
    return;
  }
  else if(pos == 0)
  {
    bit_array_add(bitarr, bitarr, add);
    return;
  }

  /*
  char str[1000];
  printf(" add_words1: %s\n", bit_array_to_str_rev(bitarr, str));
  printf(" add_words2: %s\n", bit_array_to_str_rev(add, str));
  printf(" [pos: %i]\n", (int)pos);
  */

  bit_index_t num_bits_required = pos + add_top_bit_set + 1;
  bit_array_ensure_size(bitarr, num_bits_required);

  word_addr_t first_word = bitset64_wrd(pos);
  word_offset_t first_offset = bitset64_idx(pos);

  word_t w = add->words[0] << first_offset;
  unsigned char carry = (WORD_MAX - bitarr->words[first_word] < w);

  bitarr->words[first_word] += w;

  word_addr_t i = first_word + 1;
  bit_index_t offset = WORD_SIZE - first_offset;

  for(; carry || offset <= add_top_bit_set; i++, offset += WORD_SIZE)
  {
    w = offset < add->num_of_bits ? _get_word(add, offset) : (word_t)0;

    if(i >= bitarr->num_of_words)
    {
      // Extend by a word
      bit_array_resize_critical(bitarr, (bit_index_t)(i+1)*WORD_SIZE+1);
    }

    word_t prev = bitarr->words[i];

    bitarr->words[i] += w + carry;

    carry = (WORD_MAX - prev < w || (carry && prev + w == WORD_MAX)) ? 1 : 0;
  }

  word_offset_t top_bits
    = WORD_SIZE - leading_zeros(bitarr->words[bitarr->num_of_words-1]);

  bit_index_t min_bits = (bitarr->num_of_words-1)*WORD_SIZE + top_bits;

  if(bitarr->num_of_bits < min_bits)
  {
    // Extend within the last word
    bitarr->num_of_bits = min_bits;
  }

  DEBUG_VALIDATE(bitarr);
}

char bit_array_sub_word(BIT_ARRAY* bitarr, bit_index_t pos, word_t minus)
{
  DEBUG_VALIDATE(bitarr);

  if(minus == 0)
  {
    return 1;
  }

  word_t w = _get_word(bitarr, pos);

  if(w >= minus)
  {
    _set_word(bitarr, pos, w - minus);
    DEBUG_VALIDATE(bitarr);
    return 1;
  }

  minus -= w;

  bit_index_t offset;
  for(offset = pos + WORD_SIZE; offset < bitarr->num_of_bits; offset += WORD_SIZE)
  {
    w = _get_word(bitarr, offset);

    if(w > 0)
    {
      // deduct one
      _set_word(bitarr, offset, w - 1);

      SET_REGION(bitarr, pos, offset-pos);

      // -1 since we've already deducted 1
      minus--;

      _set_word(bitarr, pos, WORD_MAX - minus);

      DEBUG_VALIDATE(bitarr);
      return 1;
    }
  }

  DEBUG_VALIDATE(bitarr);

  return 0;
}

char bit_array_sub_words(BIT_ARRAY* bitarr, bit_index_t pos, BIT_ARRAY* minus)
{
  assert(bitarr != minus); // bitarr and minus cannot point to the same bit array

  int cmp = bit_array_cmp_words(bitarr, pos, minus);

  if(cmp == 0)
  {
    bit_array_clear_all(bitarr);
    return 1;
  }
  else if(cmp < 0)
  {
    return 0;
  }

  bit_index_t bitarr_length = bitarr->num_of_bits;

  bit_index_t bitarr_top_bit_set;
  bit_array_find_last_set_bit(bitarr, &bitarr_top_bit_set);

  // subtraction by method of complements:
  // a - b = a + ~b + 1 = src1 + ~src2 +1

  bit_array_not(minus, minus);

  bit_array_add_words(bitarr, pos, minus);
  bit_array_add_word(bitarr, pos, (word_t)1);

  bit_array_sub_word(bitarr, pos+minus->num_of_bits, 1);
  bit_array_resize(bitarr, bitarr_length);

  bit_array_not(minus, minus);

  DEBUG_VALIDATE(bitarr);

  return 1;
}

void bit_array_mul_uint64(BIT_ARRAY *bitarr, uint64_t multiplier)
{
  if(bitarr->num_of_bits == 0 || multiplier == 1)
  {
    return;
  }
  else if(multiplier == 0)
  {
    bit_array_clear_all(bitarr);
    return;
  }

  bit_index_t i;

  for(i = bitarr->num_of_bits; i > 0; i--)
  {
    if(bit_array_get(bitarr, i-1))
    {
      bit_array_clear(bitarr, i-1);
      bit_array_add_word(bitarr, i-1, multiplier);
    }
  }

  DEBUG_VALIDATE(bitarr);
}

void bit_array_multiply(BIT_ARRAY *dst, BIT_ARRAY *src1, BIT_ARRAY *src2)
{
  if(src1->num_of_bits == 0 || src2->num_of_bits == 0)
  {
    bit_array_clear_all(dst);
    return;
  }

  // Cannot pass the same array as dst, src1 AND src2
  assert(dst != src1 || dst != src2);

  // Dev: multiplier == 1?

  BIT_ARRAY *read_arr, *add_arr;

  if(src1 == dst)
  {
    read_arr = src1;
    add_arr = src2;
  }
  else
  {
    read_arr = src2;
    add_arr = src1;
  }

  if(dst != src1 && dst != src2)
  {
    bit_array_clear_all(dst);
  }

  bit_index_t i;

  for(i = read_arr->num_of_bits; i > 0; i--)
  {
    if(bit_array_get(read_arr, i-1))
    {
      bit_array_clear(dst, i-1);
      bit_array_add_words(dst, i-1, add_arr);
    }
  }

  DEBUG_VALIDATE(dst);
}

// bitarr = round_down(bitarr / divisor)
// rem = bitarr % divisor
void bit_array_div_uint64(BIT_ARRAY *bitarr, uint64_t divisor, uint64_t *rem)
{
  assert(divisor != 0); // cannot divide by zero

  bit_index_t div_top_bit = 63 - leading_zeros(divisor);
  bit_index_t bitarr_top_bit;

  if(!bit_array_find_last_set_bit(bitarr, &bitarr_top_bit))
  {
    *rem = 0;
    return;
  }

  if(bitarr_top_bit < div_top_bit)
  {
    *rem = bitarr->words[0];
    bit_array_clear_all(bitarr);
    return;
  }

  // When div is shifted by offset, their top set bits are aligned
  bit_index_t offset = bitarr_top_bit - div_top_bit;

  uint64_t tmp = _get_word(bitarr, offset);
  _set_word(bitarr, offset, (word_t)0);

  // Carry if 1 if the top bit was set before left shift
  char carry = 0;

  // offset unsigned so break when offset == 0
  while(1)
  {
    if(carry)
    {
      // (carry:tmp) - divisor = (WORD_MAX+1+tmp)-divisor
      tmp = WORD_MAX - divisor + tmp + 1;
      bit_array_set(bitarr, offset);
    }
    else if(tmp >= divisor)
    {
      tmp -= divisor;
      bit_array_set(bitarr, offset);
    }
    else
    {
      bit_array_clear(bitarr, offset);
    }

    if(offset == 0)
      break;

    offset--;

    // Is the top bit set (that we're about to shift off)?
    carry = tmp & 0x8000000000000000;

    tmp <<= 1;
    tmp |= bit_array_get(bitarr, offset);
  }

  *rem = tmp;
}

// Results in:
//   quotient = dividend / divisor
//   dividend = dividend % divisor
// (dividend is used to return the remainder)
void bit_array_divide(BIT_ARRAY *dividend, BIT_ARRAY *quotient, BIT_ARRAY *divisor)
{
  assert(bit_array_cmp_uint64(divisor, 0) != 0); // Cannot divide by zero

  bit_array_clear_all(quotient);

  int cmp = bit_array_cmp(dividend, divisor);

  if(cmp == 0)
  {
    bit_array_ensure_size(quotient, 1);
    bit_array_set(quotient, 0);
    bit_array_clear_all(dividend);
    return;
  }
  else if(cmp < 0)
  {
    // dividend is < divisor, quotient is zero -- done
    return;
  }

  // now we know: dividend > divisor, quotient is zero'd,
  //              dividend != 0, divisor != 0
  bit_index_t dividend_top_bit = 0, div_top_bit = 0;

  bit_array_find_last_set_bit(dividend, &dividend_top_bit);
  bit_array_find_last_set_bit(divisor, &div_top_bit);

  // When divisor is shifted by offset, their top set bits are aligned
  bit_index_t offset = dividend_top_bit - div_top_bit;

  // offset unsigned so break when offset == 0
  for(; ; offset--)
  {
    if(bit_array_cmp_words(dividend, offset, divisor) >= 0)
    {
      bit_array_sub_words(dividend, offset, divisor);
      bit_array_ensure_size(quotient, offset+1);
      bit_array_set(quotient, offset);
    }

    if(offset == 0)
      break;
  }
}

//
// Read/Write from files
//
// file format is [8 bytes: for number of elements in array][data]
// data is written in little endian order (least sig byte first)
//

// Saves bit array to a file. Returns the number of bytes written
// number of bytes returned should be 8+(bitarr->num_of_bits+7)/8
bit_index_t bit_array_save(const BIT_ARRAY* bitarr, FILE* f)
{
  bit_index_t num_of_bytes = roundup_bits2bytes(bitarr->num_of_bits);
  bit_index_t bytes_written = 0;

  const int endian = 1;
  if(*(uint8_t*)&endian == 1)
  {
    // Little endian machine
    // Write 8 bytes to store the number of bits in the array
    bytes_written += fwrite(&bitarr->num_of_bits, 1, 8, f);

    // Write the array
    bytes_written += fwrite(bitarr->words, 1, num_of_bytes, f);
  }
  else
  {
    // Big endian machine
    uint64_t i, w, whole_words = num_of_bytes/sizeof(word_t);
    uint64_t rem_bytes = num_of_bytes - whole_words*sizeof(word_t);
    uint64_t n_bits = byteswap64(bitarr->num_of_bits);

    // Write 8 bytes to store the number of bits in the array
    bytes_written += fwrite(&n_bits, 1, 8, f);

    // Write the array
    for(i = 0; i < whole_words; i++) {
      w = byteswap64(bitarr->words[i]);
      bytes_written += fwrite(&w, 1, 8, f);
    }

    if(rem_bytes > 0) {
      w = byteswap64(bitarr->words[whole_words]);
      bytes_written += fwrite(&w, 1, rem_bytes, f);
    }
  }

  return bytes_written;
}

// Load a uint64 from little endian format.
// Works for both big and little endian architectures
static inline uint64_t le64_to_cpu(const uint8_t *x)
{
  return (((uint64_t)(x[0]))       | ((uint64_t)(x[1]) << 8)  |
          ((uint64_t)(x[2]) << 16) | ((uint64_t)(x[3]) << 24) |
          ((uint64_t)(x[4]) << 32) | ((uint64_t)(x[5]) << 40) |
          ((uint64_t)(x[6]) << 48) | ((uint64_t)(x[7]) << 56));
}

// Reads bit array from a file. bitarr is resized and filled.
// Returns 1 on success, 0 on failure
char bit_array_load(BIT_ARRAY* bitarr, FILE* f)
{
  // Read in number of bits, return 0 if we can't read in
  bit_index_t num_bits;
  if(fread(&num_bits, 1, 8, f) != 8) return 0;
  num_bits = le64_to_cpu((uint8_t*)&num_bits);

  // Resize
  bit_array_resize_critical(bitarr, num_bits);

  // Have to calculate how many bytes are needed for the file
  // (Note: this may be different from num_of_words * sizeof(word_t))
  bit_index_t num_of_bytes = roundup_bits2bytes(bitarr->num_of_bits);
  if(fread(bitarr->words, 1, num_of_bytes, f) != num_of_bytes) return 0;

  // Fix endianness
  word_addr_t i;
  for(i = 0; i < bitarr->num_of_words; i++)
    bitarr->words[i] = le64_to_cpu((uint8_t*)&bitarr->words[i]);

  // Mask top word
  _mask_top_word(bitarr);
  DEBUG_VALIDATE(bitarr);
  return 1;
}

//
// Hash function
//

/* From: lookup3.c, by Bob Jenkins, May 2006, Public Domain. */
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))

/* From: lookup3.c, by Bob Jenkins, May 2006, Public Domain. */
#define mix(a,b,c) \
{ \
  a -= c;  a ^= rot(c, 4);  c += b; \
  b -= a;  b ^= rot(a, 6);  a += c; \
  c -= b;  c ^= rot(b, 8);  b += a; \
  a -= c;  a ^= rot(c,16);  c += b; \
  b -= a;  b ^= rot(a,19);  a += c; \
  c -= b;  c ^= rot(b, 4);  b += a; \
}

/* From: lookup3.c, by Bob Jenkins, May 2006, Public Domain. */
#define final(a,b,c) \
{ \
  c ^= b; c -= rot(b,14); \
  a ^= c; a -= rot(c,11); \
  b ^= a; b -= rot(a,25); \
  c ^= b; c -= rot(b,16); \
  a ^= c; a -= rot(c,4);  \
  b ^= a; b -= rot(a,14); \
  c ^= b; c -= rot(b,24); \
}

/*
From: lookup3.c, by Bob Jenkins, May 2006, Public Domain.
--------------------------------------------------------------------
hashword2() -- same as hashword(), but take two seeds and return two
32-bit values.  pc and pb must both be nonnull, and *pc and *pb must
both be initialized with seeds.  If you pass in (*pb)==0, the output
(*pc) will be the same as the return value from hashword().
--------------------------------------------------------------------
*/
static void hashword2 (
const uint32_t *k,                   /* the key, an array of uint32_t values */
size_t          length,               /* the length of the key, in uint32_ts */
uint32_t       *pc,                      /* IN: seed OUT: primary hash value */
uint32_t       *pb)               /* IN: more seed OUT: secondary hash value */
{
  uint32_t a,b,c;

  /* Set up the internal state */
  a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
  c += *pb;

  /*------------------------------------------------- handle most of the key */
  while (length > 3)
  {
    a += k[0];
    b += k[1];
    c += k[2];
    mix(a,b,c);
    length -= 3;
    k += 3;
  }

  /*------------------------------------------- handle the last 3 uint32_t's */
  switch(length)                     /* all the case statements fall through */
  {
  case 3 : c+=k[2];
  case 2 : b+=k[1];
  case 1 : a+=k[0];
    final(a,b,c);
  case 0:     /* case 0: nothing left to add */
    break;
  }
  /*------------------------------------------------------ report the result */
  *pc=c; *pb=b;
}

// Pass seed as 0 on first call, pass previous hash value if rehashing due
// to a collision
// Using bob jenkins hash lookup3
uint64_t bit_array_hash(const BIT_ARRAY* bitarr, uint64_t seed)
{
  uint32_t seed32[2];
  memcpy(seed32, &seed, sizeof(uint32_t)*2);

  // Round up length to number 32bit words
  hashword2((uint32_t*)bitarr->words, (bitarr->num_of_bits + 31) / 32,
            &seed32[0], &seed32[1]);

  // XOR with array length. This ensures arrays with different length but same
  // contents have different hash values
  seed ^= bitarr->num_of_bits;

  return seed;
}


//
// Generally useful functions
//

// Generalised 'binary to string' function
// Adds bits to the string in order of lsb to msb
// e.g. 0b11010 (26 in decimal) would come out as "01011"
char* bit_array_word2str(const void *ptr, size_t num_of_bits, char *str)
{
  const uint8_t* d = (const uint8_t*)ptr;

  size_t i;
  for(i = 0; i < num_of_bits; i++)
  {
    uint8_t bit = (d[i/8] >> (i % 8)) & 0x1;
    str[i] = bit ? '1' : '0';
  }
  str[num_of_bits] = '\0';
  return str;
}

char* bit_array_word2str_rev(const void *ptr, size_t num_of_bits, char *str)
{
  const uint8_t* d = (const uint8_t*)ptr;

  size_t i;
  for(i = 0; i < num_of_bits; i++)
  {
    uint8_t bit = (d[i/8] >> (i % 8)) & 0x1;
    str[num_of_bits-1-i] = bit ? '1' : '0';
  }
  str[num_of_bits] = '\0';
  return str;
}