1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/*
This code is written by kerukuro and released into public domain.
*/
#ifndef DIGESTPP_PROVIDERS_SHA3_HPP
#define DIGESTPP_PROVIDERS_SHA3_HPP
#include "../../detail/functions.hpp"
#include "../../detail/absorb_data.hpp"
#include "../../detail/validate_hash_size.hpp"
#include "constants/sha3_constants.hpp"
#include <array>
namespace digestpp
{
namespace detail
{
namespace sha3_functions
{
template<int R>
static inline void transform(uint64_t* A)
{
for (int round = 24 - R; round < 24; round++)
{
uint64_t C[5], D[5];
C[0] = A[0 * 5 + 0] ^ A[1 * 5 + 0] ^ A[2 * 5 + 0] ^ A[3 * 5 + 0] ^ A[4 * 5 + 0];
C[1] = A[0 * 5 + 1] ^ A[1 * 5 + 1] ^ A[2 * 5 + 1] ^ A[3 * 5 + 1] ^ A[4 * 5 + 1];
C[2] = A[0 * 5 + 2] ^ A[1 * 5 + 2] ^ A[2 * 5 + 2] ^ A[3 * 5 + 2] ^ A[4 * 5 + 2];
C[3] = A[0 * 5 + 3] ^ A[1 * 5 + 3] ^ A[2 * 5 + 3] ^ A[3 * 5 + 3] ^ A[4 * 5 + 3];
C[4] = A[0 * 5 + 4] ^ A[1 * 5 + 4] ^ A[2 * 5 + 4] ^ A[3 * 5 + 4] ^ A[4 * 5 + 4];
D[0] = C[4] ^ rotate_left(C[1], 1);
D[1] = C[0] ^ rotate_left(C[2], 1);
D[2] = C[1] ^ rotate_left(C[3], 1);
D[3] = C[2] ^ rotate_left(C[4], 1);
D[4] = C[3] ^ rotate_left(C[0], 1);
uint64_t B0 = A[0 * 5 + 0] ^ D[0];
uint64_t B10 = rotate_left(A[0 * 5 + 1] ^ D[1], 1);
uint64_t B20 = rotate_left(A[0 * 5 + 2] ^ D[2], 62);
uint64_t B5 = rotate_left(A[0 * 5 + 3] ^ D[3], 28);
uint64_t B15 = rotate_left(A[0 * 5 + 4] ^ D[4], 27);
uint64_t B16 = rotate_left(A[1 * 5 + 0] ^ D[0], 36);
uint64_t B1 = rotate_left(A[1 * 5 + 1] ^ D[1], 44);
uint64_t B11 = rotate_left(A[1 * 5 + 2] ^ D[2], 6);
uint64_t B21 = rotate_left(A[1 * 5 + 3] ^ D[3], 55);
uint64_t B6 = rotate_left(A[1 * 5 + 4] ^ D[4], 20);
uint64_t B7 = rotate_left(A[2 * 5 + 0] ^ D[0], 3);
uint64_t B17 = rotate_left(A[2 * 5 + 1] ^ D[1], 10);
uint64_t B2 = rotate_left(A[2 * 5 + 2] ^ D[2], 43);
uint64_t B12 = rotate_left(A[2 * 5 + 3] ^ D[3], 25);
uint64_t B22 = rotate_left(A[2 * 5 + 4] ^ D[4], 39);
uint64_t B23 = rotate_left(A[3 * 5 + 0] ^ D[0], 41);
uint64_t B8 = rotate_left(A[3 * 5 + 1] ^ D[1], 45);
uint64_t B18 = rotate_left(A[3 * 5 + 2] ^ D[2], 15);
uint64_t B3 = rotate_left(A[3 * 5 + 3] ^ D[3], 21);
uint64_t B13 = rotate_left(A[3 * 5 + 4] ^ D[4], 8);
uint64_t B14 = rotate_left(A[4 * 5 + 0] ^ D[0], 18);
uint64_t B24 = rotate_left(A[4 * 5 + 1] ^ D[1], 2);
uint64_t B9 = rotate_left(A[4 * 5 + 2] ^ D[2], 61);
uint64_t B19 = rotate_left(A[4 * 5 + 3] ^ D[3], 56);
uint64_t B4 = rotate_left(A[4 * 5 + 4] ^ D[4], 14);
A[0 * 5 + 0] = B0 ^ ((~B1) & B2);
A[0 * 5 + 1] = B1 ^ ((~B2) & B3);
A[0 * 5 + 2] = B2 ^ ((~B3) & B4);
A[0 * 5 + 3] = B3 ^ ((~B4) & B0);
A[0 * 5 + 4] = B4 ^ ((~B0) & B1);
A[1 * 5 + 0] = B5 ^ ((~B6) & B7);
A[1 * 5 + 1] = B6 ^ ((~B7) & B8);
A[1 * 5 + 2] = B7 ^ ((~B8) & B9);
A[1 * 5 + 3] = B8 ^ ((~B9) & B5);
A[1 * 5 + 4] = B9 ^ ((~B5) & B6);
A[2 * 5 + 0] = B10 ^ ((~B11) & B12);
A[2 * 5 + 1] = B11 ^ ((~B12) & B13);
A[2 * 5 + 2] = B12 ^ ((~B13) & B14);
A[2 * 5 + 3] = B13 ^ ((~B14) & B10);
A[2 * 5 + 4] = B14 ^ ((~B10) & B11);
A[3 * 5 + 0] = B15 ^ ((~B16) & B17);
A[3 * 5 + 1] = B16 ^ ((~B17) & B18);
A[3 * 5 + 2] = B17 ^ ((~B18) & B19);
A[3 * 5 + 3] = B18 ^ ((~B19) & B15);
A[3 * 5 + 4] = B19 ^ ((~B15) & B16);
A[4 * 5 + 0] = B20 ^ ((~B21) & B22);
A[4 * 5 + 1] = B21 ^ ((~B22) & B23);
A[4 * 5 + 2] = B22 ^ ((~B23) & B24);
A[4 * 5 + 3] = B23 ^ ((~B24) & B20);
A[4 * 5 + 4] = B24 ^ ((~B20) & B21);
A[0] ^= sha3_constants<void>::RC[round];
}
}
template<int R>
static inline void transform(const unsigned char* data, uint64_t num_blks, uint64_t* A, size_t rate)
{
size_t r = rate / 8;
size_t r64 = rate / 64;
for (uint64_t blk = 0; blk < num_blks; blk++)
{
for (size_t i = 0; i < r64; i++)
A[i] ^= reinterpret_cast<const uint64_t*>(data+blk*r)[i];
transform<R>(A);
}
}
} // namespace sha3_functions
class sha3_provider
{
public:
static const bool is_xof = false;
sha3_provider(size_t hashsize)
: hs(hashsize)
{
validate_hash_size(hashsize, {224, 256, 384, 512});
rate = 1600U - hs * 2;
}
~sha3_provider()
{
clear();
}
inline void init()
{
zero_memory(A);
pos = 0;
}
inline void update(const unsigned char* data, size_t len)
{
detail::absorb_bytes(data, len, rate / 8, rate / 8, m.data(), pos, total,
[this](const unsigned char* data, size_t len) { sha3_functions::transform<24>(data, len, A.data(), rate); });
}
inline void final(unsigned char* hash)
{
size_t r = rate / 8;
m[pos++] = 0x06;
if (r != pos)
memset(&m[pos], 0, r - pos);
m[r - 1] |= 0x80;
sha3_functions::transform<24>(m.data(), 1, A.data(), rate);
memcpy(hash, A.data(), hash_size() / 8);
}
inline size_t hash_size() const
{
return hs;
}
inline void clear()
{
zero_memory(A);
zero_memory(m);
}
private:
std::array<uint64_t, 25> A;
std::array<unsigned char, 144> m;
size_t pos;
size_t hs;
size_t rate;
uint64_t total;
};
} // namespace detail
} // namespace digestpp
#endif // DIGESTPP_PROVIDERS_SHA3_HPP
|