File: sha3_provider.hpp

package info (click to toggle)
rapmap 0.15.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,228 kB
  • sloc: cpp: 48,810; ansic: 4,686; sh: 215; python: 82; makefile: 15
file content (187 lines) | stat: -rw-r--r-- 5,088 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
This code is written by kerukuro and released into public domain.
*/

#ifndef DIGESTPP_PROVIDERS_SHA3_HPP
#define DIGESTPP_PROVIDERS_SHA3_HPP

#include "../../detail/functions.hpp"
#include "../../detail/absorb_data.hpp"
#include "../../detail/validate_hash_size.hpp"
#include "constants/sha3_constants.hpp"
#include <array>

namespace digestpp
{

namespace detail
{

namespace sha3_functions
{
	template<int R>
	static inline void transform(uint64_t* A)
	{
		for (int round = 24 - R; round < 24; round++)
		{
			uint64_t C[5], D[5];
			C[0] = A[0 * 5 + 0] ^ A[1 * 5 + 0] ^ A[2 * 5 + 0] ^ A[3 * 5 + 0] ^ A[4 * 5 + 0];
			C[1] = A[0 * 5 + 1] ^ A[1 * 5 + 1] ^ A[2 * 5 + 1] ^ A[3 * 5 + 1] ^ A[4 * 5 + 1];
			C[2] = A[0 * 5 + 2] ^ A[1 * 5 + 2] ^ A[2 * 5 + 2] ^ A[3 * 5 + 2] ^ A[4 * 5 + 2];
			C[3] = A[0 * 5 + 3] ^ A[1 * 5 + 3] ^ A[2 * 5 + 3] ^ A[3 * 5 + 3] ^ A[4 * 5 + 3];
			C[4] = A[0 * 5 + 4] ^ A[1 * 5 + 4] ^ A[2 * 5 + 4] ^ A[3 * 5 + 4] ^ A[4 * 5 + 4];

			D[0] = C[4] ^ rotate_left(C[1], 1);
			D[1] = C[0] ^ rotate_left(C[2], 1);
			D[2] = C[1] ^ rotate_left(C[3], 1);
			D[3] = C[2] ^ rotate_left(C[4], 1);
			D[4] = C[3] ^ rotate_left(C[0], 1);

			uint64_t B0 = A[0 * 5 + 0] ^ D[0];
			uint64_t B10 = rotate_left(A[0 * 5 + 1] ^ D[1], 1);
			uint64_t B20 = rotate_left(A[0 * 5 + 2] ^ D[2], 62);
			uint64_t B5 = rotate_left(A[0 * 5 + 3] ^ D[3], 28);
			uint64_t B15 = rotate_left(A[0 * 5 + 4] ^ D[4], 27);

			uint64_t B16 = rotate_left(A[1 * 5 + 0] ^ D[0], 36);
			uint64_t B1 = rotate_left(A[1 * 5 + 1] ^ D[1], 44);
			uint64_t B11 = rotate_left(A[1 * 5 + 2] ^ D[2], 6);
			uint64_t B21 = rotate_left(A[1 * 5 + 3] ^ D[3], 55);
			uint64_t B6 = rotate_left(A[1 * 5 + 4] ^ D[4], 20);

			uint64_t B7 = rotate_left(A[2 * 5 + 0] ^ D[0], 3);
			uint64_t B17 = rotate_left(A[2 * 5 + 1] ^ D[1], 10);
			uint64_t B2 = rotate_left(A[2 * 5 + 2] ^ D[2], 43);
			uint64_t B12 = rotate_left(A[2 * 5 + 3] ^ D[3], 25);
			uint64_t B22 = rotate_left(A[2 * 5 + 4] ^ D[4], 39);

			uint64_t B23 = rotate_left(A[3 * 5 + 0] ^ D[0], 41);
			uint64_t B8 = rotate_left(A[3 * 5 + 1] ^ D[1], 45);
			uint64_t B18 = rotate_left(A[3 * 5 + 2] ^ D[2], 15);
			uint64_t B3 = rotate_left(A[3 * 5 + 3] ^ D[3], 21);
			uint64_t B13 = rotate_left(A[3 * 5 + 4] ^ D[4], 8);

			uint64_t B14 = rotate_left(A[4 * 5 + 0] ^ D[0], 18);
			uint64_t B24 = rotate_left(A[4 * 5 + 1] ^ D[1], 2);
			uint64_t B9 = rotate_left(A[4 * 5 + 2] ^ D[2], 61);
			uint64_t B19 = rotate_left(A[4 * 5 + 3] ^ D[3], 56);
			uint64_t B4 = rotate_left(A[4 * 5 + 4] ^ D[4], 14);

			A[0 * 5 + 0] = B0 ^ ((~B1) & B2);
			A[0 * 5 + 1] = B1 ^ ((~B2) & B3);
			A[0 * 5 + 2] = B2 ^ ((~B3) & B4);
			A[0 * 5 + 3] = B3 ^ ((~B4) & B0);
			A[0 * 5 + 4] = B4 ^ ((~B0) & B1);

			A[1 * 5 + 0] = B5 ^ ((~B6) & B7);
			A[1 * 5 + 1] = B6 ^ ((~B7) & B8);
			A[1 * 5 + 2] = B7 ^ ((~B8) & B9);
			A[1 * 5 + 3] = B8 ^ ((~B9) & B5);
			A[1 * 5 + 4] = B9 ^ ((~B5) & B6);

			A[2 * 5 + 0] = B10 ^ ((~B11) & B12);
			A[2 * 5 + 1] = B11 ^ ((~B12) & B13);
			A[2 * 5 + 2] = B12 ^ ((~B13) & B14);
			A[2 * 5 + 3] = B13 ^ ((~B14) & B10);
			A[2 * 5 + 4] = B14 ^ ((~B10) & B11);

			A[3 * 5 + 0] = B15 ^ ((~B16) & B17);
			A[3 * 5 + 1] = B16 ^ ((~B17) & B18);
			A[3 * 5 + 2] = B17 ^ ((~B18) & B19);
			A[3 * 5 + 3] = B18 ^ ((~B19) & B15);
			A[3 * 5 + 4] = B19 ^ ((~B15) & B16);

			A[4 * 5 + 0] = B20 ^ ((~B21) & B22);
			A[4 * 5 + 1] = B21 ^ ((~B22) & B23);
			A[4 * 5 + 2] = B22 ^ ((~B23) & B24);
			A[4 * 5 + 3] = B23 ^ ((~B24) & B20);
			A[4 * 5 + 4] = B24 ^ ((~B20) & B21);

			A[0] ^= sha3_constants<void>::RC[round];
		}
	}

	template<int R>
	static inline void transform(const unsigned char* data, uint64_t num_blks, uint64_t* A, size_t rate)
	{
		size_t r = rate / 8;
		size_t r64 = rate / 64;
		for (uint64_t blk = 0; blk < num_blks; blk++)
		{
			for (size_t i = 0; i < r64; i++)
				A[i] ^= reinterpret_cast<const uint64_t*>(data+blk*r)[i];

			transform<R>(A);
		}
	}

} // namespace sha3_functions


class sha3_provider
{
public:
	static const bool is_xof = false;

	sha3_provider(size_t hashsize)
		: hs(hashsize)
	{
		validate_hash_size(hashsize, {224, 256, 384, 512});
		rate = 1600U - hs * 2;
	}

	~sha3_provider()
	{
		clear();
	}

	inline void init()
	{
		zero_memory(A);
		pos = 0;
	}

	inline void update(const unsigned char* data, size_t len)
	{
		detail::absorb_bytes(data, len, rate / 8, rate / 8, m.data(), pos, total, 
			[this](const unsigned char* data, size_t len) { sha3_functions::transform<24>(data, len, A.data(), rate); });
	}

	inline void final(unsigned char* hash)
	{
		size_t r = rate / 8;
		m[pos++] = 0x06;
		if (r != pos)
			memset(&m[pos], 0, r - pos);
		m[r - 1] |= 0x80;
		sha3_functions::transform<24>(m.data(), 1, A.data(), rate);
		memcpy(hash, A.data(), hash_size() / 8);
	}

	inline size_t hash_size() const 
	{ 
		return hs; 
	}

	inline void clear()
	{
		zero_memory(A);
		zero_memory(m);
	}

private:
	std::array<uint64_t, 25> A;
	std::array<unsigned char, 144> m;
	size_t pos;
	size_t hs;
	size_t rate;
	uint64_t total;
};

} // namespace detail

} // namespace digestpp

#endif // DIGESTPP_PROVIDERS_SHA3_HPP