1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
|
#ifndef spp_dlalloc__h_
#define spp_dlalloc__h_
/* This is a C++ allocator created from Doug Lea's dlmalloc
(Version 2.8.6 Wed Aug 29 06:57:58 2012)
see: http://g.oswego.edu/dl/html/malloc.html
*/
#include "spp_utils.h"
#include "spp_smartptr.h"
#ifndef SPP_FORCEINLINE
#if defined(__GNUC__)
#define SPP_FORCEINLINE __inline __attribute__ ((always_inline))
#elif defined(_MSC_VER)
#define SPP_FORCEINLINE __forceinline
#else
#define SPP_FORCEINLINE inline
#endif
#endif
#ifndef SPP_IMPL
#define SPP_IMPL SPP_FORCEINLINE
#endif
#ifndef SPP_API
#define SPP_API static
#endif
namespace spp
{
// ---------------------- allocator internal API -----------------------
typedef void* mspace;
/*
create_mspace creates and returns a new independent space with the
given initial capacity, or, if 0, the default granularity size. It
returns null if there is no system memory available to create the
space. If argument locked is non-zero, the space uses a separate
lock to control access. The capacity of the space will grow
dynamically as needed to service mspace_malloc requests. You can
control the sizes of incremental increases of this space by
compiling with a different SPP_DEFAULT_GRANULARITY or dynamically
setting with mallopt(M_GRANULARITY, value).
*/
SPP_API mspace create_mspace(size_t capacity, int locked);
SPP_API size_t destroy_mspace(mspace msp);
SPP_API void* mspace_malloc(mspace msp, size_t bytes);
SPP_API void mspace_free(mspace msp, void* mem);
SPP_API void* mspace_realloc(mspace msp, void* mem, size_t newsize);
#if 0
SPP_API mspace create_mspace_with_base(void* base, size_t capacity, int locked);
SPP_API int mspace_track_large_chunks(mspace msp, int enable);
SPP_API void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
SPP_API void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
SPP_API void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[]);
SPP_API void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[]);
SPP_API size_t mspace_footprint(mspace msp);
SPP_API size_t mspace_max_footprint(mspace msp);
SPP_API size_t mspace_usable_size(const void* mem);
SPP_API int mspace_trim(mspace msp, size_t pad);
SPP_API int mspace_mallopt(int, int);
#endif
// -----------------------------------------------------------
// -----------------------------------------------------------
struct MSpace : public spp_rc
{
MSpace() :
_sp(create_mspace(0, 0))
{}
~MSpace()
{
destroy_mspace(_sp);
}
mspace _sp;
};
// -----------------------------------------------------------
// -----------------------------------------------------------
template<class T>
class spp_allocator
{
public:
typedef T value_type;
typedef T* pointer;
typedef ptrdiff_t difference_type;
typedef const T* const_pointer;
typedef size_t size_type;
MSpace *getSpace() const { return _space.get(); }
spp_allocator() : _space(new MSpace) {}
template<class U>
spp_allocator(const spp_allocator<U> &o) : _space(o.getSpace()) {}
template<class U>
spp_allocator& operator=(const spp_allocator<U> &o)
{
if (&o != this)
_space = o.getSpace();
return *this;
}
void swap(spp_allocator &o)
{
std::swap(_space, o._space);
}
pointer allocate(size_t n, const_pointer /* unused */ = 0)
{
pointer res = static_cast<pointer>(mspace_malloc(_space->_sp, n * sizeof(T)));
if (!res)
throw std::bad_alloc();
return res;
}
void deallocate(pointer p, size_t /* unused */)
{
mspace_free(_space->_sp, p);
}
pointer reallocate(pointer p, size_t new_size)
{
pointer res = static_cast<pointer>(mspace_realloc(_space->_sp, p, new_size * sizeof(T)));
if (!res)
throw std::bad_alloc();
return res;
}
pointer reallocate(pointer p, size_type /* old_size */, size_t new_size)
{
return reallocate(p, new_size);
}
size_type max_size() const
{
return static_cast<size_type>(-1) / sizeof(value_type);
}
void construct(pointer p, const value_type& val)
{
new (p) value_type(val);
}
void destroy(pointer p) { p->~value_type(); }
template<class U>
struct rebind
{
// rebind to libc_allocator because we want to use malloc_inspect_all in destructive_iterator
// to reduce peak memory usage (we don't want <group_items> mixed with value_type when
// we traverse the allocated memory).
typedef spp::spp_allocator<U> other;
};
mspace space() const { return _space->_sp; }
// check if we can clear the whole allocator memory at once => works only if the allocator
// is not be shared. If can_clear() returns true, we expect that the next allocator call
// will be clear() - not allocate() or deallocate()
bool can_clear()
{
assert(!_space_to_clear);
_space_to_clear.reset();
_space_to_clear.swap(_space);
if (_space_to_clear->count() == 1)
return true;
else
_space_to_clear.swap(_space);
return false;
}
void clear()
{
assert(!_space && !!_space_to_clear);
_space_to_clear.reset();
_space = new MSpace;
}
private:
spp_sptr<MSpace> _space;
spp_sptr<MSpace> _space_to_clear;
};
}
// allocators are "equal" whenever memory allocated with one can be deallocated with the other
template<class T>
inline bool operator==(const spp_::spp_allocator<T> &a, const spp_::spp_allocator<T> &b)
{
return a.space() == b.space();
}
template<class T>
inline bool operator!=(const spp_::spp_allocator<T> &a, const spp_::spp_allocator<T> &b)
{
return !(a == b);
}
namespace std
{
template <class T>
inline void swap(spp_::spp_allocator<T> &a, spp_::spp_allocator<T> &b)
{
a.swap(b);
}
}
#if !defined(SPP_EXCLUDE_IMPLEMENTATION)
#ifndef WIN32
#ifdef _WIN32
#define WIN32 1
#endif
#ifdef _WIN32_WCE
#define SPP_LACKS_FCNTL_H
#define WIN32 1
#endif
#endif
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <tchar.h>
#define SPP_HAVE_MMAP 1
#define SPP_LACKS_UNISTD_H
#define SPP_LACKS_SYS_PARAM_H
#define SPP_LACKS_SYS_MMAN_H
#define SPP_LACKS_STRING_H
#define SPP_LACKS_STRINGS_H
#define SPP_LACKS_SYS_TYPES_H
#define SPP_LACKS_ERRNO_H
#define SPP_LACKS_SCHED_H
#ifndef SPP_MALLOC_FAILURE_ACTION
#define SPP_MALLOC_FAILURE_ACTION
#endif
#ifndef SPP_MMAP_CLEARS
#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
#define SPP_MMAP_CLEARS 0
#else
#define SPP_MMAP_CLEARS 1
#endif
#endif
#endif
#if defined(DARWIN) || defined(_DARWIN)
#define SPP_HAVE_MMAP 1
/* OSX allocators provide 16 byte alignment */
#ifndef SPP_MALLOC_ALIGNMENT
#define SPP_MALLOC_ALIGNMENT ((size_t)16U)
#endif
#endif
#ifndef SPP_LACKS_SYS_TYPES_H
#include <sys/types.h> /* For size_t */
#endif
#ifndef SPP_MALLOC_ALIGNMENT
#define SPP_MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
#endif
/* ------------------- size_t and alignment properties -------------------- */
static const size_t spp_max_size_t = ~(size_t)0;
static const size_t spp_size_t_bitsize = sizeof(size_t) << 3;
static const size_t spp_half_max_size_t = spp_max_size_t / 2U;
static const size_t spp_chunk_align_mask = SPP_MALLOC_ALIGNMENT - 1;
#if defined(SPP_DEBUG) || !defined(NDEBUG)
static bool spp_is_aligned(void *p) { return ((size_t)p & spp_chunk_align_mask) == 0; }
#endif
// the number of bytes to offset an address to align it
static size_t align_offset(void *p)
{
return (((size_t)p & spp_chunk_align_mask) == 0) ? 0 :
((SPP_MALLOC_ALIGNMENT - ((size_t)p & spp_chunk_align_mask)) & spp_chunk_align_mask);
}
#ifndef SPP_FOOTERS
#define SPP_FOOTERS 0
#endif
#ifndef SPP_ABORT
#define SPP_ABORT abort()
#endif
#ifndef SPP_ABORT_ON_ASSERT_FAILURE
#define SPP_ABORT_ON_ASSERT_FAILURE 1
#endif
#ifndef SPP_PROCEED_ON_ERROR
#define SPP_PROCEED_ON_ERROR 0
#endif
#ifndef SPP_INSECURE
#define SPP_INSECURE 0
#endif
#ifndef SPP_MALLOC_INSPECT_ALL
#define SPP_MALLOC_INSPECT_ALL 0
#endif
#ifndef SPP_HAVE_MMAP
#define SPP_HAVE_MMAP 1
#endif
#ifndef SPP_MMAP_CLEARS
#define SPP_MMAP_CLEARS 1
#endif
#ifndef SPP_HAVE_MREMAP
#ifdef linux
#define SPP_HAVE_MREMAP 1
#ifndef _GNU_SOURCE
#define _GNU_SOURCE /* Turns on mremap() definition */
#endif
#else
#define SPP_HAVE_MREMAP 0
#endif
#endif
#ifndef SPP_MALLOC_FAILURE_ACTION
// ENOMEM = 12
#define SPP_MALLOC_FAILURE_ACTION errno = 12
#endif
#ifndef SPP_DEFAULT_GRANULARITY
#if defined(WIN32)
#define SPP_DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
#else
#define SPP_DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
#endif
#endif
#ifndef SPP_DEFAULT_TRIM_THRESHOLD
#define SPP_DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
#endif
#ifndef SPP_DEFAULT_MMAP_THRESHOLD
#if SPP_HAVE_MMAP
#define SPP_DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
#else
#define SPP_DEFAULT_MMAP_THRESHOLD spp_max_size_t
#endif
#endif
#ifndef SPP_MAX_RELEASE_CHECK_RATE
#if SPP_HAVE_MMAP
#define SPP_MAX_RELEASE_CHECK_RATE 4095
#else
#define SPP_MAX_RELEASE_CHECK_RATE spp_max_size_t
#endif
#endif
#ifndef SPP_USE_BUILTIN_FFS
#define SPP_USE_BUILTIN_FFS 0
#endif
#ifndef SPP_USE_DEV_RANDOM
#define SPP_USE_DEV_RANDOM 0
#endif
#ifndef SPP_NO_SEGMENT_TRAVERSAL
#define SPP_NO_SEGMENT_TRAVERSAL 0
#endif
/*------------------------------ internal #includes ---------------------- */
#ifdef _MSC_VER
#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
#endif
#ifndef SPP_LACKS_ERRNO_H
#include <errno.h> /* for SPP_MALLOC_FAILURE_ACTION */
#endif
#ifdef SPP_DEBUG
#if SPP_ABORT_ON_ASSERT_FAILURE
#undef assert
#define assert(x) if(!(x)) SPP_ABORT
#else
#include <assert.h>
#endif
#else
#ifndef assert
#define assert(x)
#endif
#define SPP_DEBUG 0
#endif
#if !defined(WIN32) && !defined(SPP_LACKS_TIME_H)
#include <time.h> /* for magic initialization */
#endif
#ifndef SPP_LACKS_STDLIB_H
#include <stdlib.h> /* for abort() */
#endif
#ifndef SPP_LACKS_STRING_H
#include <string.h> /* for memset etc */
#endif
#if SPP_USE_BUILTIN_FFS
#ifndef SPP_LACKS_STRINGS_H
#include <strings.h> /* for ffs */
#endif
#endif
#if SPP_HAVE_MMAP
#ifndef SPP_LACKS_SYS_MMAN_H
/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
#if (defined(linux) && !defined(__USE_GNU))
#define __USE_GNU 1
#include <sys/mman.h> /* for mmap */
#undef __USE_GNU
#else
#include <sys/mman.h> /* for mmap */
#endif
#endif
#ifndef SPP_LACKS_FCNTL_H
#include <fcntl.h>
#endif
#endif
#ifndef SPP_LACKS_UNISTD_H
#include <unistd.h> /* for sbrk, sysconf */
#else
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
extern void* sbrk(ptrdiff_t);
#endif
#endif
#include <new>
namespace spp
{
/* Declarations for bit scanning on win32 */
#if defined(_MSC_VER) && _MSC_VER>=1300
#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
}
#define BitScanForward _BitScanForward
#define BitScanReverse _BitScanReverse
#pragma intrinsic(_BitScanForward)
#pragma intrinsic(_BitScanReverse)
#endif /* BitScanForward */
#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
#ifndef WIN32
#ifndef malloc_getpagesize
#ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
#ifndef _SC_PAGE_SIZE
#define _SC_PAGE_SIZE _SC_PAGESIZE
#endif
#endif
#ifdef _SC_PAGE_SIZE
#define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
#else
#if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
extern size_t getpagesize();
#define malloc_getpagesize getpagesize()
#else
#ifdef WIN32 /* use supplied emulation of getpagesize */
#define malloc_getpagesize getpagesize()
#else
#ifndef SPP_LACKS_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef EXEC_PAGESIZE
#define malloc_getpagesize EXEC_PAGESIZE
#else
#ifdef NBPG
#ifndef CLSIZE
#define malloc_getpagesize NBPG
#else
#define malloc_getpagesize (NBPG * CLSIZE)
#endif
#else
#ifdef NBPC
#define malloc_getpagesize NBPC
#else
#ifdef PAGESIZE
#define malloc_getpagesize PAGESIZE
#else /* just guess */
#define malloc_getpagesize ((size_t)4096U)
#endif
#endif
#endif
#endif
#endif
#endif
#endif
#endif
#endif
/* -------------------------- MMAP preliminaries ------------------------- */
/*
If SPP_HAVE_MORECORE or SPP_HAVE_MMAP are false, we just define calls and
checks to fail so compiler optimizer can delete code rather than
using so many "#if"s.
*/
/* MMAP must return mfail on failure */
static void *mfail = (void*)spp_max_size_t;
static char *cmfail = (char*)mfail;
#if SPP_HAVE_MMAP
#ifndef WIN32
#define SPP_MUNMAP_DEFAULT(a, s) munmap((a), (s))
#define SPP_MMAP_PROT (PROT_READ | PROT_WRITE)
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif
#ifdef MAP_ANONYMOUS
#define SPP_MMAP_FLAGS (MAP_PRIVATE | MAP_ANONYMOUS)
#define SPP_MMAP_DEFAULT(s) mmap(0, (s), SPP_MMAP_PROT, SPP_MMAP_FLAGS, -1, 0)
#else /* MAP_ANONYMOUS */
/*
Nearly all versions of mmap support MAP_ANONYMOUS, so the following
is unlikely to be needed, but is supplied just in case.
*/
#define SPP_MMAP_FLAGS (MAP_PRIVATE)
static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
void SPP_MMAP_DEFAULT(size_t s)
{
if (dev_zero_fd < 0)
dev_zero_fd = open("/dev/zero", O_RDWR);
mmap(0, s, SPP_MMAP_PROT, SPP_MMAP_FLAGS, dev_zero_fd, 0);
}
#endif /* MAP_ANONYMOUS */
#define SPP_DIRECT_MMAP_DEFAULT(s) SPP_MMAP_DEFAULT(s)
#else /* WIN32 */
/* Win32 MMAP via VirtualAlloc */
static SPP_FORCEINLINE void* win32mmap(size_t size)
{
void* ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
return (ptr != 0) ? ptr : mfail;
}
/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
static SPP_FORCEINLINE void* win32direct_mmap(size_t size)
{
void* ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN,
PAGE_READWRITE);
return (ptr != 0) ? ptr : mfail;
}
/* This function supports releasing coalesed segments */
static SPP_FORCEINLINE int win32munmap(void* ptr, size_t size)
{
MEMORY_BASIC_INFORMATION minfo;
char* cptr = (char*)ptr;
while (size)
{
if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
return -1;
if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
minfo.State != MEM_COMMIT || minfo.RegionSize > size)
return -1;
if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
return -1;
cptr += minfo.RegionSize;
size -= minfo.RegionSize;
}
return 0;
}
#define SPP_MMAP_DEFAULT(s) win32mmap(s)
#define SPP_MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
#define SPP_DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
#endif /* WIN32 */
#endif /* SPP_HAVE_MMAP */
#if SPP_HAVE_MREMAP
#ifndef WIN32
#define SPP_MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
#endif
#endif
/**
* Define SPP_CALL_MMAP/SPP_CALL_MUNMAP/SPP_CALL_DIRECT_MMAP
*/
#if SPP_HAVE_MMAP
#define USE_MMAP_BIT 1
#ifdef SPP_MMAP
#define SPP_CALL_MMAP(s) SPP_MMAP(s)
#else
#define SPP_CALL_MMAP(s) SPP_MMAP_DEFAULT(s)
#endif
#ifdef SPP_MUNMAP
#define SPP_CALL_MUNMAP(a, s) SPP_MUNMAP((a), (s))
#else
#define SPP_CALL_MUNMAP(a, s) SPP_MUNMAP_DEFAULT((a), (s))
#endif
#ifdef SPP_DIRECT_MMAP
#define SPP_CALL_DIRECT_MMAP(s) SPP_DIRECT_MMAP(s)
#else
#define SPP_CALL_DIRECT_MMAP(s) SPP_DIRECT_MMAP_DEFAULT(s)
#endif
#else /* SPP_HAVE_MMAP */
#define USE_MMAP_BIT 0
#define SPP_MMAP(s) mfail
#define SPP_MUNMAP(a, s) (-1)
#define SPP_DIRECT_MMAP(s) mfail
#define SPP_CALL_DIRECT_MMAP(s) SPP_DIRECT_MMAP(s)
#define SPP_CALL_MMAP(s) SPP_MMAP(s)
#define SPP_CALL_MUNMAP(a, s) SPP_MUNMAP((a), (s))
#endif
/**
* Define SPP_CALL_MREMAP
*/
#if SPP_HAVE_MMAP && SPP_HAVE_MREMAP
#ifdef MREMAP
#define SPP_CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
#else
#define SPP_CALL_MREMAP(addr, osz, nsz, mv) SPP_MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
#endif
#else
#define SPP_CALL_MREMAP(addr, osz, nsz, mv) mfail
#endif
/* mstate bit set if continguous morecore disabled or failed */
static const unsigned USE_NONCONTIGUOUS_BIT = 4U;
/* segment bit set in create_mspace_with_base */
static const unsigned EXTERN_BIT = 8U;
/* --------------------------- flags ------------------------ */
static const unsigned PINUSE_BIT = 1;
static const unsigned CINUSE_BIT = 2;
static const unsigned FLAG4_BIT = 4;
static const unsigned INUSE_BITS = (PINUSE_BIT | CINUSE_BIT);
static const unsigned FLAG_BITS = (PINUSE_BIT | CINUSE_BIT | FLAG4_BIT);
/* ------------------- Chunks sizes and alignments ----------------------- */
#if SPP_FOOTERS
static const unsigned CHUNK_OVERHEAD = 2 * sizeof(size_t);
#else
static const unsigned CHUNK_OVERHEAD = sizeof(size_t);
#endif
/* MMapped chunks need a second word of overhead ... */
static const unsigned SPP_MMAP_CHUNK_OVERHEAD = 2 * sizeof(size_t);
/* ... and additional padding for fake next-chunk at foot */
static const unsigned SPP_MMAP_FOOT_PAD = 4 * sizeof(size_t);
// ===============================================================================
struct malloc_chunk_header
{
void set_size_and_pinuse_of_free_chunk(size_t s)
{
_head = s | PINUSE_BIT;
set_foot(s);
}
void set_foot(size_t s)
{
((malloc_chunk_header *)((char*)this + s))->_prev_foot = s;
}
// extraction of fields from head words
bool cinuse() const { return !!(_head & CINUSE_BIT); }
bool pinuse() const { return !!(_head & PINUSE_BIT); }
bool flag4inuse() const { return !!(_head & FLAG4_BIT); }
bool is_inuse() const { return (_head & INUSE_BITS) != PINUSE_BIT; }
bool is_mmapped() const { return (_head & INUSE_BITS) == 0; }
size_t chunksize() const { return _head & ~(FLAG_BITS); }
void clear_pinuse() { _head &= ~PINUSE_BIT; }
void set_flag4() { _head |= FLAG4_BIT; }
void clear_flag4() { _head &= ~FLAG4_BIT; }
// Treat space at ptr +/- offset as a chunk
malloc_chunk_header * chunk_plus_offset(size_t s)
{
return (malloc_chunk_header *)((char*)this + s);
}
malloc_chunk_header * chunk_minus_offset(size_t s)
{
return (malloc_chunk_header *)((char*)this - s);
}
// Ptr to next or previous physical malloc_chunk.
malloc_chunk_header * next_chunk()
{
return (malloc_chunk_header *)((char*)this + (_head & ~FLAG_BITS));
}
malloc_chunk_header * prev_chunk()
{
return (malloc_chunk_header *)((char*)this - (_prev_foot));
}
// extract next chunk's pinuse bit
size_t next_pinuse() { return next_chunk()->_head & PINUSE_BIT; }
size_t _prev_foot; // Size of previous chunk (if free).
size_t _head; // Size and inuse bits.
};
// ===============================================================================
struct malloc_chunk : public malloc_chunk_header
{
// Set size, pinuse bit, foot, and clear next pinuse
void set_free_with_pinuse(size_t s, malloc_chunk* n)
{
n->clear_pinuse();
set_size_and_pinuse_of_free_chunk(s);
}
// Get the internal overhead associated with chunk p
size_t overhead_for() { return is_mmapped() ? SPP_MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD; }
// Return true if malloced space is not necessarily cleared
bool calloc_must_clear()
{
#if SPP_MMAP_CLEARS
return !is_mmapped();
#else
return true;
#endif
}
struct malloc_chunk* _fd; // double links -- used only if free.
struct malloc_chunk* _bk;
};
static const unsigned MCHUNK_SIZE = sizeof(malloc_chunk);
/* The smallest size we can malloc is an aligned minimal chunk */
static const unsigned MIN_CHUNK_SIZE = (MCHUNK_SIZE + spp_chunk_align_mask) & ~spp_chunk_align_mask;
typedef malloc_chunk mchunk;
typedef malloc_chunk* mchunkptr;
typedef malloc_chunk_header *hchunkptr;
typedef malloc_chunk* sbinptr; // The type of bins of chunks
typedef unsigned int bindex_t; // Described below
typedef unsigned int binmap_t; // Described below
typedef unsigned int flag_t; // The type of various bit flag sets
// conversion from malloc headers to user pointers, and back
static SPP_FORCEINLINE void *chunk2mem(const void *p) { return (void *)((char *)p + 2 * sizeof(size_t)); }
static SPP_FORCEINLINE mchunkptr mem2chunk(const void *mem) { return (mchunkptr)((char *)mem - 2 * sizeof(size_t)); }
// chunk associated with aligned address A
static SPP_FORCEINLINE mchunkptr align_as_chunk(char *A) { return (mchunkptr)(A + align_offset(chunk2mem(A))); }
// Bounds on request (not chunk) sizes.
static const unsigned MAX_REQUEST = (-MIN_CHUNK_SIZE) << 2;
static const unsigned MIN_REQUEST = MIN_CHUNK_SIZE - CHUNK_OVERHEAD - 1;
// pad request bytes into a usable size
static SPP_FORCEINLINE size_t pad_request(size_t req)
{
return (req + CHUNK_OVERHEAD + spp_chunk_align_mask) & ~spp_chunk_align_mask;
}
// pad request, checking for minimum (but not maximum)
static SPP_FORCEINLINE size_t request2size(size_t req)
{
return req < MIN_REQUEST ? MIN_CHUNK_SIZE : pad_request(req);
}
/* ------------------ Operations on head and foot fields ----------------- */
/*
The head field of a chunk is or'ed with PINUSE_BIT when previous
adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
use, unless mmapped, in which case both bits are cleared.
FLAG4_BIT is not used by this malloc, but might be useful in extensions.
*/
// Head value for fenceposts
static const unsigned FENCEPOST_HEAD = INUSE_BITS | sizeof(size_t);
/* ---------------------- Overlaid data structures ----------------------- */
/*
When chunks are not in use, they are treated as nodes of either
lists or trees.
"Small" chunks are stored in circular doubly-linked lists, and look
like this:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space (may be 0 bytes long) .
. .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Larger chunks are kept in a form of bitwise digital trees (aka
tries) keyed on chunksizes. Because malloc_tree_chunks are only for
free chunks greater than 256 bytes, their size doesn't impose any
constraints on user chunk sizes. Each node looks like:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to left child (child[0]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to right child (child[1]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to parent |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| bin index of this chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Each tree holding treenodes is a tree of unique chunk sizes. Chunks
of the same size are arranged in a circularly-linked list, with only
the oldest chunk (the next to be used, in our FIFO ordering)
actually in the tree. (Tree members are distinguished by a non-null
parent pointer.) If a chunk with the same size an an existing node
is inserted, it is linked off the existing node using pointers that
work in the same way as fd/bk pointers of small chunks.
Each tree contains a power of 2 sized range of chunk sizes (the
smallest is 0x100 <= x < 0x180), which is is divided in half at each
tree level, with the chunks in the smaller half of the range (0x100
<= x < 0x140 for the top nose) in the left subtree and the larger
half (0x140 <= x < 0x180) in the right subtree. This is, of course,
done by inspecting individual bits.
Using these rules, each node's left subtree contains all smaller
sizes than its right subtree. However, the node at the root of each
subtree has no particular ordering relationship to either. (The
dividing line between the subtree sizes is based on trie relation.)
If we remove the last chunk of a given size from the interior of the
tree, we need to replace it with a leaf node. The tree ordering
rules permit a node to be replaced by any leaf below it.
The smallest chunk in a tree (a common operation in a best-fit
allocator) can be found by walking a path to the leftmost leaf in
the tree. Unlike a usual binary tree, where we follow left child
pointers until we reach a null, here we follow the right child
pointer any time the left one is null, until we reach a leaf with
both child pointers null. The smallest chunk in the tree will be
somewhere along that path.
The worst case number of steps to add, find, or remove a node is
bounded by the number of bits differentiating chunks within
bins. Under current bin calculations, this ranges from 6 up to 21
(for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
is of course much better.
*/
// ===============================================================================
struct malloc_tree_chunk : public malloc_chunk_header
{
malloc_tree_chunk *leftmost_child()
{
return _child[0] ? _child[0] : _child[1];
}
malloc_tree_chunk* _fd;
malloc_tree_chunk* _bk;
malloc_tree_chunk* _child[2];
malloc_tree_chunk* _parent;
bindex_t _index;
};
typedef malloc_tree_chunk tchunk;
typedef malloc_tree_chunk* tchunkptr;
typedef malloc_tree_chunk* tbinptr; // The type of bins of trees
/* ----------------------------- Segments -------------------------------- */
/*
Each malloc space may include non-contiguous segments, held in a
list headed by an embedded malloc_segment record representing the
top-most space. Segments also include flags holding properties of
the space. Large chunks that are directly allocated by mmap are not
included in this list. They are instead independently created and
destroyed without otherwise keeping track of them.
Segment management mainly comes into play for spaces allocated by
MMAP. Any call to MMAP might or might not return memory that is
adjacent to an existing segment. MORECORE normally contiguously
extends the current space, so this space is almost always adjacent,
which is simpler and faster to deal with. (This is why MORECORE is
used preferentially to MMAP when both are available -- see
sys_alloc.) When allocating using MMAP, we don't use any of the
hinting mechanisms (inconsistently) supported in various
implementations of unix mmap, or distinguish reserving from
committing memory. Instead, we just ask for space, and exploit
contiguity when we get it. It is probably possible to do
better than this on some systems, but no general scheme seems
to be significantly better.
Management entails a simpler variant of the consolidation scheme
used for chunks to reduce fragmentation -- new adjacent memory is
normally prepended or appended to an existing segment. However,
there are limitations compared to chunk consolidation that mostly
reflect the fact that segment processing is relatively infrequent
(occurring only when getting memory from system) and that we
don't expect to have huge numbers of segments:
* Segments are not indexed, so traversal requires linear scans. (It
would be possible to index these, but is not worth the extra
overhead and complexity for most programs on most platforms.)
* New segments are only appended to old ones when holding top-most
memory; if they cannot be prepended to others, they are held in
different segments.
Except for the top-most segment of an mstate, each segment record
is kept at the tail of its segment. Segments are added by pushing
segment records onto the list headed by &mstate.seg for the
containing mstate.
Segment flags control allocation/merge/deallocation policies:
* If EXTERN_BIT set, then we did not allocate this segment,
and so should not try to deallocate or merge with others.
(This currently holds only for the initial segment passed
into create_mspace_with_base.)
* If USE_MMAP_BIT set, the segment may be merged with
other surrounding mmapped segments and trimmed/de-allocated
using munmap.
* If neither bit is set, then the segment was obtained using
MORECORE so can be merged with surrounding MORECORE'd segments
and deallocated/trimmed using MORECORE with negative arguments.
*/
// ===============================================================================
struct malloc_segment
{
bool is_mmapped_segment() { return !!(_sflags & USE_MMAP_BIT); }
bool is_extern_segment() { return !!(_sflags & EXTERN_BIT); }
char* _base; // base address
size_t _size; // allocated size
malloc_segment* _next; // ptr to next segment
flag_t _sflags; // mmap and extern flag
};
typedef malloc_segment msegment;
typedef malloc_segment* msegmentptr;
/* ------------- Malloc_params ------------------- */
/*
malloc_params holds global properties, including those that can be
dynamically set using mallopt. There is a single instance, mparams,
initialized in init_mparams. Note that the non-zeroness of "magic"
also serves as an initialization flag.
*/
// ===============================================================================
struct malloc_params
{
malloc_params() : _magic(0) {}
void ensure_initialization()
{
if (!_magic)
_init();
}
SPP_IMPL int change(int param_number, int value);
size_t page_align(size_t sz)
{
return (sz + (_page_size - 1)) & ~(_page_size - 1);
}
size_t granularity_align(size_t sz)
{
return (sz + (_granularity - 1)) & ~(_granularity - 1);
}
bool is_page_aligned(char *S)
{
return ((size_t)S & (_page_size - 1)) == 0;
}
SPP_IMPL int _init();
size_t _magic;
size_t _page_size;
size_t _granularity;
size_t _mmap_threshold;
size_t _trim_threshold;
flag_t _default_mflags;
};
static malloc_params mparams;
/* ---------------------------- malloc_state ----------------------------- */
/*
A malloc_state holds all of the bookkeeping for a space.
The main fields are:
Top
The topmost chunk of the currently active segment. Its size is
cached in topsize. The actual size of topmost space is
topsize+TOP_FOOT_SIZE, which includes space reserved for adding
fenceposts and segment records if necessary when getting more
space from the system. The size at which to autotrim top is
cached from mparams in trim_check, except that it is disabled if
an autotrim fails.
Designated victim (dv)
This is the preferred chunk for servicing small requests that
don't have exact fits. It is normally the chunk split off most
recently to service another small request. Its size is cached in
dvsize. The link fields of this chunk are not maintained since it
is not kept in a bin.
SmallBins
An array of bin headers for free chunks. These bins hold chunks
with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
chunks of all the same size, spaced 8 bytes apart. To simplify
use in double-linked lists, each bin header acts as a malloc_chunk
pointing to the real first node, if it exists (else pointing to
itself). This avoids special-casing for headers. But to avoid
waste, we allocate only the fd/bk pointers of bins, and then use
repositioning tricks to treat these as the fields of a chunk.
TreeBins
Treebins are pointers to the roots of trees holding a range of
sizes. There are 2 equally spaced treebins for each power of two
from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
larger.
Bin maps
There is one bit map for small bins ("smallmap") and one for
treebins ("treemap). Each bin sets its bit when non-empty, and
clears the bit when empty. Bit operations are then used to avoid
bin-by-bin searching -- nearly all "search" is done without ever
looking at bins that won't be selected. The bit maps
conservatively use 32 bits per map word, even if on 64bit system.
For a good description of some of the bit-based techniques used
here, see Henry S. Warren Jr's book "Hacker's Delight" (and
supplement at http://hackersdelight.org/). Many of these are
intended to reduce the branchiness of paths through malloc etc, as
well as to reduce the number of memory locations read or written.
Segments
A list of segments headed by an embedded malloc_segment record
representing the initial space.
Address check support
The least_addr field is the least address ever obtained from
MORECORE or MMAP. Attempted frees and reallocs of any address less
than this are trapped (unless SPP_INSECURE is defined).
Magic tag
A cross-check field that should always hold same value as mparams._magic.
Max allowed footprint
The maximum allowed bytes to allocate from system (zero means no limit)
Flags
Bits recording whether to use MMAP, locks, or contiguous MORECORE
Statistics
Each space keeps track of current and maximum system memory
obtained via MORECORE or MMAP.
Trim support
Fields holding the amount of unused topmost memory that should trigger
trimming, and a counter to force periodic scanning to release unused
non-topmost segments.
Extension support
A void* pointer and a size_t field that can be used to help implement
extensions to this malloc.
*/
// ================================================================================
class malloc_state
{
public:
/* ----------------------- _malloc, _free, etc... --- */
SPP_FORCEINLINE void* _malloc(size_t bytes);
SPP_FORCEINLINE void _free(mchunkptr p);
/* ------------------------ Relays to internal calls to malloc/free from realloc, memalign etc */
void *internal_malloc(size_t b) { return mspace_malloc(this, b); }
void internal_free(void *mem) { mspace_free(this, mem); }
/* ------------------------ ----------------------- */
SPP_IMPL void init_top(mchunkptr p, size_t psize);
SPP_IMPL void init_bins();
SPP_IMPL void init(char* tbase, size_t tsize);
/* ------------------------ System alloc/dealloc -------------------------- */
SPP_IMPL void* sys_alloc(size_t nb);
SPP_IMPL size_t release_unused_segments();
SPP_IMPL int sys_trim(size_t pad);
SPP_IMPL void dispose_chunk(mchunkptr p, size_t psize);
/* ----------------------- Internal support for realloc, memalign, etc --- */
SPP_IMPL mchunkptr try_realloc_chunk(mchunkptr p, size_t nb, int can_move);
SPP_IMPL void* internal_memalign(size_t alignment, size_t bytes);
SPP_IMPL void** ialloc(size_t n_elements, size_t* sizes, int opts, void* chunks[]);
SPP_IMPL size_t internal_bulk_free(void* array[], size_t nelem);
SPP_IMPL void internal_inspect_all(void(*handler)(void *start, void *end,
size_t used_bytes, void* callback_arg),
void* arg);
/* -------------------------- system alloc setup (Operations on mflags) ----- */
bool use_lock() const { return false; }
void enable_lock() {}
void set_lock(int) {}
void disable_lock() {}
bool use_mmap() const { return !!(_mflags & USE_MMAP_BIT); }
void enable_mmap() { _mflags |= USE_MMAP_BIT; }
#if SPP_HAVE_MMAP
void disable_mmap() { _mflags &= ~USE_MMAP_BIT; }
#else
void disable_mmap() {}
#endif
/* ----------------------- Runtime Check Support ------------------------- */
/*
For security, the main invariant is that malloc/free/etc never
writes to a static address other than malloc_state, unless static
malloc_state itself has been corrupted, which cannot occur via
malloc (because of these checks). In essence this means that we
believe all pointers, sizes, maps etc held in malloc_state, but
check all of those linked or offsetted from other embedded data
structures. These checks are interspersed with main code in a way
that tends to minimize their run-time cost.
When SPP_FOOTERS is defined, in addition to range checking, we also
verify footer fields of inuse chunks, which can be used guarantee
that the mstate controlling malloc/free is intact. This is a
streamlined version of the approach described by William Robertson
et al in "Run-time Detection of Heap-based Overflows" LISA'03
http://www.usenix.org/events/lisa03/tech/robertson.html The footer
of an inuse chunk holds the xor of its mstate and a random seed,
that is checked upon calls to free() and realloc(). This is
(probabalistically) unguessable from outside the program, but can be
computed by any code successfully malloc'ing any chunk, so does not
itself provide protection against code that has already broken
security through some other means. Unlike Robertson et al, we
always dynamically check addresses of all offset chunks (previous,
next, etc). This turns out to be cheaper than relying on hashes.
*/
#if !SPP_INSECURE
// Check if address a is at least as high as any from MORECORE or MMAP
bool ok_address(void *a) const { return (char *)a >= _least_addr; }
// Check if address of next chunk n is higher than base chunk p
static bool ok_next(void *p, void *n) { return p < n; }
// Check if p has inuse status
static bool ok_inuse(mchunkptr p) { return p->is_inuse(); }
// Check if p has its pinuse bit on
static bool ok_pinuse(mchunkptr p) { return p->pinuse(); }
// Check if (alleged) mstate m has expected magic field
bool ok_magic() const { return _magic == mparams._magic; }
// In gcc, use __builtin_expect to minimize impact of checks
#if defined(__GNUC__) && __GNUC__ >= 3
static bool rtcheck(bool e) { return __builtin_expect(e, 1); }
#else
static bool rtcheck(bool e) { return e; }
#endif
#else
static bool ok_address(void *) { return true; }
static bool ok_next(void *, void *) { return true; }
static bool ok_inuse(mchunkptr) { return true; }
static bool ok_pinuse(mchunkptr) { return true; }
static bool ok_magic() { return true; }
static bool rtcheck(bool) { return true; }
#endif
bool is_initialized() const { return _top != 0; }
bool use_noncontiguous() const { return !!(_mflags & USE_NONCONTIGUOUS_BIT); }
void disable_contiguous() { _mflags |= USE_NONCONTIGUOUS_BIT; }
// Return segment holding given address
msegmentptr segment_holding(char* addr) const
{
msegmentptr sp = (msegmentptr)&_seg;
for (;;)
{
if (addr >= sp->_base && addr < sp->_base + sp->_size)
return sp;
if ((sp = sp->_next) == 0)
return 0;
}
}
// Return true if segment contains a segment link
int has_segment_link(msegmentptr ss) const
{
msegmentptr sp = (msegmentptr)&_seg;
for (;;)
{
if ((char*)sp >= ss->_base && (char*)sp < ss->_base + ss->_size)
return 1;
if ((sp = sp->_next) == 0)
return 0;
}
}
bool should_trim(size_t s) const { return s > _trim_check; }
/* -------------------------- Debugging setup ---------------------------- */
#if ! SPP_DEBUG
void check_free_chunk(mchunkptr) {}
void check_inuse_chunk(mchunkptr) {}
void check_malloced_chunk(void*, size_t) {}
void check_mmapped_chunk(mchunkptr) {}
void check_malloc_state() {}
void check_top_chunk(mchunkptr) {}
#else /* SPP_DEBUG */
void check_free_chunk(mchunkptr p) { do_check_free_chunk(p); }
void check_inuse_chunk(mchunkptr p) { do_check_inuse_chunk(p); }
void check_malloced_chunk(void* p, size_t s) { do_check_malloced_chunk(p, s); }
void check_mmapped_chunk(mchunkptr p) { do_check_mmapped_chunk(p); }
void check_malloc_state() { do_check_malloc_state(); }
void check_top_chunk(mchunkptr p) { do_check_top_chunk(p); }
void do_check_any_chunk(mchunkptr p) const;
void do_check_top_chunk(mchunkptr p) const;
void do_check_mmapped_chunk(mchunkptr p) const;
void do_check_inuse_chunk(mchunkptr p) const;
void do_check_free_chunk(mchunkptr p) const;
void do_check_malloced_chunk(void* mem, size_t s) const;
void do_check_tree(tchunkptr t);
void do_check_treebin(bindex_t i);
void do_check_smallbin(bindex_t i);
void do_check_malloc_state();
int bin_find(mchunkptr x);
size_t traverse_and_check();
#endif
private:
/* ---------------------------- Indexing Bins ---------------------------- */
static bool is_small(size_t s) { return (s >> SMALLBIN_SHIFT) < NSMALLBINS; }
static bindex_t small_index(size_t s) { return (bindex_t)(s >> SMALLBIN_SHIFT); }
static size_t small_index2size(size_t i) { return i << SMALLBIN_SHIFT; }
static bindex_t MIN_SMALL_INDEX() { return small_index(MIN_CHUNK_SIZE); }
// assign tree index for size S to variable I. Use x86 asm if possible
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
unsigned int X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int K = (unsigned) sizeof(X) * __CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X);
return (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1)));
}
#elif defined (__INTEL_COMPILER)
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
size_t X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int K = _bit_scan_reverse(X);
return (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1)));
}
#elif defined(_MSC_VER) && _MSC_VER>=1300
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
size_t X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int K;
_BitScanReverse((DWORD *) &K, (DWORD) X);
return (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1)));
}
#else // GNUC
SPP_FORCEINLINE static bindex_t compute_tree_index(size_t S)
{
size_t X = S >> TREEBIN_SHIFT;
if (X == 0)
return 0;
else if (X > 0xFFFF)
return NTREEBINS - 1;
unsigned int Y = (unsigned int)X;
unsigned int N = ((Y - 0x100) >> 16) & 8;
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;
N += K;
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;
K = 14 - N + ((Y <<= K) >> 15);
return (K << 1) + ((S >> (K + (TREEBIN_SHIFT - 1)) & 1));
}
#endif
// Shift placing maximum resolved bit in a treebin at i as sign bit
static bindex_t leftshift_for_tree_index(bindex_t i)
{
return (i == NTREEBINS - 1) ? 0 :
((spp_size_t_bitsize - 1) - ((i >> 1) + TREEBIN_SHIFT - 2));
}
// The size of the smallest chunk held in bin with index i
static bindex_t minsize_for_tree_index(bindex_t i)
{
return ((size_t)1 << ((i >> 1) + TREEBIN_SHIFT)) |
(((size_t)(i & 1)) << ((i >> 1) + TREEBIN_SHIFT - 1));
}
// ----------- isolate the least set bit of a bitmap
static binmap_t least_bit(binmap_t x) { return x & -x; }
// ----------- mask with all bits to left of least bit of x on
static binmap_t left_bits(binmap_t x) { return (x << 1) | -(x << 1); }
// index corresponding to given bit. Use x86 asm if possible
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int J;
J = __builtin_ctz(X);
return (bindex_t)J;
}
#elif defined (__INTEL_COMPILER)
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int J;
J = _bit_scan_forward(X);
return (bindex_t)J;
}
#elif defined(_MSC_VER) && _MSC_VER>=1300
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int J;
_BitScanForward((DWORD *) &J, X);
return (bindex_t)J;
}
#elif SPP_USE_BUILTIN_FFS
static bindex_t compute_bit2idx(binmap_t X) { return ffs(X) - 1; }
#else
static bindex_t compute_bit2idx(binmap_t X)
{
unsigned int Y = X - 1;
unsigned int K = Y >> (16 - 4) & 16;
unsigned int N = K; Y >>= K;
N += K = Y >> (8 - 3) & 8; Y >>= K;
N += K = Y >> (4 - 2) & 4; Y >>= K;
N += K = Y >> (2 - 1) & 2; Y >>= K;
N += K = Y >> (1 - 0) & 1; Y >>= K;
return (bindex_t)(N + Y);
}
#endif
/* ------------------------ Set up inuse chunks with or without footers ---*/
#if !SPP_FOOTERS
void mark_inuse_foot(malloc_chunk_header *, size_t) {}
#else
//Set foot of inuse chunk to be xor of mstate and seed
void mark_inuse_foot(malloc_chunk_header *p, size_t s)
{
(((mchunkptr)((char*)p + s))->prev_foot = (size_t)this ^ mparams._magic);
}
#endif
void set_inuse(malloc_chunk_header *p, size_t s)
{
p->_head = (p->_head & PINUSE_BIT) | s | CINUSE_BIT;
((mchunkptr)(((char*)p) + s))->_head |= PINUSE_BIT;
mark_inuse_foot(p, s);
}
void set_inuse_and_pinuse(malloc_chunk_header *p, size_t s)
{
p->_head = s | PINUSE_BIT | CINUSE_BIT;
((mchunkptr)(((char*)p) + s))->_head |= PINUSE_BIT;
mark_inuse_foot(p, s);
}
void set_size_and_pinuse_of_inuse_chunk(malloc_chunk_header *p, size_t s)
{
p->_head = s | PINUSE_BIT | CINUSE_BIT;
mark_inuse_foot(p, s);
}
/* ------------------------ Addressing by index. See about smallbin repositioning --- */
sbinptr smallbin_at(bindex_t i) const { return (sbinptr)((char*)&_smallbins[i << 1]); }
tbinptr* treebin_at(bindex_t i) { return &_treebins[i]; }
/* ----------------------- bit corresponding to given index ---------*/
static binmap_t idx2bit(bindex_t i) { return ((binmap_t)1 << i); }
// --------------- Mark/Clear bits with given index
void mark_smallmap(bindex_t i) { _smallmap |= idx2bit(i); }
void clear_smallmap(bindex_t i) { _smallmap &= ~idx2bit(i); }
binmap_t smallmap_is_marked(bindex_t i) const { return _smallmap & idx2bit(i); }
void mark_treemap(bindex_t i) { _treemap |= idx2bit(i); }
void clear_treemap(bindex_t i) { _treemap &= ~idx2bit(i); }
binmap_t treemap_is_marked(bindex_t i) const { return _treemap & idx2bit(i); }
/* ------------------------ ----------------------- */
SPP_FORCEINLINE void insert_small_chunk(mchunkptr P, size_t S);
SPP_FORCEINLINE void unlink_small_chunk(mchunkptr P, size_t S);
SPP_FORCEINLINE void unlink_first_small_chunk(mchunkptr B, mchunkptr P, bindex_t I);
SPP_FORCEINLINE void replace_dv(mchunkptr P, size_t S);
/* ------------------------- Operations on trees ------------------------- */
SPP_FORCEINLINE void insert_large_chunk(tchunkptr X, size_t S);
SPP_FORCEINLINE void unlink_large_chunk(tchunkptr X);
/* ------------------------ Relays to large vs small bin operations */
SPP_FORCEINLINE void insert_chunk(mchunkptr P, size_t S);
SPP_FORCEINLINE void unlink_chunk(mchunkptr P, size_t S);
/* ----------------------- Direct-mmapping chunks ----------------------- */
SPP_IMPL void* mmap_alloc(size_t nb);
SPP_IMPL mchunkptr mmap_resize(mchunkptr oldp, size_t nb, int flags);
SPP_IMPL void reset_on_error();
SPP_IMPL void* prepend_alloc(char* newbase, char* oldbase, size_t nb);
SPP_IMPL void add_segment(char* tbase, size_t tsize, flag_t mmapped);
/* ------------------------ malloc --------------------------- */
SPP_IMPL void* tmalloc_large(size_t nb);
SPP_IMPL void* tmalloc_small(size_t nb);
/* ------------------------Bin types, widths and sizes -------- */
static const size_t NSMALLBINS = 32;
static const size_t NTREEBINS = 32;
static const size_t SMALLBIN_SHIFT = 3;
static const size_t SMALLBIN_WIDTH = 1 << SMALLBIN_SHIFT;
static const size_t TREEBIN_SHIFT = 8;
static const size_t MIN_LARGE_SIZE = 1 << TREEBIN_SHIFT;
static const size_t MAX_SMALL_SIZE = (MIN_LARGE_SIZE - 1);
static const size_t MAX_SMALL_REQUEST = (MAX_SMALL_SIZE - spp_chunk_align_mask - CHUNK_OVERHEAD);
/* ------------------------ data members --------------------------- */
binmap_t _smallmap;
binmap_t _treemap;
size_t _dvsize;
size_t _topsize;
char* _least_addr;
mchunkptr _dv;
mchunkptr _top;
size_t _trim_check;
size_t _release_checks;
size_t _magic;
mchunkptr _smallbins[(NSMALLBINS + 1) * 2];
tbinptr _treebins[NTREEBINS];
public:
size_t _footprint;
size_t _max_footprint;
size_t _footprint_limit; // zero means no limit
flag_t _mflags;
msegment _seg;
private:
void* _extp; // Unused but available for extensions
size_t _exts;
};
typedef malloc_state* mstate;
/* ------------- end malloc_state ------------------- */
#if SPP_FOOTERS
static malloc_state* get_mstate_for(malloc_chunk_header *p)
{
return (malloc_state*)(((mchunkptr)((char*)(p) +
(p->chunksize())))->prev_foot ^ mparams._magic);
}
#endif
/* -------------------------- system alloc setup ------------------------- */
// For mmap, use granularity alignment on windows, else page-align
#ifdef WIN32
#define mmap_align(S) mparams.granularity_align(S)
#else
#define mmap_align(S) mparams.page_align(S)
#endif
// True if segment S holds address A
static bool segment_holds(msegmentptr S, mchunkptr A)
{
return (char*)A >= S->_base && (char*)A < S->_base + S->_size;
}
/*
top_foot_size is padding at the end of a segment, including space
that may be needed to place segment records and fenceposts when new
noncontiguous segments are added.
*/
static SPP_FORCEINLINE size_t top_foot_size()
{
return align_offset(chunk2mem((void *)0)) +
pad_request(sizeof(struct malloc_segment)) +
MIN_CHUNK_SIZE;
}
// For sys_alloc, enough padding to ensure can malloc request on success
static SPP_FORCEINLINE size_t sys_alloc_padding()
{
return top_foot_size() + SPP_MALLOC_ALIGNMENT;
}
#define SPP_USAGE_ERROR_ACTION(m,p) SPP_ABORT
/* ---------------------------- setting mparams -------------------------- */
// Initialize mparams
int malloc_params::_init()
{
#ifdef NEED_GLOBAL_LOCK_INIT
if (malloc_global_mutex_status <= 0)
init_malloc_global_mutex();
#endif
if (_magic == 0)
{
size_t magic;
size_t psize;
size_t gsize;
#ifndef WIN32
psize = malloc_getpagesize;
gsize = ((SPP_DEFAULT_GRANULARITY != 0) ? SPP_DEFAULT_GRANULARITY : psize);
#else
{
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
psize = system_info.dwPageSize;
gsize = ((SPP_DEFAULT_GRANULARITY != 0) ?
SPP_DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
}
#endif
/* Sanity-check configuration:
size_t must be unsigned and as wide as pointer type.
ints must be at least 4 bytes.
alignment must be at least 8.
Alignment, min chunk size, and page size must all be powers of 2.
*/
if ((sizeof(size_t) != sizeof(char*)) ||
(spp_max_size_t < MIN_CHUNK_SIZE) ||
(sizeof(int) < 4) ||
(SPP_MALLOC_ALIGNMENT < (size_t)8U) ||
((SPP_MALLOC_ALIGNMENT & (SPP_MALLOC_ALIGNMENT - 1)) != 0) ||
((MCHUNK_SIZE & (MCHUNK_SIZE - 1)) != 0) ||
((gsize & (gsize - 1)) != 0) ||
((psize & (psize - 1)) != 0))
SPP_ABORT;
_granularity = gsize;
_page_size = psize;
_mmap_threshold = SPP_DEFAULT_MMAP_THRESHOLD;
_trim_threshold = SPP_DEFAULT_TRIM_THRESHOLD;
_default_mflags = USE_MMAP_BIT | USE_NONCONTIGUOUS_BIT;
{
#if SPP_USE_DEV_RANDOM
int fd;
unsigned char buf[sizeof(size_t)];
// Try to use /dev/urandom, else fall back on using time
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
read(fd, buf, sizeof(buf)) == sizeof(buf))
{
magic = *((size_t *) buf);
close(fd);
}
else
#endif
{
#ifdef WIN32
magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
#elif defined(SPP_LACKS_TIME_H)
magic = (size_t)&magic ^ (size_t)0x55555555U;
#else
magic = (size_t)(time(0) ^ (size_t)0x55555555U);
#endif
}
magic |= (size_t)8U; // ensure nonzero
magic &= ~(size_t)7U; // improve chances of fault for bad values
// Until memory modes commonly available, use volatile-write
(*(volatile size_t *)(&(_magic))) = magic;
}
}
return 1;
}
/*
mallopt tuning options. SVID/XPG defines four standard parameter
numbers for mallopt, normally defined in malloc.h. None of these
are used in this malloc, so setting them has no effect. But this
malloc does support the following options.
*/
static const int m_trim_threshold = -1;
static const int m_granularity = -2;
static const int m_mmap_threshold = -3;
// support for mallopt
int malloc_params::change(int param_number, int value)
{
size_t val;
ensure_initialization();
val = (value == -1) ? spp_max_size_t : (size_t)value;
switch (param_number)
{
case m_trim_threshold:
_trim_threshold = val;
return 1;
case m_granularity:
if (val >= _page_size && ((val & (val - 1)) == 0))
{
_granularity = val;
return 1;
}
else
return 0;
case m_mmap_threshold:
_mmap_threshold = val;
return 1;
default:
return 0;
}
}
#if SPP_DEBUG
/* ------------------------- Debugging Support --------------------------- */
// Check properties of any chunk, whether free, inuse, mmapped etc
void malloc_state::do_check_any_chunk(mchunkptr p) const
{
assert((spp_is_aligned(chunk2mem(p))) || (p->_head == FENCEPOST_HEAD));
assert(ok_address(p));
}
// Check properties of top chunk
void malloc_state::do_check_top_chunk(mchunkptr p) const
{
msegmentptr sp = segment_holding((char*)p);
size_t sz = p->_head & ~INUSE_BITS; // third-lowest bit can be set!
assert(sp != 0);
assert((spp_is_aligned(chunk2mem(p))) || (p->_head == FENCEPOST_HEAD));
assert(ok_address(p));
assert(sz == _topsize);
assert(sz > 0);
assert(sz == ((sp->_base + sp->_size) - (char*)p) - top_foot_size());
assert(p->pinuse());
assert(!p->chunk_plus_offset(sz)->pinuse());
}
// Check properties of (inuse) mmapped chunks
void malloc_state::do_check_mmapped_chunk(mchunkptr p) const
{
size_t sz = p->chunksize();
size_t len = (sz + (p->_prev_foot) + SPP_MMAP_FOOT_PAD);
assert(p->is_mmapped());
assert(use_mmap());
assert((spp_is_aligned(chunk2mem(p))) || (p->_head == FENCEPOST_HEAD));
assert(ok_address(p));
assert(!is_small(sz));
assert((len & (mparams._page_size - 1)) == 0);
assert(p->chunk_plus_offset(sz)->_head == FENCEPOST_HEAD);
assert(p->chunk_plus_offset(sz + sizeof(size_t))->_head == 0);
}
// Check properties of inuse chunks
void malloc_state::do_check_inuse_chunk(mchunkptr p) const
{
do_check_any_chunk(p);
assert(p->is_inuse());
assert(p->next_pinuse());
// If not pinuse and not mmapped, previous chunk has OK offset
assert(p->is_mmapped() || p->pinuse() || (mchunkptr)p->prev_chunk()->next_chunk() == p);
if (p->is_mmapped())
do_check_mmapped_chunk(p);
}
// Check properties of free chunks
void malloc_state::do_check_free_chunk(mchunkptr p) const
{
size_t sz = p->chunksize();
mchunkptr next = (mchunkptr)p->chunk_plus_offset(sz);
do_check_any_chunk(p);
assert(!p->is_inuse());
assert(!p->next_pinuse());
assert(!p->is_mmapped());
if (p != _dv && p != _top)
{
if (sz >= MIN_CHUNK_SIZE)
{
assert((sz & spp_chunk_align_mask) == 0);
assert(spp_is_aligned(chunk2mem(p)));
assert(next->_prev_foot == sz);
assert(p->pinuse());
assert(next == _top || next->is_inuse());
assert(p->_fd->_bk == p);
assert(p->_bk->_fd == p);
}
else // markers are always of size sizeof(size_t)
assert(sz == sizeof(size_t));
}
}
// Check properties of malloced chunks at the point they are malloced
void malloc_state::do_check_malloced_chunk(void* mem, size_t s) const
{
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
size_t sz = p->_head & ~INUSE_BITS;
do_check_inuse_chunk(p);
assert((sz & spp_chunk_align_mask) == 0);
assert(sz >= MIN_CHUNK_SIZE);
assert(sz >= s);
// unless mmapped, size is less than MIN_CHUNK_SIZE more than request
assert(p->is_mmapped() || sz < (s + MIN_CHUNK_SIZE));
}
}
// Check a tree and its subtrees.
void malloc_state::do_check_tree(tchunkptr t)
{
tchunkptr head = 0;
tchunkptr u = t;
bindex_t tindex = t->_index;
size_t tsize = t->chunksize();
bindex_t idx = compute_tree_index(tsize);
assert(tindex == idx);
assert(tsize >= MIN_LARGE_SIZE);
assert(tsize >= minsize_for_tree_index(idx));
assert((idx == NTREEBINS - 1) || (tsize < minsize_for_tree_index((idx + 1))));
do
{
// traverse through chain of same-sized nodes
do_check_any_chunk((mchunkptr)u);
assert(u->_index == tindex);
assert(u->chunksize() == tsize);
assert(!u->is_inuse());
assert(!u->next_pinuse());
assert(u->_fd->_bk == u);
assert(u->_bk->_fd == u);
if (u->_parent == 0)
{
assert(u->_child[0] == 0);
assert(u->_child[1] == 0);
}
else
{
assert(head == 0); // only one node on chain has parent
head = u;
assert(u->_parent != u);
assert(u->_parent->_child[0] == u ||
u->_parent->_child[1] == u ||
*((tbinptr*)(u->_parent)) == u);
if (u->_child[0] != 0)
{
assert(u->_child[0]->_parent == u);
assert(u->_child[0] != u);
do_check_tree(u->_child[0]);
}
if (u->_child[1] != 0)
{
assert(u->_child[1]->_parent == u);
assert(u->_child[1] != u);
do_check_tree(u->_child[1]);
}
if (u->_child[0] != 0 && u->_child[1] != 0)
assert(u->_child[0]->chunksize() < u->_child[1]->chunksize());
}
u = u->_fd;
}
while (u != t);
assert(head != 0);
}
// Check all the chunks in a treebin.
void malloc_state::do_check_treebin(bindex_t i)
{
tbinptr* tb = (tbinptr*)treebin_at(i);
tchunkptr t = *tb;
int empty = (_treemap & (1U << i)) == 0;
if (t == 0)
assert(empty);
if (!empty)
do_check_tree(t);
}
// Check all the chunks in a smallbin.
void malloc_state::do_check_smallbin(bindex_t i)
{
sbinptr b = smallbin_at(i);
mchunkptr p = b->_bk;
unsigned int empty = (_smallmap & (1U << i)) == 0;
if (p == b)
assert(empty);
if (!empty)
{
for (; p != b; p = p->_bk)
{
size_t size = p->chunksize();
mchunkptr q;
// each chunk claims to be free
do_check_free_chunk(p);
// chunk belongs in bin
assert(small_index(size) == i);
assert(p->_bk == b || p->_bk->chunksize() == p->chunksize());
// chunk is followed by an inuse chunk
q = (mchunkptr)p->next_chunk();
if (q->_head != FENCEPOST_HEAD)
do_check_inuse_chunk(q);
}
}
}
// Find x in a bin. Used in other check functions.
int malloc_state::bin_find(mchunkptr x)
{
size_t size = x->chunksize();
if (is_small(size))
{
bindex_t sidx = small_index(size);
sbinptr b = smallbin_at(sidx);
if (smallmap_is_marked(sidx))
{
mchunkptr p = b;
do
{
if (p == x)
return 1;
}
while ((p = p->_fd) != b);
}
}
else
{
bindex_t tidx = compute_tree_index(size);
if (treemap_is_marked(tidx))
{
tchunkptr t = *treebin_at(tidx);
size_t sizebits = size << leftshift_for_tree_index(tidx);
while (t != 0 && t->chunksize() != size)
{
t = t->_child[(sizebits >> (spp_size_t_bitsize - 1)) & 1];
sizebits <<= 1;
}
if (t != 0)
{
tchunkptr u = t;
do
{
if (u == (tchunkptr)x)
return 1;
}
while ((u = u->_fd) != t);
}
}
}
return 0;
}
// Traverse each chunk and check it; return total
size_t malloc_state::traverse_and_check()
{
size_t sum = 0;
if (is_initialized())
{
msegmentptr s = (msegmentptr)&_seg;
sum += _topsize + top_foot_size();
while (s != 0)
{
mchunkptr q = align_as_chunk(s->_base);
mchunkptr lastq = 0;
assert(q->pinuse());
while (segment_holds(s, q) &&
q != _top && q->_head != FENCEPOST_HEAD)
{
sum += q->chunksize();
if (q->is_inuse())
{
assert(!bin_find(q));
do_check_inuse_chunk(q);
}
else
{
assert(q == _dv || bin_find(q));
assert(lastq == 0 || lastq->is_inuse()); // Not 2 consecutive free
do_check_free_chunk(q);
}
lastq = q;
q = (mchunkptr)q->next_chunk();
}
s = s->_next;
}
}
return sum;
}
// Check all properties of malloc_state.
void malloc_state::do_check_malloc_state()
{
bindex_t i;
size_t total;
// check bins
for (i = 0; i < NSMALLBINS; ++i)
do_check_smallbin(i);
for (i = 0; i < NTREEBINS; ++i)
do_check_treebin(i);
if (_dvsize != 0)
{
// check dv chunk
do_check_any_chunk(_dv);
assert(_dvsize == _dv->chunksize());
assert(_dvsize >= MIN_CHUNK_SIZE);
assert(bin_find(_dv) == 0);
}
if (_top != 0)
{
// check top chunk
do_check_top_chunk(_top);
//assert(topsize == top->chunksize()); redundant
assert(_topsize > 0);
assert(bin_find(_top) == 0);
}
total = traverse_and_check();
assert(total <= _footprint);
assert(_footprint <= _max_footprint);
}
#endif // SPP_DEBUG
/* ----------------------- Operations on smallbins ----------------------- */
/*
Various forms of linking and unlinking are defined as macros. Even
the ones for trees, which are very long but have very short typical
paths. This is ugly but reduces reliance on inlining support of
compilers.
*/
// Link a free chunk into a smallbin
void malloc_state::insert_small_chunk(mchunkptr p, size_t s)
{
bindex_t I = small_index(s);
mchunkptr B = smallbin_at(I);
mchunkptr F = B;
assert(s >= MIN_CHUNK_SIZE);
if (!smallmap_is_marked(I))
mark_smallmap(I);
else if (rtcheck(ok_address(B->_fd)))
F = B->_fd;
else
SPP_ABORT;
B->_fd = p;
F->_bk = p;
p->_fd = F;
p->_bk = B;
}
// Unlink a chunk from a smallbin
void malloc_state::unlink_small_chunk(mchunkptr p, size_t s)
{
mchunkptr F = p->_fd;
mchunkptr B = p->_bk;
bindex_t I = small_index(s);
assert(p != B);
assert(p != F);
assert(p->chunksize() == small_index2size(I));
if (rtcheck(F == smallbin_at(I) || (ok_address(F) && F->_bk == p)))
{
if (B == F)
clear_smallmap(I);
else if (rtcheck(B == smallbin_at(I) ||
(ok_address(B) && B->_fd == p)))
{
F->_bk = B;
B->_fd = F;
}
else
SPP_ABORT;
}
else
SPP_ABORT;
}
// Unlink the first chunk from a smallbin
void malloc_state::unlink_first_small_chunk(mchunkptr B, mchunkptr p, bindex_t I)
{
mchunkptr F = p->_fd;
assert(p != B);
assert(p != F);
assert(p->chunksize() == small_index2size(I));
if (B == F)
clear_smallmap(I);
else if (rtcheck(ok_address(F) && F->_bk == p))
{
F->_bk = B;
B->_fd = F;
}
else
SPP_ABORT;
}
// Replace dv node, binning the old one
// Used only when dvsize known to be small
void malloc_state::replace_dv(mchunkptr p, size_t s)
{
size_t DVS = _dvsize;
assert(is_small(DVS));
if (DVS != 0)
{
mchunkptr DV = _dv;
insert_small_chunk(DV, DVS);
}
_dvsize = s;
_dv = p;
}
/* ------------------------- Operations on trees ------------------------- */
// Insert chunk into tree
void malloc_state::insert_large_chunk(tchunkptr X, size_t s)
{
tbinptr* H;
bindex_t I = compute_tree_index(s);
H = treebin_at(I);
X->_index = I;
X->_child[0] = X->_child[1] = 0;
if (!treemap_is_marked(I))
{
mark_treemap(I);
*H = X;
X->_parent = (tchunkptr)H;
X->_fd = X->_bk = X;
}
else
{
tchunkptr T = *H;
size_t K = s << leftshift_for_tree_index(I);
for (;;)
{
if (T->chunksize() != s)
{
tchunkptr* C = &(T->_child[(K >> (spp_size_t_bitsize - 1)) & 1]);
K <<= 1;
if (*C != 0)
T = *C;
else if (rtcheck(ok_address(C)))
{
*C = X;
X->_parent = T;
X->_fd = X->_bk = X;
break;
}
else
{
SPP_ABORT;
break;
}
}
else
{
tchunkptr F = T->_fd;
if (rtcheck(ok_address(T) && ok_address(F)))
{
T->_fd = F->_bk = X;
X->_fd = F;
X->_bk = T;
X->_parent = 0;
break;
}
else
{
SPP_ABORT;
break;
}
}
}
}
}
/*
Unlink steps:
1. If x is a chained node, unlink it from its same-sized fd/bk links
and choose its bk node as its replacement.
2. If x was the last node of its size, but not a leaf node, it must
be replaced with a leaf node (not merely one with an open left or
right), to make sure that lefts and rights of descendents
correspond properly to bit masks. We use the rightmost descendent
of x. We could use any other leaf, but this is easy to locate and
tends to counteract removal of leftmosts elsewhere, and so keeps
paths shorter than minimally guaranteed. This doesn't loop much
because on average a node in a tree is near the bottom.
3. If x is the base of a chain (i.e., has parent links) relink
x's parent and children to x's replacement (or null if none).
*/
void malloc_state::unlink_large_chunk(tchunkptr X)
{
tchunkptr XP = X->_parent;
tchunkptr R;
if (X->_bk != X)
{
tchunkptr F = X->_fd;
R = X->_bk;
if (rtcheck(ok_address(F) && F->_bk == X && R->_fd == X))
{
F->_bk = R;
R->_fd = F;
}
else
SPP_ABORT;
}
else
{
tchunkptr* RP;
if (((R = *(RP = &(X->_child[1]))) != 0) ||
((R = *(RP = &(X->_child[0]))) != 0))
{
tchunkptr* CP;
while ((*(CP = &(R->_child[1])) != 0) ||
(*(CP = &(R->_child[0])) != 0))
R = *(RP = CP);
if (rtcheck(ok_address(RP)))
*RP = 0;
else
SPP_ABORT;
}
}
if (XP != 0)
{
tbinptr* H = treebin_at(X->_index);
if (X == *H)
{
if ((*H = R) == 0)
clear_treemap(X->_index);
}
else if (rtcheck(ok_address(XP)))
{
if (XP->_child[0] == X)
XP->_child[0] = R;
else
XP->_child[1] = R;
}
else
SPP_ABORT;
if (R != 0)
{
if (rtcheck(ok_address(R)))
{
tchunkptr C0, C1;
R->_parent = XP;
if ((C0 = X->_child[0]) != 0)
{
if (rtcheck(ok_address(C0)))
{
R->_child[0] = C0;
C0->_parent = R;
}
else
SPP_ABORT;
}
if ((C1 = X->_child[1]) != 0)
{
if (rtcheck(ok_address(C1)))
{
R->_child[1] = C1;
C1->_parent = R;
}
else
SPP_ABORT;
}
}
else
SPP_ABORT;
}
}
}
// Relays to large vs small bin operations
void malloc_state::insert_chunk(mchunkptr p, size_t s)
{
if (is_small(s))
insert_small_chunk(p, s);
else
{
tchunkptr tp = (tchunkptr)(p);
insert_large_chunk(tp, s);
}
}
void malloc_state::unlink_chunk(mchunkptr p, size_t s)
{
if (is_small(s))
unlink_small_chunk(p, s);
else
{
tchunkptr tp = (tchunkptr)(p);
unlink_large_chunk(tp);
}
}
/* ----------------------- Direct-mmapping chunks ----------------------- */
/*
Directly mmapped chunks are set up with an offset to the start of
the mmapped region stored in the prev_foot field of the chunk. This
allows reconstruction of the required argument to MUNMAP when freed,
and also allows adjustment of the returned chunk to meet alignment
requirements (especially in memalign).
*/
// Malloc using mmap
void* malloc_state::mmap_alloc(size_t nb)
{
size_t mmsize = mmap_align(nb + 6 * sizeof(size_t) + spp_chunk_align_mask);
if (_footprint_limit != 0)
{
size_t fp = _footprint + mmsize;
if (fp <= _footprint || fp > _footprint_limit)
return 0;
}
if (mmsize > nb)
{
// Check for wrap around 0
char* mm = (char*)(SPP_CALL_DIRECT_MMAP(mmsize));
if (mm != cmfail)
{
size_t offset = align_offset(chunk2mem(mm));
size_t psize = mmsize - offset - SPP_MMAP_FOOT_PAD;
mchunkptr p = (mchunkptr)(mm + offset);
p->_prev_foot = offset;
p->_head = psize;
mark_inuse_foot(p, psize);
p->chunk_plus_offset(psize)->_head = FENCEPOST_HEAD;
p->chunk_plus_offset(psize + sizeof(size_t))->_head = 0;
if (_least_addr == 0 || mm < _least_addr)
_least_addr = mm;
if ((_footprint += mmsize) > _max_footprint)
_max_footprint = _footprint;
assert(spp_is_aligned(chunk2mem(p)));
check_mmapped_chunk(p);
return chunk2mem(p);
}
}
return 0;
}
// Realloc using mmap
mchunkptr malloc_state::mmap_resize(mchunkptr oldp, size_t nb, int flags)
{
size_t oldsize = oldp->chunksize();
(void)flags; // placate people compiling -Wunused
if (is_small(nb)) // Can't shrink mmap regions below small size
return 0;
// Keep old chunk if big enough but not too big
if (oldsize >= nb + sizeof(size_t) &&
(oldsize - nb) <= (mparams._granularity << 1))
return oldp;
else
{
size_t offset = oldp->_prev_foot;
size_t oldmmsize = oldsize + offset + SPP_MMAP_FOOT_PAD;
size_t newmmsize = mmap_align(nb + 6 * sizeof(size_t) + spp_chunk_align_mask);
char* cp = (char*)SPP_CALL_MREMAP((char*)oldp - offset,
oldmmsize, newmmsize, flags);
if (cp != cmfail)
{
mchunkptr newp = (mchunkptr)(cp + offset);
size_t psize = newmmsize - offset - SPP_MMAP_FOOT_PAD;
newp->_head = psize;
mark_inuse_foot(newp, psize);
newp->chunk_plus_offset(psize)->_head = FENCEPOST_HEAD;
newp->chunk_plus_offset(psize + sizeof(size_t))->_head = 0;
if (cp < _least_addr)
_least_addr = cp;
if ((_footprint += newmmsize - oldmmsize) > _max_footprint)
_max_footprint = _footprint;
check_mmapped_chunk(newp);
return newp;
}
}
return 0;
}
/* -------------------------- mspace management -------------------------- */
// Initialize top chunk and its size
void malloc_state::init_top(mchunkptr p, size_t psize)
{
// Ensure alignment
size_t offset = align_offset(chunk2mem(p));
p = (mchunkptr)((char*)p + offset);
psize -= offset;
_top = p;
_topsize = psize;
p->_head = psize | PINUSE_BIT;
// set size of fake trailing chunk holding overhead space only once
p->chunk_plus_offset(psize)->_head = top_foot_size();
_trim_check = mparams._trim_threshold; // reset on each update
}
// Initialize bins for a new mstate that is otherwise zeroed out
void malloc_state::init_bins()
{
// Establish circular links for smallbins
bindex_t i;
for (i = 0; i < NSMALLBINS; ++i)
{
sbinptr bin = smallbin_at(i);
bin->_fd = bin->_bk = bin;
}
}
#if SPP_PROCEED_ON_ERROR
// default corruption action
void malloc_state::reset_on_error()
{
int i;
++malloc_corruption_error_count;
// Reinitialize fields to forget about all memory
_smallmap = _treemap = 0;
_dvsize = _topsize = 0;
_seg._base = 0;
_seg._size = 0;
_seg._next = 0;
_top = _dv = 0;
for (i = 0; i < NTREEBINS; ++i)
*treebin_at(i) = 0;
init_bins();
}
#endif
/* Allocate chunk and prepend remainder with chunk in successor base. */
void* malloc_state::prepend_alloc(char* newbase, char* oldbase, size_t nb)
{
mchunkptr p = align_as_chunk(newbase);
mchunkptr oldfirst = align_as_chunk(oldbase);
size_t psize = (char*)oldfirst - (char*)p;
mchunkptr q = (mchunkptr)p->chunk_plus_offset(nb);
size_t qsize = psize - nb;
set_size_and_pinuse_of_inuse_chunk(p, nb);
assert((char*)oldfirst > (char*)q);
assert(oldfirst->pinuse());
assert(qsize >= MIN_CHUNK_SIZE);
// consolidate remainder with first chunk of old base
if (oldfirst == _top)
{
size_t tsize = _topsize += qsize;
_top = q;
q->_head = tsize | PINUSE_BIT;
check_top_chunk(q);
}
else if (oldfirst == _dv)
{
size_t dsize = _dvsize += qsize;
_dv = q;
q->set_size_and_pinuse_of_free_chunk(dsize);
}
else
{
if (!oldfirst->is_inuse())
{
size_t nsize = oldfirst->chunksize();
unlink_chunk(oldfirst, nsize);
oldfirst = (mchunkptr)oldfirst->chunk_plus_offset(nsize);
qsize += nsize;
}
q->set_free_with_pinuse(qsize, oldfirst);
insert_chunk(q, qsize);
check_free_chunk(q);
}
check_malloced_chunk(chunk2mem(p), nb);
return chunk2mem(p);
}
// Add a segment to hold a new noncontiguous region
void malloc_state::add_segment(char* tbase, size_t tsize, flag_t mmapped)
{
// Determine locations and sizes of segment, fenceposts, old top
char* old_top = (char*)_top;
msegmentptr oldsp = segment_holding(old_top);
char* old_end = oldsp->_base + oldsp->_size;
size_t ssize = pad_request(sizeof(struct malloc_segment));
char* rawsp = old_end - (ssize + 4 * sizeof(size_t) + spp_chunk_align_mask);
size_t offset = align_offset(chunk2mem(rawsp));
char* asp = rawsp + offset;
char* csp = (asp < (old_top + MIN_CHUNK_SIZE)) ? old_top : asp;
mchunkptr sp = (mchunkptr)csp;
msegmentptr ss = (msegmentptr)(chunk2mem(sp));
mchunkptr tnext = (mchunkptr)sp->chunk_plus_offset(ssize);
mchunkptr p = tnext;
int nfences = 0;
// reset top to new space
init_top((mchunkptr)tbase, tsize - top_foot_size());
// Set up segment record
assert(spp_is_aligned(ss));
set_size_and_pinuse_of_inuse_chunk(sp, ssize);
*ss = _seg; // Push current record
_seg._base = tbase;
_seg._size = tsize;
_seg._sflags = mmapped;
_seg._next = ss;
// Insert trailing fenceposts
for (;;)
{
mchunkptr nextp = (mchunkptr)p->chunk_plus_offset(sizeof(size_t));
p->_head = FENCEPOST_HEAD;
++nfences;
if ((char*)(&(nextp->_head)) < old_end)
p = nextp;
else
break;
}
assert(nfences >= 2);
// Insert the rest of old top into a bin as an ordinary free chunk
if (csp != old_top)
{
mchunkptr q = (mchunkptr)old_top;
size_t psize = csp - old_top;
mchunkptr tn = (mchunkptr)q->chunk_plus_offset(psize);
q->set_free_with_pinuse(psize, tn);
insert_chunk(q, psize);
}
check_top_chunk(_top);
}
/* -------------------------- System allocation -------------------------- */
// Get memory from system using MMAP
void* malloc_state::sys_alloc(size_t nb)
{
char* tbase = cmfail;
size_t tsize = 0;
flag_t mmap_flag = 0;
size_t asize; // allocation size
mparams.ensure_initialization();
// Directly map large chunks, but only if already initialized
if (use_mmap() && nb >= mparams._mmap_threshold && _topsize != 0)
{
void* mem = mmap_alloc(nb);
if (mem != 0)
return mem;
}
asize = mparams.granularity_align(nb + sys_alloc_padding());
if (asize <= nb)
return 0; // wraparound
if (_footprint_limit != 0)
{
size_t fp = _footprint + asize;
if (fp <= _footprint || fp > _footprint_limit)
return 0;
}
/*
Try getting memory with a call to MMAP new space (disabled if not SPP_HAVE_MMAP).
We need to request enough bytes from system to ensure
we can malloc nb bytes upon success, so pad with enough space for
top_foot, plus alignment-pad to make sure we don't lose bytes if
not on boundary, and round this up to a granularity unit.
*/
if (SPP_HAVE_MMAP && tbase == cmfail)
{
// Try MMAP
char* mp = (char*)(SPP_CALL_MMAP(asize));
if (mp != cmfail)
{
tbase = mp;
tsize = asize;
mmap_flag = USE_MMAP_BIT;
}
}
if (tbase != cmfail)
{
if ((_footprint += tsize) > _max_footprint)
_max_footprint = _footprint;
if (!is_initialized())
{
// first-time initialization
if (_least_addr == 0 || tbase < _least_addr)
_least_addr = tbase;
_seg._base = tbase;
_seg._size = tsize;
_seg._sflags = mmap_flag;
_magic = mparams._magic;
_release_checks = SPP_MAX_RELEASE_CHECK_RATE;
init_bins();
// Offset top by embedded malloc_state
mchunkptr mn = (mchunkptr)mem2chunk(this)->next_chunk();
init_top(mn, (size_t)((tbase + tsize) - (char*)mn) - top_foot_size());
}
else
{
// Try to merge with an existing segment
msegmentptr sp = &_seg;
// Only consider most recent segment if traversal suppressed
while (sp != 0 && tbase != sp->_base + sp->_size)
sp = (SPP_NO_SEGMENT_TRAVERSAL) ? 0 : sp->_next;
if (sp != 0 &&
!sp->is_extern_segment() &&
(sp->_sflags & USE_MMAP_BIT) == mmap_flag &&
segment_holds(sp, _top))
{
// append
sp->_size += tsize;
init_top(_top, _topsize + tsize);
}
else
{
if (tbase < _least_addr)
_least_addr = tbase;
sp = &_seg;
while (sp != 0 && sp->_base != tbase + tsize)
sp = (SPP_NO_SEGMENT_TRAVERSAL) ? 0 : sp->_next;
if (sp != 0 &&
!sp->is_extern_segment() &&
(sp->_sflags & USE_MMAP_BIT) == mmap_flag)
{
char* oldbase = sp->_base;
sp->_base = tbase;
sp->_size += tsize;
return prepend_alloc(tbase, oldbase, nb);
}
else
add_segment(tbase, tsize, mmap_flag);
}
}
if (nb < _topsize)
{
// Allocate from new or extended top space
size_t rsize = _topsize -= nb;
mchunkptr p = _top;
mchunkptr r = _top = (mchunkptr)p->chunk_plus_offset(nb);
r->_head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(p, nb);
check_top_chunk(_top);
check_malloced_chunk(chunk2mem(p), nb);
return chunk2mem(p);
}
}
SPP_MALLOC_FAILURE_ACTION;
return 0;
}
/* ----------------------- system deallocation -------------------------- */
// Unmap and unlink any mmapped segments that don't contain used chunks
size_t malloc_state::release_unused_segments()
{
size_t released = 0;
int nsegs = 0;
msegmentptr pred = &_seg;
msegmentptr sp = pred->_next;
while (sp != 0)
{
char* base = sp->_base;
size_t size = sp->_size;
msegmentptr next = sp->_next;
++nsegs;
if (sp->is_mmapped_segment() && !sp->is_extern_segment())
{
mchunkptr p = align_as_chunk(base);
size_t psize = p->chunksize();
// Can unmap if first chunk holds entire segment and not pinned
if (!p->is_inuse() && (char*)p + psize >= base + size - top_foot_size())
{
tchunkptr tp = (tchunkptr)p;
assert(segment_holds(sp, p));
if (p == _dv)
{
_dv = 0;
_dvsize = 0;
}
else
unlink_large_chunk(tp);
if (SPP_CALL_MUNMAP(base, size) == 0)
{
released += size;
_footprint -= size;
// unlink obsoleted record
sp = pred;
sp->_next = next;
}
else
{
// back out if cannot unmap
insert_large_chunk(tp, psize);
}
}
}
if (SPP_NO_SEGMENT_TRAVERSAL) // scan only first segment
break;
pred = sp;
sp = next;
}
// Reset check counter
_release_checks = (((size_t) nsegs > (size_t) SPP_MAX_RELEASE_CHECK_RATE) ?
(size_t) nsegs : (size_t) SPP_MAX_RELEASE_CHECK_RATE);
return released;
}
int malloc_state::sys_trim(size_t pad)
{
size_t released = 0;
mparams.ensure_initialization();
if (pad < MAX_REQUEST && is_initialized())
{
pad += top_foot_size(); // ensure enough room for segment overhead
if (_topsize > pad)
{
// Shrink top space in _granularity - size units, keeping at least one
size_t unit = mparams._granularity;
size_t extra = ((_topsize - pad + (unit - 1)) / unit -
1) * unit;
msegmentptr sp = segment_holding((char*)_top);
if (!sp->is_extern_segment())
{
if (sp->is_mmapped_segment())
{
if (SPP_HAVE_MMAP &&
sp->_size >= extra &&
!has_segment_link(sp))
{
// can't shrink if pinned
size_t newsize = sp->_size - extra;
(void)newsize; // placate people compiling -Wunused-variable
// Prefer mremap, fall back to munmap
if ((SPP_CALL_MREMAP(sp->_base, sp->_size, newsize, 0) != mfail) ||
(SPP_CALL_MUNMAP(sp->_base + newsize, extra) == 0))
released = extra;
}
}
}
if (released != 0)
{
sp->_size -= released;
_footprint -= released;
init_top(_top, _topsize - released);
check_top_chunk(_top);
}
}
// Unmap any unused mmapped segments
if (SPP_HAVE_MMAP)
released += release_unused_segments();
// On failure, disable autotrim to avoid repeated failed future calls
if (released == 0 && _topsize > _trim_check)
_trim_check = spp_max_size_t;
}
return (released != 0) ? 1 : 0;
}
/* Consolidate and bin a chunk. Differs from exported versions
of free mainly in that the chunk need not be marked as inuse.
*/
void malloc_state::dispose_chunk(mchunkptr p, size_t psize)
{
mchunkptr next = (mchunkptr)p->chunk_plus_offset(psize);
if (!p->pinuse())
{
mchunkptr prev;
size_t prevsize = p->_prev_foot;
if (p->is_mmapped())
{
psize += prevsize + SPP_MMAP_FOOT_PAD;
if (SPP_CALL_MUNMAP((char*)p - prevsize, psize) == 0)
_footprint -= psize;
return;
}
prev = (mchunkptr)p->chunk_minus_offset(prevsize);
psize += prevsize;
p = prev;
if (rtcheck(ok_address(prev)))
{
// consolidate backward
if (p != _dv)
unlink_chunk(p, prevsize);
else if ((next->_head & INUSE_BITS) == INUSE_BITS)
{
_dvsize = psize;
p->set_free_with_pinuse(psize, next);
return;
}
}
else
{
SPP_ABORT;
return;
}
}
if (rtcheck(ok_address(next)))
{
if (!next->cinuse())
{
// consolidate forward
if (next == _top)
{
size_t tsize = _topsize += psize;
_top = p;
p->_head = tsize | PINUSE_BIT;
if (p == _dv)
{
_dv = 0;
_dvsize = 0;
}
return;
}
else if (next == _dv)
{
size_t dsize = _dvsize += psize;
_dv = p;
p->set_size_and_pinuse_of_free_chunk(dsize);
return;
}
else
{
size_t nsize = next->chunksize();
psize += nsize;
unlink_chunk(next, nsize);
p->set_size_and_pinuse_of_free_chunk(psize);
if (p == _dv)
{
_dvsize = psize;
return;
}
}
}
else
p->set_free_with_pinuse(psize, next);
insert_chunk(p, psize);
}
else
SPP_ABORT;
}
/* ---------------------------- malloc --------------------------- */
// allocate a large request from the best fitting chunk in a treebin
void* malloc_state::tmalloc_large(size_t nb)
{
tchunkptr v = 0;
size_t rsize = -nb; // Unsigned negation
tchunkptr t;
bindex_t idx = compute_tree_index(nb);
if ((t = *treebin_at(idx)) != 0)
{
// Traverse tree for this bin looking for node with size == nb
size_t sizebits = nb << leftshift_for_tree_index(idx);
tchunkptr rst = 0; // The deepest untaken right subtree
for (;;)
{
tchunkptr rt;
size_t trem = t->chunksize() - nb;
if (trem < rsize)
{
v = t;
if ((rsize = trem) == 0)
break;
}
rt = t->_child[1];
t = t->_child[(sizebits >> (spp_size_t_bitsize - 1)) & 1];
if (rt != 0 && rt != t)
rst = rt;
if (t == 0)
{
t = rst; // set t to least subtree holding sizes > nb
break;
}
sizebits <<= 1;
}
}
if (t == 0 && v == 0)
{
// set t to root of next non-empty treebin
binmap_t leftbits = left_bits(idx2bit(idx)) & _treemap;
if (leftbits != 0)
{
binmap_t leastbit = least_bit(leftbits);
bindex_t i = compute_bit2idx(leastbit);
t = *treebin_at(i);
}
}
while (t != 0)
{
// find smallest of tree or subtree
size_t trem = t->chunksize() - nb;
if (trem < rsize)
{
rsize = trem;
v = t;
}
t = t->leftmost_child();
}
// If dv is a better fit, return 0 so malloc will use it
if (v != 0 && rsize < (size_t)(_dvsize - nb))
{
if (rtcheck(ok_address(v)))
{
// split
mchunkptr r = (mchunkptr)v->chunk_plus_offset(nb);
assert(v->chunksize() == rsize + nb);
if (rtcheck(ok_next(v, r)))
{
unlink_large_chunk(v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(v, (rsize + nb));
else
{
set_size_and_pinuse_of_inuse_chunk(v, nb);
r->set_size_and_pinuse_of_free_chunk(rsize);
insert_chunk(r, rsize);
}
return chunk2mem(v);
}
}
SPP_ABORT;
}
return 0;
}
// allocate a small request from the best fitting chunk in a treebin
void* malloc_state::tmalloc_small(size_t nb)
{
tchunkptr t, v;
size_t rsize;
binmap_t leastbit = least_bit(_treemap);
bindex_t i = compute_bit2idx(leastbit);
v = t = *treebin_at(i);
rsize = t->chunksize() - nb;
while ((t = t->leftmost_child()) != 0)
{
size_t trem = t->chunksize() - nb;
if (trem < rsize)
{
rsize = trem;
v = t;
}
}
if (rtcheck(ok_address(v)))
{
mchunkptr r = (mchunkptr)v->chunk_plus_offset(nb);
assert(v->chunksize() == rsize + nb);
if (rtcheck(ok_next(v, r)))
{
unlink_large_chunk(v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(v, (rsize + nb));
else
{
set_size_and_pinuse_of_inuse_chunk(v, nb);
r->set_size_and_pinuse_of_free_chunk(rsize);
replace_dv(r, rsize);
}
return chunk2mem(v);
}
}
SPP_ABORT;
return 0;
}
/* ---------------------------- malloc --------------------------- */
void* malloc_state::_malloc(size_t bytes)
{
if (1)
{
void* mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST)
{
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST) ? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = _smallmap >> idx;
if ((smallbits & 0x3U) != 0)
{
// Remainderless fit to a smallbin.
mchunkptr b, p;
idx += ~smallbits & 1; // Uses next bin if idx empty
b = smallbin_at(idx);
p = b->_fd;
assert(p->chunksize() == small_index2size(idx));
unlink_first_small_chunk(b, p, idx);
set_inuse_and_pinuse(p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(mem, nb);
goto postaction;
}
else if (nb > _dvsize)
{
if (smallbits != 0)
{
// Use chunk in next nonempty smallbin
mchunkptr b, p, r;
size_t rsize;
binmap_t leftbits = (smallbits << idx) & left_bits(malloc_state::idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
bindex_t i = compute_bit2idx(leastbit);
b = smallbin_at(i);
p = b->_fd;
assert(p->chunksize() == small_index2size(i));
unlink_first_small_chunk(b, p, i);
rsize = small_index2size(i) - nb;
// Fit here cannot be remainderless if 4byte sizes
if (sizeof(size_t) != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(p, small_index2size(i));
else
{
set_size_and_pinuse_of_inuse_chunk(p, nb);
r = (mchunkptr)p->chunk_plus_offset(nb);
r->set_size_and_pinuse_of_free_chunk(rsize);
replace_dv(r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(mem, nb);
goto postaction;
}
else if (_treemap != 0 && (mem = tmalloc_small(nb)) != 0)
{
check_malloced_chunk(mem, nb);
goto postaction;
}
}
}
else if (bytes >= MAX_REQUEST)
nb = spp_max_size_t; // Too big to allocate. Force failure (in sys alloc)
else
{
nb = pad_request(bytes);
if (_treemap != 0 && (mem = tmalloc_large(nb)) != 0)
{
check_malloced_chunk(mem, nb);
goto postaction;
}
}
if (nb <= _dvsize)
{
size_t rsize = _dvsize - nb;
mchunkptr p = _dv;
if (rsize >= MIN_CHUNK_SIZE)
{
// split dv
mchunkptr r = _dv = (mchunkptr)p->chunk_plus_offset(nb);
_dvsize = rsize;
r->set_size_and_pinuse_of_free_chunk(rsize);
set_size_and_pinuse_of_inuse_chunk(p, nb);
}
else // exhaust dv
{
size_t dvs = _dvsize;
_dvsize = 0;
_dv = 0;
set_inuse_and_pinuse(p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(mem, nb);
goto postaction;
}
else if (nb < _topsize)
{
// Split top
size_t rsize = _topsize -= nb;
mchunkptr p = _top;
mchunkptr r = _top = (mchunkptr)p->chunk_plus_offset(nb);
r->_head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(p, nb);
mem = chunk2mem(p);
check_top_chunk(_top);
check_malloced_chunk(mem, nb);
goto postaction;
}
mem = sys_alloc(nb);
postaction:
return mem;
}
return 0;
}
/* ---------------------------- free --------------------------- */
void malloc_state::_free(mchunkptr p)
{
if (1)
{
check_inuse_chunk(p);
if (rtcheck(ok_address(p) && ok_inuse(p)))
{
size_t psize = p->chunksize();
mchunkptr next = (mchunkptr)p->chunk_plus_offset(psize);
if (!p->pinuse())
{
size_t prevsize = p->_prev_foot;
if (p->is_mmapped())
{
psize += prevsize + SPP_MMAP_FOOT_PAD;
if (SPP_CALL_MUNMAP((char*)p - prevsize, psize) == 0)
_footprint -= psize;
goto postaction;
}
else
{
mchunkptr prev = (mchunkptr)p->chunk_minus_offset(prevsize);
psize += prevsize;
p = prev;
if (rtcheck(ok_address(prev)))
{
// consolidate backward
if (p != _dv)
unlink_chunk(p, prevsize);
else if ((next->_head & INUSE_BITS) == INUSE_BITS)
{
_dvsize = psize;
p->set_free_with_pinuse(psize, next);
goto postaction;
}
}
else
goto erroraction;
}
}
if (rtcheck(ok_next(p, next) && ok_pinuse(next)))
{
if (!next->cinuse())
{
// consolidate forward
if (next == _top)
{
size_t tsize = _topsize += psize;
_top = p;
p->_head = tsize | PINUSE_BIT;
if (p == _dv)
{
_dv = 0;
_dvsize = 0;
}
if (should_trim(tsize))
sys_trim(0);
goto postaction;
}
else if (next == _dv)
{
size_t dsize = _dvsize += psize;
_dv = p;
p->set_size_and_pinuse_of_free_chunk(dsize);
goto postaction;
}
else
{
size_t nsize = next->chunksize();
psize += nsize;
unlink_chunk(next, nsize);
p->set_size_and_pinuse_of_free_chunk(psize);
if (p == _dv)
{
_dvsize = psize;
goto postaction;
}
}
}
else
p->set_free_with_pinuse(psize, next);
if (is_small(psize))
{
insert_small_chunk(p, psize);
check_free_chunk(p);
}
else
{
tchunkptr tp = (tchunkptr)p;
insert_large_chunk(tp, psize);
check_free_chunk(p);
if (--_release_checks == 0)
release_unused_segments();
}
goto postaction;
}
}
erroraction:
SPP_USAGE_ERROR_ACTION(this, p);
postaction:
;
}
}
/* ------------ Internal support for realloc, memalign, etc -------------- */
// Try to realloc; only in-place unless can_move true
mchunkptr malloc_state::try_realloc_chunk(mchunkptr p, size_t nb, int can_move)
{
mchunkptr newp = 0;
size_t oldsize = p->chunksize();
mchunkptr next = (mchunkptr)p->chunk_plus_offset(oldsize);
if (rtcheck(ok_address(p) && ok_inuse(p) &&
ok_next(p, next) && ok_pinuse(next)))
{
if (p->is_mmapped())
newp = mmap_resize(p, nb, can_move);
else if (oldsize >= nb)
{
// already big enough
size_t rsize = oldsize - nb;
if (rsize >= MIN_CHUNK_SIZE)
{
// split off remainder
mchunkptr r = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
set_inuse(r, rsize);
dispose_chunk(r, rsize);
}
newp = p;
}
else if (next == _top)
{
// extend into top
if (oldsize + _topsize > nb)
{
size_t newsize = oldsize + _topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
newtop->_head = newtopsize | PINUSE_BIT;
_top = newtop;
_topsize = newtopsize;
newp = p;
}
}
else if (next == _dv)
{
// extend into dv
size_t dvs = _dvsize;
if (oldsize + dvs >= nb)
{
size_t dsize = oldsize + dvs - nb;
if (dsize >= MIN_CHUNK_SIZE)
{
mchunkptr r = (mchunkptr)p->chunk_plus_offset(nb);
mchunkptr n = (mchunkptr)r->chunk_plus_offset(dsize);
set_inuse(p, nb);
r->set_size_and_pinuse_of_free_chunk(dsize);
n->clear_pinuse();
_dvsize = dsize;
_dv = r;
}
else
{
// exhaust dv
size_t newsize = oldsize + dvs;
set_inuse(p, newsize);
_dvsize = 0;
_dv = 0;
}
newp = p;
}
}
else if (!next->cinuse())
{
// extend into next free chunk
size_t nextsize = next->chunksize();
if (oldsize + nextsize >= nb)
{
size_t rsize = oldsize + nextsize - nb;
unlink_chunk(next, nextsize);
if (rsize < MIN_CHUNK_SIZE)
{
size_t newsize = oldsize + nextsize;
set_inuse(p, newsize);
}
else
{
mchunkptr r = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
set_inuse(r, rsize);
dispose_chunk(r, rsize);
}
newp = p;
}
}
}
else
SPP_USAGE_ERROR_ACTION(m, chunk2mem(p));
return newp;
}
void* malloc_state::internal_memalign(size_t alignment, size_t bytes)
{
void* mem = 0;
if (alignment < MIN_CHUNK_SIZE) // must be at least a minimum chunk size
alignment = MIN_CHUNK_SIZE;
if ((alignment & (alignment - 1)) != 0)
{
// Ensure a power of 2
size_t a = SPP_MALLOC_ALIGNMENT << 1;
while (a < alignment)
a <<= 1;
alignment = a;
}
if (bytes >= MAX_REQUEST - alignment)
SPP_MALLOC_FAILURE_ACTION;
else
{
size_t nb = request2size(bytes);
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
mem = internal_malloc(req);
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
if ((((size_t)(mem)) & (alignment - 1)) != 0)
{
// misaligned
/*
Find an aligned spot inside chunk. Since we need to give
back leading space in a chunk of at least MIN_CHUNK_SIZE, if
the first calculation places us at a spot with less than
MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
We've allocated enough total room so that this is always
possible.
*/
char* br = (char*)mem2chunk((void *)(((size_t)((char*)mem + alignment - 1)) &
-alignment));
char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE) ?
br : br + alignment;
mchunkptr newp = (mchunkptr)pos;
size_t leadsize = pos - (char*)(p);
size_t newsize = p->chunksize() - leadsize;
if (p->is_mmapped())
{
// For mmapped chunks, just adjust offset
newp->_prev_foot = p->_prev_foot + leadsize;
newp->_head = newsize;
}
else
{
// Otherwise, give back leader, use the rest
set_inuse(newp, newsize);
set_inuse(p, leadsize);
dispose_chunk(p, leadsize);
}
p = newp;
}
// Give back spare room at the end
if (!p->is_mmapped())
{
size_t size = p->chunksize();
if (size > nb + MIN_CHUNK_SIZE)
{
size_t remainder_size = size - nb;
mchunkptr remainder = (mchunkptr)p->chunk_plus_offset(nb);
set_inuse(p, nb);
set_inuse(remainder, remainder_size);
dispose_chunk(remainder, remainder_size);
}
}
mem = chunk2mem(p);
assert(p->chunksize() >= nb);
assert(((size_t)mem & (alignment - 1)) == 0);
check_inuse_chunk(p);
}
}
return mem;
}
/*
Common support for independent_X routines, handling
all of the combinations that can result.
The opts arg has:
bit 0 set if all elements are same size (using sizes[0])
bit 1 set if elements should be zeroed
*/
void** malloc_state::ialloc(size_t n_elements, size_t* sizes, int opts,
void* chunks[])
{
size_t element_size; // chunksize of each element, if all same
size_t contents_size; // total size of elements
size_t array_size; // request size of pointer array
void* mem; // malloced aggregate space
mchunkptr p; // corresponding chunk
size_t remainder_size; // remaining bytes while splitting
void** marray; // either "chunks" or malloced ptr array
mchunkptr array_chunk; // chunk for malloced ptr array
flag_t was_enabled; // to disable mmap
size_t size;
size_t i;
mparams.ensure_initialization();
// compute array length, if needed
if (chunks != 0)
{
if (n_elements == 0)
return chunks; // nothing to do
marray = chunks;
array_size = 0;
}
else
{
// if empty req, must still return chunk representing empty array
if (n_elements == 0)
return (void**)internal_malloc(0);
marray = 0;
array_size = request2size(n_elements * (sizeof(void*)));
}
// compute total element size
if (opts & 0x1)
{
// all-same-size
element_size = request2size(*sizes);
contents_size = n_elements * element_size;
}
else
{
// add up all the sizes
element_size = 0;
contents_size = 0;
for (i = 0; i != n_elements; ++i)
contents_size += request2size(sizes[i]);
}
size = contents_size + array_size;
/*
Allocate the aggregate chunk. First disable direct-mmapping so
malloc won't use it, since we would not be able to later
free/realloc space internal to a segregated mmap region.
*/
was_enabled = use_mmap();
disable_mmap();
mem = internal_malloc(size - CHUNK_OVERHEAD);
if (was_enabled)
enable_mmap();
if (mem == 0)
return 0;
p = mem2chunk(mem);
remainder_size = p->chunksize();
assert(!p->is_mmapped());
if (opts & 0x2)
{
// optionally clear the elements
memset((size_t*)mem, 0, remainder_size - sizeof(size_t) - array_size);
}
// If not provided, allocate the pointer array as final part of chunk
if (marray == 0)
{
size_t array_chunk_size;
array_chunk = (mchunkptr)p->chunk_plus_offset(contents_size);
array_chunk_size = remainder_size - contents_size;
marray = (void**)(chunk2mem(array_chunk));
set_size_and_pinuse_of_inuse_chunk(array_chunk, array_chunk_size);
remainder_size = contents_size;
}
// split out elements
for (i = 0; ; ++i)
{
marray[i] = chunk2mem(p);
if (i != n_elements - 1)
{
if (element_size != 0)
size = element_size;
else
size = request2size(sizes[i]);
remainder_size -= size;
set_size_and_pinuse_of_inuse_chunk(p, size);
p = (mchunkptr)p->chunk_plus_offset(size);
}
else
{
// the final element absorbs any overallocation slop
set_size_and_pinuse_of_inuse_chunk(p, remainder_size);
break;
}
}
#if SPP_DEBUG
if (marray != chunks)
{
// final element must have exactly exhausted chunk
if (element_size != 0)
assert(remainder_size == element_size);
else
assert(remainder_size == request2size(sizes[i]));
check_inuse_chunk(mem2chunk(marray));
}
for (i = 0; i != n_elements; ++i)
check_inuse_chunk(mem2chunk(marray[i]));
#endif
return marray;
}
/* Try to free all pointers in the given array.
Note: this could be made faster, by delaying consolidation,
at the price of disabling some user integrity checks, We
still optimize some consolidations by combining adjacent
chunks before freeing, which will occur often if allocated
with ialloc or the array is sorted.
*/
size_t malloc_state::internal_bulk_free(void* array[], size_t nelem)
{
size_t unfreed = 0;
if (1)
{
void** a;
void** fence = &(array[nelem]);
for (a = array; a != fence; ++a)
{
void* mem = *a;
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
size_t psize = p->chunksize();
#if SPP_FOOTERS
if (get_mstate_for(p) != m)
{
++unfreed;
continue;
}
#endif
check_inuse_chunk(p);
*a = 0;
if (rtcheck(ok_address(p) && ok_inuse(p)))
{
void ** b = a + 1; // try to merge with next chunk
mchunkptr next = (mchunkptr)p->next_chunk();
if (b != fence && *b == chunk2mem(next))
{
size_t newsize = next->chunksize() + psize;
set_inuse(p, newsize);
*b = chunk2mem(p);
}
else
dispose_chunk(p, psize);
}
else
{
SPP_ABORT;
break;
}
}
}
if (should_trim(_topsize))
sys_trim(0);
}
return unfreed;
}
void malloc_state::init(char* tbase, size_t tsize)
{
_seg._base = _least_addr = tbase;
_seg._size = _footprint = _max_footprint = tsize;
_magic = mparams._magic;
_release_checks = SPP_MAX_RELEASE_CHECK_RATE;
_mflags = mparams._default_mflags;
_extp = 0;
_exts = 0;
disable_contiguous();
init_bins();
mchunkptr mn = (mchunkptr)mem2chunk(this)->next_chunk();
init_top(mn, (size_t)((tbase + tsize) - (char*)mn) - top_foot_size());
check_top_chunk(_top);
}
/* Traversal */
#if SPP_MALLOC_INSPECT_ALL
void malloc_state::internal_inspect_all(void(*handler)(void *start, void *end,
size_t used_bytes,
void* callback_arg),
void* arg)
{
if (is_initialized())
{
mchunkptr top = top;
msegmentptr s;
for (s = &seg; s != 0; s = s->next)
{
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) && q->head != FENCEPOST_HEAD)
{
mchunkptr next = (mchunkptr)q->next_chunk();
size_t sz = q->chunksize();
size_t used;
void* start;
if (q->is_inuse())
{
used = sz - CHUNK_OVERHEAD; // must not be mmapped
start = chunk2mem(q);
}
else
{
used = 0;
if (is_small(sz))
{
// offset by possible bookkeeping
start = (void*)((char*)q + sizeof(struct malloc_chunk));
}
else
start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
}
if (start < (void*)next) // skip if all space is bookkeeping
handler(start, next, used, arg);
if (q == top)
break;
q = next;
}
}
}
}
#endif // SPP_MALLOC_INSPECT_ALL
/* ----------------------------- user mspaces ---------------------------- */
static mstate init_user_mstate(char* tbase, size_t tsize)
{
size_t msize = pad_request(sizeof(malloc_state));
mchunkptr msp = align_as_chunk(tbase);
mstate m = (mstate)(chunk2mem(msp));
memset(m, 0, msize);
msp->_head = (msize | INUSE_BITS);
m->init(tbase, tsize);
return m;
}
SPP_API mspace create_mspace(size_t capacity, int locked)
{
mstate m = 0;
size_t msize;
mparams.ensure_initialization();
msize = pad_request(sizeof(malloc_state));
if (capacity < (size_t) - (msize + top_foot_size() + mparams._page_size))
{
size_t rs = ((capacity == 0) ? mparams._granularity :
(capacity + top_foot_size() + msize));
size_t tsize = mparams.granularity_align(rs);
char* tbase = (char*)(SPP_CALL_MMAP(tsize));
if (tbase != cmfail)
{
m = init_user_mstate(tbase, tsize);
m->_seg._sflags = USE_MMAP_BIT;
m->set_lock(locked);
}
}
return (mspace)m;
}
SPP_API size_t destroy_mspace(mspace msp)
{
size_t freed = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
{
msegmentptr sp = &ms->_seg;
while (sp != 0)
{
char* base = sp->_base;
size_t size = sp->_size;
flag_t flag = sp->_sflags;
(void)base; // placate people compiling -Wunused-variable
sp = sp->_next;
if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
SPP_CALL_MUNMAP(base, size) == 0)
freed += size;
}
}
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return freed;
}
/* ---------------------------- mspace versions of malloc/calloc/free routines -------------------- */
SPP_API void* mspace_malloc(mspace msp, size_t bytes)
{
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ms->_malloc(bytes);
}
SPP_API void mspace_free(mspace msp, void* mem)
{
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
#if SPP_FOOTERS
mstate fm = get_mstate_for(p);
(void)msp; // placate people compiling -Wunused
#else
mstate fm = (mstate)msp;
#endif
if (!fm->ok_magic())
{
SPP_USAGE_ERROR_ACTION(fm, p);
return;
}
fm->_free(p);
}
}
SPP_API inline void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size)
{
void* mem;
size_t req = 0;
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
if (n_elements != 0)
{
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
(req / n_elements != elem_size))
req = spp_max_size_t; // force downstream failure on overflow
}
mem = ms->internal_malloc(req);
if (mem != 0 && mem2chunk(mem)->calloc_must_clear())
memset(mem, 0, req);
return mem;
}
SPP_API inline void* mspace_realloc(mspace msp, void* oldmem, size_t bytes)
{
void* mem = 0;
if (oldmem == 0)
mem = mspace_malloc(msp, bytes);
else if (bytes >= MAX_REQUEST)
SPP_MALLOC_FAILURE_ACTION;
#ifdef REALLOC_ZERO_BYTES_FREES
else if (bytes == 0)
mspace_free(msp, oldmem);
#endif
else
{
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! SPP_FOOTERS
mstate m = (mstate)msp;
#else
mstate m = get_mstate_for(oldp);
if (!m->ok_magic())
{
SPP_USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (1)
{
mchunkptr newp = m->try_realloc_chunk(oldp, nb, 1);
if (newp != 0)
{
m->check_inuse_chunk(newp);
mem = chunk2mem(newp);
}
else
{
mem = mspace_malloc(m, bytes);
if (mem != 0)
{
size_t oc = oldp->chunksize() - oldp->overhead_for();
memcpy(mem, oldmem, (oc < bytes) ? oc : bytes);
mspace_free(m, oldmem);
}
}
}
}
return mem;
}
#if 0
SPP_API mspace create_mspace_with_base(void* base, size_t capacity, int locked)
{
mstate m = 0;
size_t msize;
mparams.ensure_initialization();
msize = pad_request(sizeof(malloc_state));
if (capacity > msize + top_foot_size() &&
capacity < (size_t) - (msize + top_foot_size() + mparams._page_size))
{
m = init_user_mstate((char*)base, capacity);
m->_seg._sflags = EXTERN_BIT;
m->set_lock(locked);
}
return (mspace)m;
}
SPP_API int mspace_track_large_chunks(mspace msp, int enable)
{
int ret = 0;
mstate ms = (mstate)msp;
if (1)
{
if (!ms->use_mmap())
ret = 1;
if (!enable)
ms->enable_mmap();
else
ms->disable_mmap();
}
return ret;
}
SPP_API void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes)
{
void* mem = 0;
if (oldmem != 0)
{
if (bytes >= MAX_REQUEST)
SPP_MALLOC_FAILURE_ACTION;
else
{
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! SPP_FOOTERS
mstate m = (mstate)msp;
#else
mstate m = get_mstate_for(oldp);
(void)msp; // placate people compiling -Wunused
if (!m->ok_magic())
{
SPP_USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (1)
{
mchunkptr newp = m->try_realloc_chunk(oldp, nb, 0);
if (newp == oldp)
{
m->check_inuse_chunk(newp);
mem = oldmem;
}
}
}
}
return mem;
}
SPP_API void* mspace_memalign(mspace msp, size_t alignment, size_t bytes)
{
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
if (alignment <= SPP_MALLOC_ALIGNMENT)
return mspace_malloc(msp, bytes);
return ms->internal_memalign(alignment, bytes);
}
SPP_API void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[])
{
size_t sz = elem_size; // serves as 1-element array
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ms->ialloc(n_elements, &sz, 3, chunks);
}
SPP_API void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[])
{
mstate ms = (mstate)msp;
if (!ms->ok_magic())
{
SPP_USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ms->ialloc(n_elements, sizes, 0, chunks);
}
#endif
SPP_API inline size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem)
{
return ((mstate)msp)->internal_bulk_free(array, nelem);
}
#if SPP_MALLOC_INSPECT_ALL
SPP_API void mspace_inspect_all(mspace msp,
void(*handler)(void *start,
void *end,
size_t used_bytes,
void* callback_arg),
void* arg)
{
mstate ms = (mstate)msp;
if (ms->ok_magic())
internal_inspect_all(ms, handler, arg);
else
SPP_USAGE_ERROR_ACTION(ms, ms);
}
#endif
SPP_API inline int mspace_trim(mspace msp, size_t pad)
{
int result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
result = ms->sys_trim(pad);
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API inline size_t mspace_footprint(mspace msp)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
result = ms->_footprint;
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API inline size_t mspace_max_footprint(mspace msp)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
result = ms->_max_footprint;
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API inline size_t mspace_footprint_limit(mspace msp)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
{
size_t maf = ms->_footprint_limit;
result = (maf == 0) ? spp_max_size_t : maf;
}
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API inline size_t mspace_set_footprint_limit(mspace msp, size_t bytes)
{
size_t result = 0;
mstate ms = (mstate)msp;
if (ms->ok_magic())
{
if (bytes == 0)
result = mparams.granularity_align(1); // Use minimal size
if (bytes == spp_max_size_t)
result = 0; // disable
else
result = mparams.granularity_align(bytes);
ms->_footprint_limit = result;
}
else
SPP_USAGE_ERROR_ACTION(ms, ms);
return result;
}
SPP_API inline size_t mspace_usable_size(const void* mem)
{
if (mem != 0)
{
mchunkptr p = mem2chunk(mem);
if (p->is_inuse())
return p->chunksize() - p->overhead_for();
}
return 0;
}
SPP_API inline int mspace_mallopt(int param_number, int value)
{
return mparams.change(param_number, value);
}
} // spp_ namespace
#endif // SPP_EXCLUDE_IMPLEMENTATION
#endif // spp_dlalloc__h_
|