1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/*
ras - Redundant Archive System
Copyright (C) 1999 Nick Cleaton
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Nick Cleaton <nick@cleaton.net>
*/
/*
* The magic of Lagrange polynomial interpolation...
*
* Given (x1,y1), (x2,y2)...,(xn,yn) and x0, you want to find y0.
* This is hardly unique unless you specify that you want a polynomial in x
* fitted to the given points and evaluated at x0. If the polynomial is
* constrained to be of degree <= n-1 (in the unknown x), then it is unique.
*
* We use this (bytewise) to make sumfiles by letting the bytes of the
* segfiles be y1,y2, ...yn (the x values being 0,1,...n-1) and
* evaluating the polynomial at other x values (n to 255) to get the
* bytes of the segfiles. The segfile of sum ID m is generated using the
* x value (m + segcount).
*
* The easy way to find this polynomial is to use a set of degree n-1 basis
* polynomials bi(x) which are 1 at a single xi and 0 at all the other
* xj, j != i. (Needless to say, this is only possible if xi != xj.)
* Then you can just evaluate y = b1(x)*y1 + ... + bn(x)*yn.
*
* The zeroness is assured by including the factors (x-x1), ... (x-xn)
* in the numerator of the polynomial bi(x), omitting only (x-xi).
* This makes a polynomial of degree n-1 in x, as desired. Ensuring
* that bi(xi) == 1 requires dividing by the appropriate constant,
* (xi-x1)*...*(xi-xn), the numerator evaluated at xi, again omitting the
* (xi-xi) term.
*
* In more concrete terms,
*
* (x0-x2)*(x0-x3)*(x0-x4)*...*(x0-xn)
* y0 = y1 * -------------------------------------------
* (x1-x2)*(x1-x3)*(x1-x4)*...*(x1-xn)
*
* (x0-x1)* (x0-x3)*(x0-x4)*...*(x0-xn)
* + y2 * -------------------------------------------
* (x2-x0)* (x2-x3)*(x2-x4)*...*(x2-xn)
*
* + ...
*
* (x0-x1)*(x0-x2)*(x0-x3)*(x0-x4)*...
* + yn * -------------------------------------------
* (xn-x0)*(xn-x2)*(xn-x3)*(xn-x4)*...
*
* It turns out to be easier in practice to pre-compute (x0-x1)*...*(x0-xn)
* and then add the appropriate (x0-xi) term to the denominator to cancel
* the unneeded numerator term.
*
* For this arithmetic to work a finite field is needed. F_256 is
* convenient, as each number occupies one byte (the field_t type).
* Multiplication is done through log and antilog tables, f_log[] and
* f_exp[]. The f_exp[] * table is double-sized so that the sum of two
* logs can be looked up in it without range reduction, although larger
* accumulations require reduction modulo the order of the multiplicative
* group, namely 256-1 = 255.
*
* Most compilers can optimize division and remainder by a power
* of 2, but this one-off is usually handled by a general division,
* which is slow on most machines. There is a much faster version,
* using the fact that x*FIELD_SIZE == x (mod FIELD_SIZE-1). Thus,
* x == (x%FIELD_SIZE) + (x/FIELD_SIZE) (mod FIELD_SIZE-1), using
* truncating integer division. This obviously reduces the range of
* the output x. It can't reduce it below 0..FIELD_SIZE-1, but
* the antilog table is already big enough for that.
*
* The smallest x which is mapped to FIELD_SIZE or larger under this
* reduction is 2*FIELD_SIZE-1. The smallest x which is reduced to
* *that* or larger than FIELD_SIZE^2 - 1. So adding up
* FIELD_SIZE+1 entries with all values of FIELD_SIZE-1 will require a
* third iteration to achieve complete reduction, but less than that (all
* that we ever do here) requires only two.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include "common.h"
#include "utils.h"
#include "field.h"
#define FIELD_SIZE ((size_t)256)
#define FIELD_POLY 0x169
/*
* The possible primitive polynomials of degree 8 are
* 0x11d, 0x12b, 0x12d, 0x14d, 0x15f, 0x163, 0x165, 0x169,
* 0x171, 0x187, 0x18d, 0x1a9, 0x1c3, 0x1cf, 0x1e7, 0x1f5
* Other polynomials (irreducible but not primitive) are possible
* if you use something other than x as the generator.
*/
static field_t *f_exp;
static field_t *f_log;
static field_t *f_mult;
/**************************************************************************/
/*
* Initialize the f_exp and f_log arrays and the multiplicative lookup
* table.
*/
void init_field()
{
unsigned i, j, x;
field_t prod;
f_exp = Malloc( 2*FIELD_SIZE * sizeof(*f_exp) );
f_log = Malloc( FIELD_SIZE * sizeof(*f_log) );
f_mult = Malloc( FIELD_SIZE*FIELD_SIZE * sizeof(*f_mult) );
/*
** Fill in the log and antilog tables
*/
x = 1;
for (i = 0; i < FIELD_SIZE-1; i++) {
f_exp[i] = x;
f_exp[i+FIELD_SIZE-1] = x;
f_log[x] = i;
x <<= 1;
if (x & FIELD_SIZE)
x ^= FIELD_POLY;
}
/* x should be 1 here */
f_exp[2*FIELD_SIZE-2] = f_exp[0];
f_exp[2*FIELD_SIZE-1] = f_exp[1];
f_log[0] = i; /* Bogus value, FIELD_SIZE-1 */
/*
** Fill in the multiplication table
*/
for( i=0 ; i<FIELD_SIZE ; i++ )
{ f_mult[FIELD_SIZE*i + 0] = 0;
f_mult[FIELD_SIZE*0 + i] = 0;
}
for( j=1 ; j<FIELD_SIZE ; j++ )
{ for( i=j ; i<FIELD_SIZE ; i++ )
{ prod = f_exp[ f_log[i] + f_log[j] ];
f_mult[FIELD_SIZE*i + j] = prod;
f_mult[FIELD_SIZE*j + i] = prod;
}
}
}
/**************************************************************************/
/* Just to make the application clear... */
#define f_add(x,y) ((x)^(y))
#define f_sub(x,y) f_add(x,y)
/*
* This computes the coefficients used in Lagrange polynomial
* interpolation, returning the vector of b1(xtarget), b2(xtarget), ...,
* bn(xtarget).
* The y value at xtarget can be computed by taking the dot product of
* the returned coefficient vector with the y values.
*/
field_t *Makevector(size_t segcount, int *gotpoints, int wantpoint)
{
field_t *vec;
field_t xi, xj;
int i, j;
unsigned long numer, denom;
vec = Malloc(segcount * sizeof(*vec));
/* First, accumulate the numerator, Prod(wantpoint-gotpoints[i],i=0..n) */
numer = 0;
for (i = 0; i < segcount; i++)
numer += f_log[f_sub(gotpoints[i],wantpoint)];
/* Preliminary partial reduction */
numer = (numer%FIELD_SIZE) + (numer/FIELD_SIZE);
/* Then, for each coefficient, compute the corresponding denominator */
for (i = 0; i < segcount; i++) {
xi = gotpoints[i];
denom = 0;
for (j = 0; j < segcount; j++) {
xj = (i == j) ? wantpoint : gotpoints[j];
if (xi == xj)
{ fprintf(stderr,PROGNAME
": internal fault: indistinct xi in Makevector\n");
exit_because_of_error(INTERNAL_FAILURE);
}
denom += f_log[f_sub(xi,xj)];
}
denom = (denom%FIELD_SIZE)+(denom/FIELD_SIZE);
/* 0 <= denom < 2*FIELD_SIZE-1. */
/* Now find numer/denom. In log form, that's a subtract. */
denom = numer + 2*FIELD_SIZE-2 - denom;
denom = (denom%FIELD_SIZE)+(denom/FIELD_SIZE);
denom = (denom%FIELD_SIZE)+(denom/FIELD_SIZE);
vec[i] = f_exp[denom];
}
return vec;
}
/**************************************************************************/
void free_field()
{
free( f_mult );
free( f_log );
free( f_exp );
}
/**************************************************************************/
void dotproduct(size_t segcount, uchar *inbufbase, size_t inbufoffset,
uchar *outbuf, field_t *vector, size_t bytes)
{
int i, n;
unsigned char *src, *dst, *mult;
/* Start by making the output vector[0] multiplied by the first input */
mult = f_mult + (vector[0] * FIELD_SIZE);
/* mult now points to the base of a table of size FIELD_SIZE for
multiplication by vector[0]. */
src = inbufbase;
dst = outbuf;
n = bytes;
while(n--)
*dst++ = mult[ *src++ ];
/* Continue by adding vector[i] multiplied by the ith input to the
output for i>0
*/
for( i=1 ; i<segcount ; i++ )
{ mult = f_mult + (vector[i] * FIELD_SIZE);
/* mult now points to the base of a table of size FIELD_SIZE for
multiplication by vector[i]. */
src = inbufbase + (i * inbufoffset);
dst = outbuf;
n = bytes;
while(n--)
*dst++ ^= mult[ *src++ ];
}
}
/**************************************************************************/
|