1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
FUNCTION CCuij(UU,VV)
C ===============================================================
C Correlation coefficient between two (3x3) anisotropic
C displacement matrices Uij and Vij.
C See Merritt (1999) Acta Crystallographica D55, 1997-2004.
C Return 0 if any of the tensors involved are NPD
C ===============================================================
REAL CCuij V3VINV
REAL UU(3,3), VV(3,3), WW(3,3), UI(3,3), VI(3,3), WI(3,3)
REAL DUI, DVI, DWI
DUI = 1. / V3INV(UI,UU)
DVI = 1. / V3INV(VI,VV)
C Sylvester's criterion for NPD tensor
IF (DUI.LE.0 .OR. UU(1,1).LE.0
& .OR. (UU(1,1)*UU(2,2)-UU(1,2)*UU(2,1)).LE.0) THEN
CCuij = 0
RETURN
ENDIF
IF (DVI.LE.0 .OR. VV(1,1).LE.0
& .OR. (VV(1,1)*VV(2,2)-VV(1,2)*VV(2,1)).LE.0) THEN
CCuij = 0
RETURN
ENDIF
CALL M3ADD(WI,UI,VI)
DWI = V3INV(WW,WI)
IF (DWI.LE.0 .OR. WW(1,1).LE.0
& .OR. (WW(1,1)*WW(2,2)-WW(1,2)*WW(2,1)).LE.0) THEN
CCuij = 0
RETURN
ENDIF
CCuij = sqrt(sqrt(DUI*DVI))
& / sqrt(0.125*DWI)
RETURN
END
FUNCTION CCuv(U,V)
C ===============================================================
C Wrapper for CCuij()
C ===============================================================
REAL CCuv, CCuij
REAL U(6), V(6)
REAL UU(3,3), VV(3,3)
UU(1,1) = U(1)
UU(2,2) = U(2)
UU(3,3) = U(3)
UU(1,2) = U(4)
UU(2,1) = U(4)
UU(1,3) = U(5)
UU(3,1) = U(5)
UU(2,3) = U(6)
UU(3,2) = U(6)
VV(1,1) = V(1)
VV(2,2) = V(2)
VV(3,3) = V(3)
VV(1,2) = V(4)
VV(2,1) = V(4)
VV(1,3) = V(5)
VV(3,1) = V(5)
VV(2,3) = V(6)
VV(3,2) = V(6)
CCuv = CCuij(UU,VV)
RETURN
END
FUNCTION Suv(U,V)
C ===============================================================
C Normalized correlation coefficient ("similarity") between two
C anisotropic displacement vectors Uij and Vij.
C See Merritt (1999) Acta Crystallographica D55, 1997-2004.
C ===============================================================
REAL Suv, CCuij
REAL U(6), V(6)
REAL UU(3,3), VV(3,3), Uiso(3,3), Viso(3,3), WW(3,3)
REAL Ueq, Veq
UU(1,1) = U(1)
UU(2,2) = U(2)
UU(3,3) = U(3)
UU(1,2) = U(4)
UU(2,1) = U(4)
UU(1,3) = U(5)
UU(3,1) = U(5)
UU(2,3) = U(6)
UU(3,2) = U(6)
VV(1,1) = V(1)
VV(2,2) = V(2)
VV(3,3) = V(3)
VV(1,2) = V(4)
VV(2,1) = V(4)
VV(1,3) = V(5)
VV(3,1) = V(5)
VV(2,3) = V(6)
VV(3,2) = V(6)
Ueq = (UU(1,1) + UU(2,2) + UU(3,3)) / 3.
Veq = (VV(1,1) + VV(2,2) + VV(3,3)) / 3.
DO I = 1,3
DO J = 1,3
WW(I,J) = VV(I,J) * Ueq / Veq
Uiso(I,J) = 0
Viso(I,J) = 0
ENDDO
ENDDO
DO I = 1,3
Uiso(I,I) = Ueq
Viso(I,I) = Veq
ENDDO
Suv_top = CCuij(UU,WW)
Suv_bot = (CCuij(UU,Uiso) * CCuij(VV,Viso))
if (Suv_top.eq.0 .or. Suv_bot.eq.0) then
Suv = 0
else
Suv = Suv_top / Suv_bot
endif
RETURN
END
C =======================================================
C The rest of the file is just generic 3x3 matrix algebra
C =======================================================
SUBROUTINE V3CROSS(B,C,A)
C CROSS PRODUCT OF TWO VECTORS
C =======================
REAL A(3),B(3),C(3)
A(1)=B(2)*C(3)-C(2)*B(3)
A(2)=B(3)*C(1)-C(3)*B(1)
A(3)=B(1)*C(2)-C(1)*B(2)
RETURN
END
C
FUNCTION V3DOT(A,B)
C DOT PRODUCT OF TWO VECTORS
C ================
REAL A(3),B(3)
V3DOT=A(1)*B(1)+A(2)*B(2)+A(3)*B(3)
RETURN
END
C
SUBROUTINE M3ADD(A,B,C)
C A=B+C
C ========================
REAL A(3,3),B(3,3),C(3,3)
DO I=1,3
DO J=1,3
A(I,J) = B(I,J) + C(I,J)
ENDDO
ENDDO
RETURN
END
C
SUBROUTINE M3MUL(A,B,C)
C A=B*C
C ========================
REAL A(3,3),B(3,3),C(3,3),S
DO I=1,3
DO J=1,3
S=0
DO K=1,3
S=S+B(I,K)*C(K,J)
ENDDO
A(I,J)=S
ENDDO
ENDDO
RETURN
END
C
FUNCTION V3INV(A,B)
C INVERT A GENERAL 3X3 MATRIX AND RETURN DETERMINANT
C A=(B)-1
C ======================
REAL A(3,3),B(3,3),C(3,3),D
CALL V3CROSS(B(1,2),B(1,3),C(1,1))
CALL V3CROSS(B(1,3),B(1,1),C(1,2))
CALL V3CROSS(B(1,1),B(1,2),C(1,3))
D=V3DOT(B(1,1),C(1,1))
IF (ABS(D).LE.1.E-30) THEN
V3INV=0.0
RETURN
ENDIF
DO I=1,3
DO J=1,3
A(I,J)=C(J,I)/D
ENDDO
ENDDO
V3INV=D
RETURN
END
C
|