1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
|
from copy import deepcopy
import math
from unittest import mock
from affine import Affine
import numpy as np
import pytest
from numpy.testing import assert_allclose
import rasterio
from rasterio.enums import MergeAlg
from rasterio.errors import WindowError, ShapeSkipWarning
from rasterio.features import (
bounds, geometry_mask, geometry_window, is_valid_geom, rasterize, sieve,
shapes)
from .conftest import MockGeoInterface, requires_gdal3_11, requires_gdal_lt_3_11, requires_gdal3_12_1, requires_gdal_lt_3_12_1
DEFAULT_SHAPE = (10, 10)
def test_bounds_point():
g = {'type': 'Point', 'coordinates': [10, 10]}
assert bounds(g) == (10, 10, 10, 10)
assert bounds(MockGeoInterface(g)) == (10, 10, 10, 10)
def test_bounds_line():
g = {'type': 'LineString', 'coordinates': [[0, 0], [10, 10]]}
assert bounds(g) == (0, 0, 10, 10)
assert bounds(MockGeoInterface(g)) == (0, 0, 10, 10)
def test_bounds_ring():
g = {'type': 'LinearRing', 'coordinates': [[0, 0], [10, 10], [10, 0]]}
assert bounds(g) == (0, 0, 10, 10)
assert bounds(MockGeoInterface(g)) == (0, 0, 10, 10)
def test_bounds_polygon():
g = {'type': 'Polygon', 'coordinates': [[[0, 0], [10, 10], [10, 0]]]}
assert bounds(g) == (0, 0, 10, 10)
assert bounds(MockGeoInterface(g)) == (0, 0, 10, 10)
def test_bounds_z():
g = {'type': 'Point', 'coordinates': [10, 10, 10]}
assert bounds(g) == (10, 10, 10, 10)
assert bounds(MockGeoInterface(g)) == (10, 10, 10, 10)
@pytest.mark.parametrize('geometry', [
{'type': 'Polygon'},
{'type': 'Polygon', 'not_coordinates': []},
{'type': 'bogus', 'not_coordinates': []},
{
'type': 'GeometryCollection',
'geometries': [
{'type': 'Point', 'coordinates': [1, 1]},
{'type': 'LineString', 'not_coordinates': [[-10, -20], [10, 20]]},
]
}
])
def test_bounds_invalid_obj(geometry):
with pytest.raises(ValueError, match="geometry must be a GeoJSON-like geometry, GeometryCollection, or FeatureCollection"):
bounds(geometry)
def test_bounds_feature_collection(basic_featurecollection):
fc = basic_featurecollection
assert bounds(fc) == bounds(fc['features'][0]) == (2, 2, 4.25, 4.25)
def test_bounds_geometry_collection():
gc = {
'type': 'GeometryCollection',
'geometries': [
{'type': 'Point', 'coordinates': [1, 1]},
{'type': 'LineString', 'coordinates': [[-10, -20], [10, 20]]},
{'type': 'Polygon', 'coordinates': [[[5, 5], [25, 50], [25, 5]]]}
]
}
assert bounds(gc) == (-10, -20, 25, 50)
assert bounds(MockGeoInterface(gc)) == (-10, -20, 25, 50)
def test_bounds_existing_bbox(basic_featurecollection):
"""Test with existing bbox in geojson.
Similar to that produced by rasterio. Values specifically modified here
for testing, bboxes are not valid as written.
"""
fc = basic_featurecollection
fc['bbox'] = [0, 10, 10, 20]
fc['features'][0]['bbox'] = [0, 100, 10, 200]
assert bounds(fc['features'][0]) == (0, 100, 10, 200)
assert bounds(fc) == (0, 10, 10, 20)
def test_geometry_mask(basic_geometry, basic_image_2x2):
assert np.array_equal(
basic_image_2x2 == 0,
geometry_mask(
[basic_geometry],
out_shape=DEFAULT_SHAPE,
transform=Affine.identity()
)
)
def test_geometry_mask_invert(basic_geometry, basic_image_2x2):
assert np.array_equal(
basic_image_2x2,
geometry_mask(
[basic_geometry],
out_shape=DEFAULT_SHAPE,
transform=Affine.identity(),
invert=True
)
)
@pytest.mark.parametrize(
"geom",
[{"type": "Invalid"}, {"type": "Point"}, {"type": "Point", "coordinates": []}],
)
def test_geometry_invalid_geom(geom):
"""An invalid geometry should fail"""
with pytest.warns(ShapeSkipWarning):
mask = geometry_mask(
[geom],
out_shape=DEFAULT_SHAPE,
transform=Affine.identity())
assert mask.shape == DEFAULT_SHAPE
assert np.all(mask)
def test_geometry_mask_invalid_shape(basic_geometry):
"""A width==0 or height==0 should fail with ValueError"""
for shape in [(0, 0), (1, 0), (0, 1)]:
with pytest.raises(ValueError) as exc_info:
geometry_mask(
[basic_geometry],
out_shape=shape,
transform=Affine.identity())
assert 'must be > 0' in exc_info.value.args[0]
def test_geometry_mask_no_transform(basic_geometry):
with pytest.raises(TypeError):
geometry_mask(
[basic_geometry],
out_shape=DEFAULT_SHAPE,
transform=None)
def test_geometry_window_no_pad(basic_image_file, basic_geometry):
with rasterio.open(basic_image_file) as src:
window = geometry_window(src, [basic_geometry, basic_geometry])
assert window.flatten() == (2, 2, 3, 3)
def test_geometry_window_geo_interface(basic_image_file, basic_geometry):
with rasterio.open(basic_image_file) as src:
window = geometry_window(src, [MockGeoInterface(basic_geometry)])
assert window.flatten() == (2, 2, 3, 3)
def test_geometry_window_pixel_precision(basic_image_file):
"""Window offsets should be floor, width and height ceiling"""
geom2 = {
'type': 'Polygon',
'coordinates': [[
(1.99999, 2),
(1.99999, 4.0001), (4.0001, 4.0001), (4.0001, 2),
(1.99999, 2)
]]
}
with rasterio.open(basic_image_file) as src:
window = geometry_window(src, [geom2], pixel_precision=6)
assert window.flatten() == (1, 2, 4, 3)
def test_geometry_window_north_up(path_rgb_byte_tif):
geometry = {
'type': 'Polygon',
'coordinates': [[
(200000, 2700000),
(200000, 2750000),
(250000, 2750000),
(250000, 2700000),
(200000, 2700000)
]]
}
with rasterio.open(path_rgb_byte_tif) as src:
window = geometry_window(src, [geometry])
assert window.flatten() == (326, 256, 168, 167)
def test_geometry_window_rotated_boundless():
"""Get the right boundless window for a rotated dataset"""
sqrt2 = math.sqrt(2.0)
dataset = mock.MagicMock()
dataset.transform = (
Affine.rotation(-45.0)
* Affine.translation(-sqrt2, sqrt2)
* Affine.scale(sqrt2 / 2.0, -sqrt2 / 2.0)
)
dataset.height = 4.0
dataset.width = 4.0
geometry = {
"type": "Polygon",
"coordinates": [
[(-2.0, -2.0), (-2.0, 2.0), (2.0, 2.0), (2.0, -2.0), (-2.0, -2.0),]
],
}
win = geometry_window(dataset, [geometry, geometry], boundless=True)
assert win.col_off == pytest.approx(-2.0)
assert win.row_off == pytest.approx(-2.0)
assert win.width == pytest.approx(2.0 * dataset.width)
assert win.height == pytest.approx(2.0 * dataset.height)
def test_geometry_window_pad(basic_image_file, basic_geometry):
# Note: this dataset's geotransform is not a geographic one.
# x increases with col, but y also increases with row.
# It's flipped, not rotated like a south-up world map.
with rasterio.open(basic_image_file) as src:
transform = src.transform
dataset = mock.MagicMock()
dataset.res = src.res
dataset.transform = src.transform
dataset.height = src.height
dataset.width = src.width
window = geometry_window(dataset, [basic_geometry], pad_x=0.5, pad_y=0.5)
assert window.flatten() == (1, 1, 4, 4)
def test_geometry_window_large_shapes(basic_image_file):
geometry = {
'type': 'Polygon',
'coordinates': [[
(-2000, -2000),
(-2000, 2000),
(2000, 2000),
(2000, -2000),
(-2000, -2000)
]]
}
with rasterio.open(basic_image_file) as src:
window = geometry_window(src, [geometry])
assert window.flatten() == (0, 0, src.height, src.width)
def test_geometry_window_no_overlap(path_rgb_byte_tif, basic_geometry):
"""Geometries that do not overlap raster raises WindowError"""
with rasterio.open(path_rgb_byte_tif) as src:
with pytest.raises(WindowError):
geometry_window(src, [basic_geometry], north_up=False)
def test_is_valid_geo_interface(geojson_point):
"""Properly formed Point object with geo interface is valid"""
assert is_valid_geom(MockGeoInterface(geojson_point))
def test_is_valid_geom_point(geojson_point):
"""Properly formed GeoJSON Point is valid"""
assert is_valid_geom(geojson_point)
# Empty coordinates are invalid
geojson_point['coordinates'] = []
assert not is_valid_geom(geojson_point)
def test_is_valid_geom_multipoint(geojson_multipoint):
"""Properly formed GeoJSON MultiPoint is valid"""
assert is_valid_geom(geojson_multipoint)
# Empty iterable is invalid
geom = deepcopy(geojson_multipoint)
geom['coordinates'] = []
assert not is_valid_geom(geom)
# Empty first coordinate is invalid
geom = deepcopy(geojson_multipoint)
geom['coordinates'] = [[]]
def test_is_valid_geom_line(geojson_line):
"""Properly formed GeoJSON LineString is valid"""
assert is_valid_geom(geojson_line)
# Empty iterable is invalid
geom = deepcopy(geojson_line)
geom['coordinates'] = []
assert not is_valid_geom(geom)
# Empty first coordinate is invalid
geom = deepcopy(geojson_line)
geom['coordinates'] = [[]]
def test_is_valid_geom_multiline(geojson_line):
"""Properly formed GeoJSON MultiLineString is valid"""
assert is_valid_geom(geojson_line)
# Empty iterables are invalid
geom = deepcopy(geojson_line)
geom['coordinates'] = []
assert not is_valid_geom(geom)
geom = deepcopy(geojson_line)
geom['coordinates'] = [[]]
assert not is_valid_geom(geom)
# Empty first coordinate is invalid
geom = deepcopy(geojson_line)
geom['coordinates'] = [[[]]]
assert not is_valid_geom(geom)
def test_is_valid_geom_polygon(geojson_polygon):
"""Properly formed GeoJSON Polygon is valid"""
assert is_valid_geom(geojson_polygon)
# Empty iterables are invalid
geom = deepcopy(geojson_polygon)
geom['coordinates'] = []
assert not is_valid_geom(geom)
geom = deepcopy(geojson_polygon)
geom['coordinates'] = [[]]
assert not is_valid_geom(geom)
# Empty first coordinate is invalid
geom = deepcopy(geojson_polygon)
geom['coordinates'] = [[[]]]
assert not is_valid_geom(geom)
def test_is_valid_geom_ring(geojson_polygon):
"""Properly formed GeoJSON LinearRing is valid"""
geojson_ring = deepcopy(geojson_polygon)
geojson_ring['type'] = 'LinearRing'
# take first ring from polygon as sample
geojson_ring['coordinates'] = geojson_ring['coordinates'][0]
assert is_valid_geom(geojson_ring)
# Empty iterables are invalid
geom = deepcopy(geojson_ring)
geom['coordinates'] = []
assert not is_valid_geom(geom)
geom = deepcopy(geojson_ring)
geom['coordinates'] = [[]]
assert not is_valid_geom(geom)
def test_is_valid_geom_multipolygon(geojson_multipolygon):
"""Properly formed GeoJSON MultiPolygon is valid"""
assert is_valid_geom(geojson_multipolygon)
# Empty iterables are invalid
geom = deepcopy(geojson_multipolygon)
geom['coordinates'] = []
assert not is_valid_geom(geom)
geom = deepcopy(geojson_multipolygon)
geom['coordinates'] = [[]]
assert not is_valid_geom(geom)
geom = deepcopy(geojson_multipolygon)
geom['coordinates'] = [[[]]]
assert not is_valid_geom(geom)
# Empty first coordinate is invalid
geom = deepcopy(geojson_multipolygon)
geom['coordinates'] = [[[[]]]]
assert not is_valid_geom(geom)
def test_is_valid_geom_geomcollection(geojson_geomcollection):
"""Properly formed GeoJSON GeometryCollection is valid"""
assert is_valid_geom(geojson_geomcollection)
# Empty GeometryCollection is invalid
geom = deepcopy(geojson_geomcollection)
geom['geometries'] = []
assert not is_valid_geom(geom)
@pytest.mark.parametrize("geom", [None, 1, "foo", "type", ["type"], {"type": "Invalid"}, {"type": "Point"}])
def test_is_valid_geom_invalid_inputs(geom):
"""Improperly formed GeoJSON objects should fail"""
assert not is_valid_geom(geom)
def test_rasterize_point(geojson_point):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
expected[2, 2] = 1
assert np.array_equal(
rasterize([geojson_point], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_to_dataset(tmp_path, geojson_point):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype="uint8")
expected[2, 2] = 1
with rasterio.open(
tmp_path / "test.tif",
"w",
driver="GTiff",
count=1,
width=10,
height=10,
dtype="uint8",
crs="EPSG:4326",
transform=Affine.translation(0.0, 0.0) * Affine.scale(1.0, 1.0),
) as dst:
rasterize([geojson_point], dst_path=dst)
with rasterio.open(tmp_path / "test.tif") as dst:
result = dst.read(indexes=1)
assert np.array_equal(result, expected)
def test_rasterize_to_file(tmp_path, geojson_point):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype="uint8")
expected[2, 2] = 1
expected = np.ma.masked_equal(expected, 0)
dst_kwds = dict(
driver="GTiff",
count=1,
width=10,
height=10,
dtype="uint8",
crs="EPSG:4326",
transform=Affine.translation(0.0, 0.0) * Affine.scale(1.0, 1.0),
)
rasterize(
[geojson_point], nodata=0.0, dst_path=(tmp_path / "test.tif"), dst_kwds=dst_kwds
)
with rasterio.open(tmp_path / "test.tif") as dst:
result = dst.read(indexes=1, masked=True)
assert np.array_equal(result, expected)
def test_rasterize_point_dtype_int(geojson_point):
"""Demonstrate fix of #3043."""
expected = np.zeros(shape=DEFAULT_SHAPE, dtype=int)
expected[2, 2] = 1
assert np.array_equal(
rasterize([geojson_point], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_multipoint(geojson_multipoint):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
expected[2, 2] = 1
expected[4, 4] = 1
assert np.array_equal(
rasterize([geojson_multipoint], out_shape=DEFAULT_SHAPE), expected
)
def test_rasterize_multipoint_masked(geojson_multipoint):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype="uint8")
expected[2, 2] = 1
expected[4, 4] = 1
expected = np.ma.masked_equal(expected, 0)
assert np.array_equal(
rasterize([geojson_multipoint], out_shape=DEFAULT_SHAPE, masked=True), expected
)
def test_rasterize_line(geojson_line):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
expected[2, 2] = 1
expected[3, 3] = 1
expected[4, 4] = 1
assert np.array_equal(
rasterize([geojson_line], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_multiline(geojson_multiline):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
expected[2, 2] = 1
expected[3, 3] = 1
expected[4, 4] = 1
expected[0, 0:5] = 1
assert np.array_equal(
rasterize([geojson_multiline], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_polygon(geojson_polygon, basic_image_2x2):
assert np.array_equal(
rasterize([geojson_polygon], out_shape=DEFAULT_SHAPE),
basic_image_2x2
)
def test_rasterize_multipolygon(geojson_multipolygon):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
expected[0:1, 0:1] = 1
expected[2:4, 2:4] = 1
assert np.array_equal(
rasterize([geojson_multipolygon], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_geomcollection(geojson_geomcollection):
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
expected[0:1, 0:1] = 1
expected[2:4, 2:4] = 1
assert np.array_equal(
rasterize([geojson_geomcollection], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_geo_interface(geojson_polygon, basic_image_2x2):
assert np.array_equal(
rasterize([MockGeoInterface(geojson_polygon)], out_shape=DEFAULT_SHAPE),
basic_image_2x2
)
def test_rasterize_geomcollection_no_hole():
"""
Make sure that bug reported in
https://github.com/rasterio/rasterio/issues/1253
does not recur. GeometryCollections are flattened to individual parts,
and should result in no holes where parts overlap.
"""
geomcollection = {'type': 'GeometryCollection', 'geometries': [
{'type': 'Polygon',
'coordinates': (((0, 0), (0, 5), (5, 5), (5, 0), (0, 0)),)},
{'type': 'Polygon',
'coordinates': (((2, 2), (2, 7), (7, 7), (7, 2), (2, 2)),)}
]}
expected = rasterize(geomcollection['geometries'], out_shape=DEFAULT_SHAPE)
assert np.array_equal(
rasterize([geomcollection], out_shape=DEFAULT_SHAPE),
expected
)
def test_rasterize_multipolygon_no_hole():
"""
Make sure that bug reported in
https://github.com/rasterio/rasterio/issues/1253
does not recur. MultiPolygons are flattened to individual parts,
and should result in no holes where parts overlap.
"""
poly1 = (((0, 0), (0, 5), (5, 5), (5, 0), (0, 0)),)
poly2 = (((2, 2), (2, 7), (7, 7), (7, 2), (2, 2)),)
polys = [{'type': 'Polygon', 'coordinates': poly1},
{'type': 'Polygon', 'coordinates': poly2}]
multipoly = {'type': 'MultiPolygon', 'coordinates': [poly1, poly2]}
expected = rasterize(polys, out_shape=DEFAULT_SHAPE)
assert np.array_equal(
rasterize([multipoly], out_shape=DEFAULT_SHAPE),
expected
)
@pytest.mark.parametrize(
"input",
[
[{"type"}],
[{"type": "Invalid"}],
[{"type": "Point"}],
[{"type": "Point", "coordinates": []}],
[{"type": "GeometryCollection", "geometries": []}],
],
)
def test_rasterize_invalid_geom(input):
"""Invalid GeoJSON should be skipped with a warning."""
with pytest.warns(ShapeSkipWarning):
out = rasterize(input, out_shape=DEFAULT_SHAPE)
assert out.shape == DEFAULT_SHAPE
assert np.all(out == 0)
def test_rasterize_skip_only_invalid_geom(geojson_polygon, basic_image_2x2):
"""Rasterize operation should succeed for at least one valid geometry."""
with pytest.warns(ShapeSkipWarning, match="Invalid or empty shape"):
out = rasterize(
[geojson_polygon, {"type": "Polygon", "coordinates": []}],
out_shape=DEFAULT_SHAPE,
)
assert np.array_equal(out, basic_image_2x2)
@pytest.mark.parametrize("dtype", [
None,
"int8",
"uint8",
"uint16",
"int16",
"uint32",
"int32",
"int64",
pytest.param(
"float16",
marks=requires_gdal3_11,
),
"float32",
"float64"
])
def test_rasterize_out_image(dtype, basic_geometry, basic_image_2x2):
"""Rasterize operation should succeed for an out image."""
out = np.zeros(DEFAULT_SHAPE, dtype=dtype)
rasterize([basic_geometry], out=out)
assert np.array_equal(basic_image_2x2, out)
@requires_gdal_lt_3_11
def test_rasterize_unsupported_dtype_single(basic_geometry):
"""A non-supported data type for out should raise an exception."""
out = np.zeros(DEFAULT_SHAPE, dtype=np.float16)
with pytest.raises(ValueError):
rasterize([basic_geometry], out=out)
@pytest.mark.xfail(reason="shape values are always unsafely cast to the given dtype.")
def test_rasterize_shapes_out_dtype_mismatch(basic_geometry):
"""Shape values must be able to fit in data type for out."""
out = np.zeros(DEFAULT_SHAPE, dtype=np.uint8)
with pytest.raises(ValueError):
rasterize([(basic_geometry, 10000000)], out=out)
def test_rasterize_missing_out(basic_geometry):
"""If both out and out_shape are missing, should raise exception."""
with pytest.raises(ValueError):
rasterize([basic_geometry], out=None, out_shape=None)
def test_rasterize_missing_shapes():
"""Shapes are not required for this operation."""
out = rasterize([], out_shape=DEFAULT_SHAPE)
assert out.shape == DEFAULT_SHAPE
assert np.all(out == 0)
def test_rasterize_invalid_shapes_skip():
"""Invalid shapes can be skipped with a warning, the default."""
with pytest.warns(ShapeSkipWarning):
rasterize([{'foo': 'bar'}], out_shape=DEFAULT_SHAPE)
def test_rasterize_invalid_shapes_no_skip():
"""Invalid shapes can raise an exception rather than be skipped."""
with pytest.raises(ValueError):
rasterize([{'foo': 'bar'}], out_shape=DEFAULT_SHAPE, skip_invalid=False)
@pytest.mark.parametrize("shape", [(1, 10, 10), (10,)])
def test_rasterize_invalid_out_shape(basic_geometry, shape):
"""output array shape must be 2D."""
with pytest.raises(ValueError, match="Invalid out_shape"):
rasterize([basic_geometry], out_shape=shape)
with pytest.raises(ValueError) as ex:
rasterize([basic_geometry], out_shape=(10,))
assert 'Invalid out_shape' in str(ex.value)
@pytest.mark.parametrize("shape", [(0, 0), (1, 0), (0, 1)])
def test_rasterize_invalid_out_extent(basic_geometry, shape):
"""output array shape must have nonzero extent."""
with pytest.raises(ValueError, match="must be > 0"):
rasterize([basic_geometry], out_shape=shape)
def test_rasterize_default_value(basic_geometry, basic_image_2x2):
"""All shapes should rasterize to the default value."""
default_value = 2
truth = basic_image_2x2 * default_value
assert np.array_equal(
truth,
rasterize(
[basic_geometry], out_shape=DEFAULT_SHAPE,
default_value=default_value
)
)
def test_rasterize_default_value_for_none(basic_geometry, basic_image_2x2):
"""All shapes should rasterize to the default value."""
assert np.all(
rasterize([(basic_geometry, None)], out_shape=DEFAULT_SHAPE, fill=2) == 2
)
def test_rasterize_int64_default_value(basic_geometry):
"""A default value that requires an int64 succeeds for GDAL >= 3.5."""
rasterize([basic_geometry], out_shape=DEFAULT_SHAPE, default_value=1000000000000)
def test_rasterize_fill_value(basic_geometry, basic_image_2x2):
"""All pixels not covered by shapes should be given fill value."""
default_value = 2
assert np.array_equal(
basic_image_2x2 + 1,
rasterize(
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=1,
default_value=default_value
)
)
def test_rasterize_invalid_fill_value(basic_geometry):
"""Fill arg no longer determines data type."""
out = rasterize(
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=0.5, default_value=2
)
assert out.dtype.kind != "f"
def test_rasterize_all_touched(basic_geometry, basic_image):
assert np.array_equal(
basic_image,
rasterize(
[basic_geometry], out_shape=DEFAULT_SHAPE, all_touched=True
)
)
def test_rasterize_merge_alg_add(basic_geometry, basic_image_2x2x2):
"""
Rasterizing two times the basic_geometry with the "add" merging
option should output the shape with the value 2
"""
with rasterio.Env():
assert np.array_equal(
basic_image_2x2x2,
rasterize(
[basic_geometry, basic_geometry], merge_alg=MergeAlg.add,
out_shape=DEFAULT_SHAPE)
)
def test_rasterize_value(basic_geometry, basic_image_2x2):
"""
All shapes should rasterize to the value passed in a tuple alongside
each shape
"""
value = 5
assert np.array_equal(
basic_image_2x2 * value,
rasterize(
[(basic_geometry, value)], out_shape=DEFAULT_SHAPE
)
)
@pytest.mark.parametrize(
"dtype",
[
pytest.param(
"float16",
marks=requires_gdal_lt_3_11,
),
],
)
def test_rasterize_unsupported_dtype(basic_geometry, dtype):
"""Unsupported types should all raise exceptions."""
with pytest.raises(ValueError):
rasterize([basic_geometry], out_shape=DEFAULT_SHAPE, dtype=dtype)
def test_rasterize_geometries_symmetric():
"""Make sure that rasterize is symmetric with shapes."""
transform = (1.0, 0.0, 0.0, 0.0, -1.0, 0.0)
truth = np.zeros(DEFAULT_SHAPE, dtype=rasterio.ubyte)
truth[2:5, 2:5] = 1
s = shapes(truth, transform=transform)
result = rasterize(s, out_shape=DEFAULT_SHAPE, transform=transform)
assert np.array_equal(result, truth)
def test_rasterize_internal_driver_manager(basic_geometry):
"""Rasterize should work without explicitly calling driver manager."""
assert rasterize([basic_geometry], out_shape=DEFAULT_SHAPE).sum() == 4
def test_rasterize_geo_interface_2(geojson_polygon):
"""Objects that implement the geo interface should rasterize properly"""
class GeoObj:
@property
def __geo_interface__(self):
return geojson_polygon
assert rasterize([GeoObj()], out_shape=DEFAULT_SHAPE).sum() == 4
def test_rasterize__numpy_coordinates__fail():
# https://github.com/rasterio/rasterio/issues/2385
shapes = [
(
{
"type": "LineString",
"coordinates": np.array(
[
[425596.0123443, 4932971.35636043],
[425598.03434254, 4932966.09916503],
[425592.56573176, 4932963.99585319],
[425590.54373353, 4932969.2530486],
[425596.0123443, 4932971.35636043],
]
),
},
2,
),
(
{
"type": "LineString",
"coordinates": np.array(
[
[425582.9243515, 4932973.24623693],
[425592.85588065, 4932951.94800393],
[425584.24595668, 4932947.93313045],
[425574.31442752, 4932969.23136344],
[425582.9243515, 4932973.24623693],
]
),
},
2,
),
]
out = rasterio.features.rasterize(shapes=shapes, out_shape=(100, 100))
assert out.shape == (100, 100)
# will fail and be filled with 0
assert (out == 0).all()
def test_shapes(basic_image):
"""Test creation of shapes from pixel values."""
shapely = pytest.importorskip("shapely", reason="Test requires shapely.")
results = list(shapes(basic_image))
assert len(results) == 2
shape, value = results[0]
assert shape == {
'coordinates': [
[(2, 2), (2, 5), (5, 5), (5, 2), (2, 2)]
],
'type': 'Polygon'
}
assert value == 1
shape, value = results[1]
assert shapely.geometry.shape(shape).area == 91.0
assert value == 0
def test_shapes_2509(basic_image):
"""Test creation of shapes from pixel values, issue #2509."""
shapely = pytest.importorskip("shapely", reason="Test requires shapely.")
image_with_strides = np.pad(basic_image, 1)[1:-1, 1:-1]
np.testing.assert_array_equal(basic_image, image_with_strides)
assert image_with_strides.__array_interface__["strides"] is not None
results = list(shapes(image_with_strides))
assert len(results) == 2
shape, value = results[0]
assert shape == {
'coordinates': [
[(2, 2), (2, 5), (5, 5), (5, 2), (2, 2)]
],
'type': 'Polygon'
}
assert value == 1
shape, value = results[1]
assert shapely.geometry.shape(shape).area == 91.0
assert value == 0
def test_shapes_band(pixelated_image, pixelated_image_file):
"""Shapes from a band should match shapes from an array."""
truth = list(shapes(pixelated_image))
with rasterio.open(pixelated_image_file) as src:
band = rasterio.band(src, 1)
assert truth == list(shapes(band))
# Mask band should function, but will mask out some results
assert truth[0] == list(shapes(band, mask=band))[0]
def test_shapes_connectivity_rook(diagonal_image):
"""
Diagonals are not connected, so there will be 1 feature per pixel plus
background.
"""
assert len(list(shapes(diagonal_image, connectivity=4))) == 12
def test_shapes_connectivity_queen(diagonal_image):
"""
Diagonals are connected, so there will be 1 feature for all pixels plus
background.
"""
assert len(list(shapes(diagonal_image, connectivity=8))) == 2
def test_shapes_connectivity_invalid(diagonal_image):
"""Invalid connectivity should raise exception."""
with pytest.raises(ValueError):
assert next(shapes(diagonal_image, connectivity=12))
def test_shapes_mask(basic_image):
"""Only pixels not masked out should be converted to features."""
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
mask[4:5, 4:5] = False
results = list(shapes(basic_image, mask=mask))
assert len(results) == 2
shape, value = results[0]
assert shape == {
'coordinates': [
[(2, 2), (2, 5), (4, 5), (4, 4), (5, 4), (5, 2), (2, 2)]
],
'type': 'Polygon'
}
assert value == 1
def test_shapes_masked_array(basic_image):
"""Only pixels not masked out should be converted to features."""
mask = np.full(basic_image.shape, False, dtype=rasterio.bool_)
mask[4:5, 4:5] = True
results = list(shapes(np.ma.masked_array(basic_image, mask=mask)))
assert len(results) == 2
shape, value = results[0]
assert shape == {
'coordinates': [
[(2, 2), (2, 5), (4, 5), (4, 4), (5, 4), (5, 2), (2, 2)]
],
'type': 'Polygon'
}
assert value == 1
def test_shapes_blank_mask(basic_image):
"""Mask is blank so results should mask shapes without mask."""
assert np.array_equal(
list(shapes(
basic_image,
mask=np.ones(basic_image.shape, dtype=rasterio.bool_))
),
list(shapes(basic_image))
)
def test_shapes_invalid_mask_shape(basic_image):
"""A mask that is the wrong shape should fail."""
with pytest.raises(ValueError):
next(shapes(
basic_image,
mask=np.ones(
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
dtype=rasterio.bool_
)
))
def test_shapes_invalid_mask_dtype(basic_image):
"""A mask that is the wrong dtype should fail."""
for dtype in ('int8', 'int16', 'int32'):
with pytest.raises(ValueError):
next(shapes(
basic_image,
mask=np.ones(basic_image.shape, dtype=dtype)
))
@pytest.mark.parametrize(
"dtype, test_value, rtol",
[
("int8", -127, 0),
("int16", -32768, 0),
("int32", -2147483648, 0),
("int64", 20439845334323, 0),
("uint8", 255, 0),
("uint16", 65535, 0),
("uint32", 4294967295, 0),
pytest.param("float16", -9.1, 0.1, marks=requires_gdal3_11),
("float32", 1.434532, 1e-6),
pytest.param("float64", 2717538304, 0.1, marks=requires_gdal3_12_1),
],
)
def test_shapes_supported_dtypes(basic_image, dtype, rtol, test_value):
"""Supported data types should return valid results."""
shape, value = next(shapes(basic_image.astype(dtype) * test_value))
assert_allclose(value, test_value, rtol=rtol)
@pytest.mark.parametrize(
"dtype, test_value",
[
("uint64", 20439845334323),
pytest.param("float64", 2717538304, marks=requires_gdal_lt_3_12_1),
],
)
def test_shapes_partially_supported_dtypes(basic_image, dtype, test_value):
with pytest.warns(UserWarning, match="Truncation issues"):
shape, value = next(shapes(basic_image.astype(dtype) * test_value))
assert_allclose(value, test_value)
@pytest.mark.parametrize(
"dtype, test_value",
[
pytest.param("float16", -9.1, marks=requires_gdal_lt_3_11),
],
)
def test_shapes_unsupported_dtypes(basic_image, dtype, test_value):
"""Unsupported data types should raise exceptions."""
with pytest.raises(ValueError):
next(shapes(basic_image.astype(dtype) * test_value))
def test_shapes_internal_driver_manager(basic_image):
"""Shapes should work without explicitly calling driver manager."""
assert next(shapes(basic_image))[0]['type'] == 'Polygon'
def test_sieve_small(basic_image, pixelated_image):
"""
Setting the size smaller than or equal to the size of the feature in the
image should not change the image.
"""
assert np.array_equal(
basic_image,
sieve(pixelated_image, basic_image.sum())
)
def test_sieve_large(basic_image):
"""
Setting the size larger than size of feature should leave us an empty image.
"""
assert not np.any(sieve(basic_image, basic_image.sum() + 1))
def test_sieve_invalid_size(basic_image):
for invalid_size in (0, 45.1234, basic_image.size + 1):
with pytest.raises(ValueError):
sieve(basic_image, invalid_size)
def test_sieve_connectivity_rook(diagonal_image):
"""Diagonals are not connected, so feature is removed."""
assert not np.any(
sieve(diagonal_image, diagonal_image.sum(), connectivity=4)
)
def test_sieve_connectivity_queen(diagonal_image):
"""Diagonals are connected, so feature is retained."""
assert np.array_equal(
diagonal_image,
sieve(diagonal_image, diagonal_image.sum(), connectivity=8)
)
def test_sieve_connectivity_invalid(basic_image):
with pytest.raises(ValueError):
sieve(basic_image, 54, connectivity=12)
def test_sieve_out(basic_image):
"""Output array passed in should match the returned array."""
output = np.zeros_like(basic_image)
output[1:3, 1:3] = 5
sieved_image = sieve(basic_image, basic_image.sum(), out=output)
assert np.array_equal(basic_image, sieved_image)
assert np.array_equal(output, sieved_image)
def test_sieve_invalid_out(basic_image):
"""Output with different dtype or shape should fail."""
with pytest.raises(ValueError):
sieve(
basic_image, basic_image.sum(),
out=np.zeros(basic_image.shape, dtype=rasterio.int32)
)
with pytest.raises(ValueError):
sieve(
basic_image, basic_image.sum(),
out=np.zeros(
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
dtype=rasterio.ubyte
)
)
def test_sieve_mask(basic_image):
"""
Only areas within the overlap of mask and input will be kept, so long
as mask is a bool or uint8 dtype.
"""
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
mask[4:5, 4:5] = False
truth = basic_image * np.invert(mask)
sieved_image = sieve(basic_image, basic_image.sum(), mask=mask)
assert sieved_image.sum() > 0
assert np.array_equal(
truth,
sieved_image
)
assert np.array_equal(
truth.astype(rasterio.uint8),
sieved_image
)
def test_sieve_blank_mask(basic_image):
"""A blank mask should have no effect."""
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
assert np.array_equal(
basic_image,
sieve(basic_image, basic_image.sum(), mask=mask)
)
@pytest.mark.xfail(reason="Upstream bug in GDAL, see #3074.")
def test_sieve_all_masked(basic_image):
"""A blank mask should have no effect."""
mask = np.full(basic_image.shape, False)
# mask[-1, -1] = True
sieved = sieve(basic_image, basic_image.sum(), mask=mask)
assert np.array_equal(
basic_image,
sieved
)
def test_sieve_invalid_mask_shape(basic_image):
"""A mask that is the wrong shape should fail."""
with pytest.raises(ValueError):
sieve(
basic_image, basic_image.sum(),
mask=np.ones(
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
dtype=rasterio.bool_
)
)
def test_sieve_invalid_mask_dtype(basic_image):
"""A mask that is the wrong dtype should fail."""
for dtype in ('int8', 'int16', 'int32'):
with pytest.raises(ValueError):
sieve(
basic_image, basic_image.sum(),
mask=np.ones(basic_image.shape, dtype=dtype)
)
def test_sieve_supported_dtypes(basic_image):
"""Supported data types should return valid results."""
supported_types = (
('int16', -32768),
('int32', -2147483648),
('uint8', 255),
('uint16', 65535)
)
for dtype, test_value in supported_types:
truth = (basic_image).astype(dtype) * test_value
sieved_image = sieve(truth, basic_image.sum())
assert np.array_equal(truth, sieved_image)
assert np.dtype(sieved_image.dtype) == np.dtype(dtype)
def test_sieve_unsupported_dtypes(basic_image):
"""Unsupported data types should raise exceptions."""
unsupported_types = (
('int8', -127),
('uint32', 4294967295),
('int64', 20439845334323),
('float16', -9343.232),
('float32', 1.434532),
('float64', -98332.133422114)
)
for dtype, test_value in unsupported_types:
with pytest.raises(ValueError):
sieve(
(basic_image).astype(dtype) * test_value,
basic_image.sum()
)
def test_sieve_band(pixelated_image, pixelated_image_file):
"""Sieving a band from a raster file should match sieve of array."""
truth = sieve(pixelated_image, 9)
with rasterio.open(pixelated_image_file) as src:
band = rasterio.band(src, 1)
assert np.array_equal(truth, sieve(band, 9))
# Mask band should also work but will be a no-op
assert np.array_equal(
pixelated_image,
sieve(band, 9, mask=band)
)
def test_sieve_internal_driver_manager(capfd, basic_image, pixelated_image):
"""Sieve should work without explicitly calling driver manager."""
assert np.array_equal(
basic_image,
sieve(pixelated_image, basic_image.sum())
)
def test_zz_no_dataset_leaks(capfd):
with rasterio.Env() as env:
env._dump_open_datasets()
captured = capfd.readouterr()
assert not captured.err
def test_sieve_bands(pixelated_image, pixelated_image_file):
"""Verify fix for gh-2782."""
truth = sieve(pixelated_image, 9)
with rasterio.open(pixelated_image_file) as src:
assert np.array_equal(truth, sieve(rasterio.band(src, [1]), 9))
# Mask band should also work but will be a no-op
assert np.array_equal(
pixelated_image,
sieve(rasterio.band(src, [1]), 9, mask=rasterio.band(src, 1))
)
def test_sieve_dataset(pixelated_image, pixelated_image_file):
"""Verify fix for gh-2782."""
truth = sieve(pixelated_image, 9)
with rasterio.open(pixelated_image_file) as src:
assert np.array_equal(truth, sieve(src, 9))
# Mask band should also work but will be a no-op
assert np.array_equal(
pixelated_image,
sieve(src, 9, mask=rasterio.band(src, 1))
)
|